Книга: Люди на Луне. Главные ответы
Назад: Как удалось достичь высокой надежности полетов людей на Луну?
Дальше: ПОСЛЕ APOLLO

Почему вернувшиеся капсулы Apollo не выглядят обгоревшими?

Краткий ответ: В сравнении с кораблями «Союз» Apollo кажутся менее пострадавшими из-за разницы наклона боковых стенок корпуса — у «Союза» наклон намного меньше. «Союзы» с внешней стороны покрываются пластиком, который горит при низкой температуре, из-за чего аппарат и кажется сильно обгоревшим.

Одним из самых важных и ответственных этапов путешествия людей на Луну стало возвращение командного модуля Apollo в атмосферу Земли. Почти на второй космической скорости, около 11 км/с, спускаемые аппараты принимали удар верхних слоев атмосферы. На такой скорости даже разреженный воздух на высоте 80 км уже оказывает значительное сопротивление и тормозит корабль.

Для более плавного возвращения и уменьшения перегрузок экипажа посадка проходила по сложной траектории. Корабль по пологой траектории снижался из космоса до высоты 55 км над Землей, где перегрузки поднимались до допустимого максимума — более чем в шесть раз. Затем корабль «отскакивал», поднимаясь на высоту около 58 км, затем происходил второй отскок с подъемом до высоты 60 км, и только потом снижение продолжалось с существенно погашенной скоростью.

Художественное представление входа в плотные слои атмосферы командного модуля Apollo. NASA

Профиль снижения Apollo в атмосфере Земли. NASA

В некоторых описаниях этот процесс называют «отскок от атмосферы», что неверно, так как выхода за пределы атмосферы уже не происходит, и фраза создает ложное представление об атмосфере как однородном слое, подобном поверхности водоема.

Схему «отскока» использовал советский возвращаемый аппарат «Зонд-7», который совершал облет Луны в 1968 году. Остальные возвращаемые аппараты этой серии совершали более кратковременный баллистический спуск, который приводил к большим перегрузкам и большему нагреву корпуса.

В отличие от советских «Зондов», спускаемые аппараты Apollo после возвращения с Луны выглядят светлее, т.е. менее «закопченными», и даже наклеенная «фольга» экранно-вакуумной теплоизоляции сохраняется на корпусе, хоть и не полностью.

При сравнении внешнего вида вернувшихся спускаемых аппаратов кажется, что Apollo пострадали от столкновения с атмосферой значительно меньше, чем околоземные «Союзы», даже современные. Хотя российские корабли приземляются на скорости 8 км/с, т.е. им требуется сбросить значительно меньше кинетической энергии, чем при возвращении от Луны.

Командный модуль Apollo 15 на окололунной орбите (слева), Apollo 9 после вхождения в атмосферу на первой космической скорости (по центру). Справа — командный модуль Apollo 11, входивший в атмосферу на второй космической скорости. NASA

Во время снижения в атмосфере корабль формирует перед собой ударную волну плотного воздуха. Взаимодействие корабля и воздуха приводит к нагреву корпуса. Чтобы люди и полезная нагрузка внутри корабля не пострадали от температуры, спускаемый аппарат защищают. Защита донной части спускаемого аппарата от аэродинамического нагрева в американской терминологии называется «тепловой щит» (heat shield), в русскоязычной — «лобовой теплозащитный экран». Теплозащита покрывает также весь спускаемый аппарат, кроме верхнего люка, но ее толщина меньше, чем толщина теплового щита.

Теплозащита космических кораблей, которая применяется для противостояния атмосферному нагреву, в большинстве случаев имеет схожий состав. За исключением первых капсул программы Mercury и космических челноков Space Shuttle и «Буран», у остальных космических кораблей США и СССР тепловой щит — это композит из стеклоткани с эпоксидным наполнителем. Различаются только технологии плетения и заполнения клеем, форма теплозащитных элементов и т.п.

Следует также отличать теплозащиту, необходимую для возвращения в атмосферу, и теплоизоляцию, которую применяют в космосе для отражения солнечных лучей. Экранно-вакуумная теплоизоляция (ЭВТИ) бывает разной конструкции, но, как правило, это тонкий многослойный материал с металлизированным покрытием. Экранно- вакуумная теплоизоляция «Союза» практически не крепится к спускаемому аппарату, а надета подобно куртке. У других кораблей может быть иначе. Так, металлизированная ЭВТИ на «Востоках», «Восходах» и Apollo наклеивалась поверх теплозащитного корпуса. Некоторые современные корабли уже обходятся без нее и просто покрываются краской.

К настоящему времени мировая космонавтика накопила значительный опыт возвращения космических аппаратов на Землю, и в том числе на скоростях выше первой космической. Некоторые из них были по форме ближе к «Союзам», другие — к Apollo. Сравнивая их состояние, мы можем составить более широкое представление о том, какие повреждения получают космические корабли при входе в плотные слои атмосферы.

Тепловые щиты кораблей прошлого и настоящего, за исключением челноков, создаются по композитной технологии. Задача этих щитов не просто изолировать экипаж от атмосферного нагрева, но и поглотить и рассеять энергию летящего корабля. Композитные тепловые щиты являются так называемой абляционной теплозащитой, т.е. они поглощают тепло, горят (сублимируют — испаряются или возгоняются) и сбрасывают тепло вместе с продуктами горения. Сферические спускаемые аппараты советских «Востоков» и «Восходов» не имели отдельного щита, но их сферическая теплозащита меняла толщину примерно от 10 см в нижней части до 2 см в верхней.

В момент вхождения в плотные слои атмосферы космический корабль окутывается облаком плазмы, разогретого воздуха и продуктов горения теплозащиты. Но энергия передается на корпус неравномерно в его разных частях. Наибольший нагрев — до 2000 °С — испытывает тепловой щит, т.е. нижняя часть аппарата, верхняя же не переживает такого серьезного воздействия, нагреваясь только на несколько сотен градусов.

«Зонд-5» после возвращения от Луны на второй космической скорости и по баллистической траектории. Снимок в момент поднятия аппарата (слева) и в музее (справа). РКК «Энергия»

В том, что «Союз» не обгорает полностью, можно убедиться, если взглянуть на современные снимки спускаемого отсека корабля после посадки. Сегодня есть возможность увидеть и отсек «Зонда-5», который вернулся в 1968 году в Индийский океан с животными, облетев Луну, он хранится в музее Ракетно-космической корпорации «Энергия» (РКК «Энергия») в городе Королеве Московской области. На экскурсию туда можно попасть по предварительной записи. «Зонд-5» пережил значительно более высокий нагрев, чем околоземные «Союзы» или лунные Apollo, из-за баллистического спуска, в котором не использовались аэродинамические возможности спускаемого аппарата. «Зонд-5» пережил почти 20-кратную перегрузку, тогда как у Apollo перегрузки не превышали семи единиц. Перегрузки других «Зондов», которые возвращались по управляемой траектории, а не баллистической, также не превышали семикратного значения.

Похожий на полет «Зонда-5» эксперимент в 2014 году провели и китайские ученые. В ходе испытаний технологии добычи образцов лунного грунта Китай провел запуск к Луне и возвращение аппарата Chang'e 5-T1. В его конструкцию входил спускаемый аппарат, который был в несколько раз меньше пилотируемого, но по форме был очень близок к спускаемому отсеку корабля «Союз» или китайского пилотируемого корабля Shénzhōu («Шеньчжоу»). На снимках после посадки хорошо видно, что модуль обгорел лишь в некоторых местах, не утратив первоначальной белизны на многих участках.

Спускаемый аппарат Chang'e 5-T1 после возвращения от Луны, съемка с разных ракурсов. CNSA/CLEP

Спускаемые аппараты Apollo, вернувшиеся из полета к Луне, также доступны для просмотра в Музее науки в Лондоне (Apollo 10), в Смитсоновском музее в Вашингтоне (Apollo 11) и в других. Осмотрев их, можно самостоятельно убедиться, что они возвращались далеко не в идеальной сохранности. На фотографиях, сделанных в моменты посадки американских кораблей, также видно, что спускаемые аппараты заметно пострадали после прохождения через атмосферу. Можно также обратить внимание на то, что борта спускаемых аппаратов повреждены неравномерно: где-то блестящая экранно-вакуумная теплоизоляция сорвана и борт обгорел, а где-то цела приклеенная «фольга». Схожее состояние можно наблюдать и у российских «Союзов», вернувшихся из космоса.

Командный модуль Apollo 11 после приводнения с разных ракурсов и в музее. NASA, National Air and Space Museum

В 1998 году Европейское космическое агентство провело испытательный запуск спускаемого аппарата ARD. Его форма точно повторяла спускаемый аппарат Apollo, только диаметр был меньше на 30%. Аппарат поднялся на высоту 830 км и погрузился в атмосферу на скорости примерно 7,5 км/с. Температурные датчики показали нагрев теплового щита до 930 °С, но потом вышли из строя, а по расчетам ESA, предполагается максимальный нагрев до 2000 °С. Боковые поверхности не закрывались «фольгой», но по состоянию теплозащиты до и после можно увидеть, что нагрев был локальный, с максимумом ближе к щиту. Основная же площадь бортов практически не обуглилась.

В 2008 году свои испытания на небольшом аппарате диаметром 84 см провело Японское космическое агентство. Спускаемая капсула HSRC была сброшена грузовым кораблем HTV-7 после доставки грузов на Международную космическую станцию. Капсула HRSC имела геометрию корпуса, схожую со спускаемым аппаратом Apollo, только наклон боковых стенок был меньше. Малый аппарат входил в атмосферу на первой космической скорости — около 8 км/с. Траектория спуска была баллистическая, т.е. более жесткая, чем у Apollo, но приводнение прошло успешно, на боковых стенках сохранялась и «фольга» экранно-вакуумной теплоизоляции.

Разница воздействия атмосферы на разные части корпуса спускаемого аппарата космического корабля «Союз». Слева на корпусе — обугленный фторлон, по центру — обгоревший или закопченный стеклопластик. Справа в нижней части корпуса и сверху — поверхности, практически не пострадавшие после спуска. NASA

В 2014 году NASA провело испытания спускаемого аппарата нового корабля Orion (см. главу «Техника и технологии»). Форма спускаемого аппарата полностью совпадает с Apollo, но имеет больший диаметр — 5,3 м. Тепловой щит Orion также во многом повторяет конструкцию щита Apollo, только немного изменился состав материалов. Боковая защита Orion уже сильно отличается от своего предшественника: корпус покрыт плитками, похожими на черные плитки теплозащиты Space Shuttle, это дает возможность многоразового использования аппарата. Хотя экранно-вакуумной теплоизоляции на корпусе Orion не было, зато можно оценить, как изменилось состояние нанесенного краской флага.

Взаимодействие гиперзвукового потока воздуха и корпуса космического корабля на скоростях в несколько километров в секунду сегодня моделируется специальными инженерными программами. Такие расчеты неоднократно проводились как для «Союза» и Shénzhōu, так и для Apollo, Orion, ARD и HSRC.

Изучив состояние различных аппаратов, показания их приборов и результаты компьютерного моделирования, можно выделить несколько причин, отличающих внешний вид теплозащиты «Союзов» от Apollo после их возвращения из космоса.

Теплозащита

Оба космических корабля — Apollo и «Союз» — имеют многослойную теплозащиту, необходимую для возвращения с орбиты на поверхность. Несмотря на разную конструкцию кораблей, разработчики выбрали практически одинаковые материалы для внешней теплозащиты: стеклоткань и фенольно-формальдегидную смолу, более известную как эпоксидная смола. Преимущество этого материала в том, что он практически не плавится, а при достаточном нагреве происходит процесс коксования (обугливания) с выделением газов. В процессе обугливания энергия атмосферного нагрева уходит на горение смолы и уносится вместе с горячими газами и частицами сажи. И хотя температура теплового щита поднимается до 2000 °С, космонавты внутри корабля этого не ощущают.

Спускаемые аппараты Apollo 13, ARD, HSRC; «Восток-1» (корабль Юрия Гагарина) после посадки. NASA, ESA, JAXA; фото автора

Разница между теплозащитой кораблей состоит в структуре композита, пропорциях материалов и процессе изготовления: в «Союзе» формуют весь щит целиком в вакуумном автоклаве, пропитывая смолой стеклоткань. В Apollo использовалась стеклотканевая сотовая структура, которая вручную заполнялась эпоксидкой — каждая ячейка отдельно. Сегодня подобную конструкцию используют для нижнего теплового щита корабля Orion.

Больше различий в строении теплозащиты на боковых стенках кораблей, внешний вид которых после приземления и сравнивается. Примерно две трети площади стенок «Союза» покрыто слоем фторлона (российское название тефлона) толщиной от 2 до 5 мм. Это пластик, который плавится при температуре 330 °С и сгорает при температуре 420 °С. Именно благодаря ему «Союз» выглядит так, будто его хорошо прожарили адским пламенем. Иногда на кораблях после посадки можно увидеть, что обгоревший пластик местами сорван и под ним светлая поверхность теплозащиты, которая даже не обгорела.

Если присмотреться внимательнее к российским кораблям, то можно увидеть, что часть «Союза» практически не повреждена высокой температурой, это говорит о неоднородном атмосферном нагреве. Местами температура внешних стенок корабля намного ниже, чем максимальный жар, о котором чаще всего упоминают в описаниях процесса посадки.

У Apollo конструкция теплозащиты была примерно одинаковой по всей поверхности корабля, различаясь только по толщине слоя. Но бока командного модуля Apollo с внешней стороны дополнительно обклеивались многослойной «фольгой» экранно-вакуумной теплоизоляции, которая защищала корабль от перегрева солнечными лучами в вакууме. Подобным образом обклеивались блестящей теплоизоляцией и советские космические корабли «Восток» и «Восход». Видно, что верхняя часть сферических космических кораблей испытала наименьшее воздействие атмосферы и сохранила остатки теплоизоляции, даже несмотря на перегрузки и нагрев, которые были выше, чем у возвращавшихся от Луны кораблей американцев.

Более интенсивный нагрев и перегрузки околоземных сферических спускаемых аппаратов при вхождении в атмосферу связаны с их формой: «Востоки» и «Восходы» совершали неуправляемый баллистический спуск, который был короче, но приводил к большим нагрузкам, чем у лунных Apollo с плоским днищем.

Сейчас подлинные сферические спускаемые аппараты ранней истории отечественной космонавтики можно увидеть в музеях космонавтики разных городов. Например, в музее РКК «Энергия» в подмосковном Королеве или калужском музее истории космонавтики имени К. Э. Циолковского. Серебристые шестиугольники экранно-вакуумной теплоизоляции сохранились даже на историческом «Востоке-1», который вывел первого человека — Юрия Гагарина — на околоземную орбиту. Обычно спускаемый отсек «Востока-1» хранится в музее РКК «Энергия», но периодически его выставляют на временных выставках в Москве.

У Apollo «фольга» хоть и пострадала, но сохранилась примерно на двух третях всей поверхности, что также говорит о неравномерности воздействия воздуха на боковую поверхность спускаемого аппарата. Причина, по которой боковые поверхности Apollo сохраняются лучше, чем поверхность «Союзов», — геометрия корабля.

Геометрия

Спускаемые отсеки кораблей «Союз» и китайского Shénzhōu, а также межпланетные спускаемые аппараты «Зонд» и Chang'e 5-T1 спроектированы по схеме, которую советские конструкторы назвали «фара» за сходство профилей. Они представляют собой колоколообразные отсеки с наклоном стенок около 7 градусов, т.е. их форма близка к цилиндрической. Максимальный диаметр «фары» в донной части, в месте крепления лобового теплозащитного экрана, а минимальный — наверху, в области переходного люка.

Форма кораблей Apollo и Orion, а также автоматических зондов Европы ARD и японского HSRC намного ближе к усеченному конусу. Угол наклона стенок Apollo составлял 32,5 градуса. Такая форма влияет на степень воздействия газов и плазмы, которые срываются с края лобового теплозащитного экрана и уносятся потоком воздуха. Чем плотнее поток воздуха прижимается к поверхности космического аппарата, тем большее воздействие он может на нее оказать и тем больше сажевых частиц с теплового щита может попасть на боковые стенки корабля. Больший наклон стенок Apollo приводит к тому, что корпус находится как бы в тени теплового щита, который закрывает от наиболее интенсивных струй воздуха и горячей плазмы.

Разница формы ударной волны в воздухе в зависимости от формы спускаемого аппарата. Слева — моделирование спуска Apollo на скорости 4,4 Маха, справа — «Союза» на скорости 5 Махов. NASA, University of Manchester

По данным разработчиков «Союза», максимальная температура внешней стороны боковой стенки корабля при спуске не превышает 700 °С, и только в одном месте — на выступающем блоке двигателей ориентации — она достигает 1000 °С. Теплозащиту корабля Apollo испытали еще до пилотируемых запусков, в 1967 году. Тепловые датчики, размещенные в бортах спускаемого аппарата Apollo 4, показали нагрев не выше 400 °С. Разумеется, разработчики «Союза» понимали, что стенки будут сильно нагреваться, но геометрия была вынужденная — ради увеличения полезного пространства и из-за ограничений по максимальному диаметру космического корабля, которых не было у создателей Apollo.

Схематические эскизы обтекания воздушными потоками спускаемых аппаратов «Союз» и Apollo по результатам численного моделирования. Rakhab C. Mehta

Спускаемый аппарат «Зонда-7» в Демонстрационном зале кафедры «Космические аппараты и ракеты-носители» (СМ-1) Дмитровского филиала МГТУ им. Н.Э. Баумана. Экскурсию проводит заведующий лабораторией, старший преподаватель кафедры Геннадий Кулиш. Съемка со стороны аппарата, наименее подверженной атмосферному воздействию. Фото автора

Пожалуй, самый сильный нагрев спускаемого аппарата класса «Союза» за всю историю космонавтики произошел 21 сентября 1968 года во время посадки прототипа космического корабля «Зонд-5». Спуск проходил на скорости возвращения с Луны и по баллистической траектории, что привело к максимально допустимым нагрузкам и нагреву. Сейчас этот спускаемый аппарат экспонируется в музее РКК «Энергия», где его можно осмотреть и убедиться, что оплавился он только в местах, проклеенных фторлоном, а под тонким слоем пластика — практически не пострадавшая теплозащита.

По сравнению с «Зондом-5» посадка следующего успешного «Зонда-7» была менее экстремальна: управляемая посадка на территорию СССР, двойной вход в атмосферу Земли, более пологая траектория спуска. Однако это все равно было возвращение со второй космической скорости. Сегодня спускаемый аппарат «Зонда-7» хранится в Демонстрационном зале МГТУ им. Н. Э. Баумана в поселке Орево Дмитровского района Московской области. Там можно подробно изучить состояние обшивки космического аппарата и убедиться, что она в хорошей сохранности. Состояние спускаемого аппарата кажется даже лучше, чем у околоземных «Союзов».

Китайский опыт также показывает, что возвращение от Луны на второй космической скорости не способно превратить космический корабль в обугленную головешку. В 2014 году Китайское космическое агентство провело испытание спускаемого аппарата на второй космической скорости. Космический зонд Chang'e 5-T1 обогнул Луну, вернулся в околоземное пространство и сбросил в атмосферу Земли спускаемый аппарат. Его диаметр составлял примерно 110 см, т.е. половину диаметра «Союза» или «Зонда», геометрия корпуса тоже была очень похожа. Точно так же, как и «Союз», Chang'e 5-T1 обгорел только с одной стороны и в значительной степени сохранил внешнюю теплозащиту и даже белую краску, которой был выкрашен перед стартом для защиты от перегрева в вакууме. Сотовая структура нижележащего теплозащитного слоя похожа на тот, что покрывал корабли американцев, чей опыт применили китайские разработчики, а использованный материал — углеродно-кремниевый композит.

Аэродинамика

Космический спускаемый аппарат только выглядит тяжелым и тупым предметом, который может лететь лишь отвесно вниз. На больших скоростях плоское днище космического корабля, закрытое теплозащитным экраном, способно играть роль крыла, обладающего подъемной силой. Благодаря хоть и небольшой, но значительной на больших скоростях подъемной силе, можно управлять полетом космического корабля в атмосфере и увеличивать длину траектории аэродинамического торможения. Управление обеспечивается малыми ракетными двигателями системы ориентации, которые могут отклонять корабль под разными углами к потоку воздуха.

Чем длиннее траектория торможения, тем меньшие нагрузки переживает экипаж и конструкция корабля. Сферические «Востоки» и «Восходы» не обладали такой способностью, поэтому они просто «падали» по баллистической траектории, и космонавты переживали десятикратные перегрузки. Для «Союза» же существует штатная траектория спуска, когда перегрузки достигают четырех-пятикратного значения, а на баллистическом спуске достигают восьми единиц. В лунных полетах Apollo максимальное значение перегрузок не превышало семи единиц, т.е. посадка всегда была управляемой, а не баллистической.

Способность космического аппарата маневрировать в атмосфере зависит от его аэродинамического качества, которое определяется отношением подъемной силы к лобовому сопротивлению, действующему на аппарат. Самолеты обладают аэродинамическим качеством выше единицы, т.е. могут совершать планирующий полет и посадку. Такую возможность в космонавтике имели челноки Space Shuttle и «Буран». Ни «Союз», ни Apollo не могут сесть как самолет, но им доступен так называемый скользящий полет. У американского корабля эти возможности шире за счет большей в три раза площади теплового щита. Это значит, что Apollo был способен дольше находиться в атмосфере и эффективнее рассеивать энергию, не допуская чрезмерного нагрева и высоких перегрузок.

Спускаемый аппарат космического корабля Boeing Starliner после возвращения с низкой околоземной орбиты. Температурное воздействие видно только в правой части аппарата. NASA

Есть еще один показатель, который влияет на полет спускаемого аппарата и его нагрев, — баллистический коэффициент, т.е. отношение площади теплового щита к массе аппарата. Чем выше этот показатель, тем эффективнее атмосферное торможение. Так, два космических аппарата с одинаковым размером, формой и скоростью, но разной массой будут по-разному взаимодействовать с атмосферой. Понятно, что более легкий аппарат будет эффективнее терять скорость, чем тяжелый.

На конкретном примере можно сравнить спускаемые аппараты Orion, Apollo и ARD. Их размеры 5,3 м, 3,9 м и 2,8 м соответственно; различается и масса, но баллистический коэффициент меняется незначительно: 25, 22 и 21. То есть их взаимодействие с атмосферой по баллистическому коэффициенту будет примерно одинаковым, и разницу определяет только скорость.

Если же сравнить летавшие спускаемые аппараты типа «фара», то сразу можно заметить значительную разницу между «Зондом» и Chang'e 5-T1. Аппараты имеют одинаковую форму, но из-за разницы их массы — почти трехкратную разницу баллистического коэффициента. Китайский зонд претерпевал значительно меньшие перегрузки и нагрев, чем советский. По этому показателю Chang'e 5-T1 ближе всего к американскому Orion и японскому HSRC, хотя их форма различна.

Таким образом, разница во внешнем виде приземлившихся спускаемых аппаратов «Союз» и Apollo объясняется разницей в теплозащите кораблей и их геометрией, которая влияет на аэродинамические характеристики аппаратов.

Материалы для самостоятельного изучения

Назад: Как удалось достичь высокой надежности полетов людей на Луну?
Дальше: ПОСЛЕ APOLLO