У нас, конечно, есть все основания говорить, что статистическая физика – это новая физика. Огромность числа частиц тела не позволяет описывать состояние каждой из них. Но в то же время эта огромность позволяет применить к изучению физических тел новые «статистические» методы. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844–1906). В серии работ Больцман показал, как осуществить для газов программу построения теории, связывающей средние характеристики молекулярного движения с физическими свойствами.
В 1877 году логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на его памятнике.
Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования этого замечательного ученого подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими корифеями науки наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.
Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джошуа Вилларда Гиббса (1839–1903). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела. Последняя работа его вышла в свет уже в начале XX века. И прошло порядочное число лет, пока его замечательные исследования стали известны всем физикам. А все дело заключалось в скромности. Из-за нее Гиббс печатал свои труды в известиях небольшого провинциального университета.
Что же это за путь, по которому надо идти, чтобы найти связь между хаотическим молекулярным движением и свойствами тела? Как экспериментальным путем измерить вероятность состояния тела?
Одна из самых важных работ Людвига Больцмана показала следующее. Если телу сообщить небольшое количество энергии в форме тепла и разделить затраченное число калорий на температуру, при которой происходит эта передача энергии, то полученное частное будет равняться приросту энтропии. А прирост энтропии, как помнит тот читатель, который не позабыл свойства логарифмов, равен относительному приросту вероятности состояния (ибо разность логарифмов равна логарифму частного).
Доказывать эту теорему я не имею возможности. Но такова уж участь читателей литературы о науке – они должны иногда верить автору на слово. Правда, в наш недоверчивый век я стараюсь не злоупотреблять этой прерогативой, но сейчас прошу поверить: все сказанное верно, и энтропию, вычисляемую из вероятности состояния, можно (и не очень трудно) измерить на опыте.
Гиббсом были даны формулы, которые позволяли проводить вычисление любых физических свойств любых тел, если известна вероятность состояния.
На первый взгляд может показаться, что прогресс не очень-то велик и что молекулярно-кинетическая теория осталась «вещью в себе». Ну получили формулу для расчета свойств тела! Но ведь для того, чтобы произвести этот расчет, надо знать вероятность состояния, то есть число микросостояний! А откуда ее взять? Гиббс показал, что вместо числа микросостояний достаточно знать их распределение по энергии.
Долгое время казалось, что от этого легче не стало. И лишь относительно недавно мощь статистической физики проявилась. Лет пятьдесят назад физики научились измерять распределение микросостояний по энергии с помощью спектрального анализа. И тогда создалась возможность использовать статистическую физику так, как должно, то есть для предсказаний.
Вот пример схемы действий, которая приводит в восхищение физика и, кстати говоря, формирует его мировоззрение и психологию.
Вы, осветив какой-либо газ, ну, скажем, для определенности углекислый газ, подвергаете его спектральному исследованию и получаете красивую спектрограмму, состоящую из множества четких спектральных линий. Спектрограмма расшифровывается с помощью ЭВМ, и вы получаете список энергии микросостояний молекул в виде ряда чисел. Полученные числа подставляются в формулы статистической физики. Если лень считать самому, можете и эту задачу поручить ЭВМ. В результате расчета вы получите, например, зависимость теплоемкости углекислого газа от температуры. Теперь отправимся в другую лабораторию – калориметрическую. Здесь можно измерить, сколько тепла надо затратить, чтобы один грамм газа нагреть от 20 градусов до 21, от 21 градуса до 22 и так далее. Это и значит, что вы измеряете кривую теплоемкости. Вы отмечаете крестиками полученные на опыте данные на миллиметровой бумаге. Здесь же, в том же масштабе, изображена кривая теплоемкости, которую вы вычислили теоретически. И видите, что крестики строго ложатся на теоретическую кривую.
Вдумайтесь еще раз в смысл происшедшего. Что общего, казалось бы, между поглощением света углекислым газом и теплом, затрачиваемым на нагрев этого газа? Да ничего, решительно ничего.
И вот между этими двумя явлениями перекидывается мост – прозрачно ясная идея беспорядочно движущихся молекул, далее, поведение молекул уподобляется поведению шарика рулетки, вступает в строй математический аппарат теории вероятностей, и два события оказываются связанными железной цепью. Характер одного из них определяет особенности второго.
Вот это и есть настоящая физика, в этом главное, что принесла с собой наука. Она сделала мир единым, а не хаосом разрозненных, не имеющих между собой ничего общего явлений.