Книга: Против часовой стрелки: Что такое старение и как с ним бороться
Назад: ЧАСТЬ II. ПОРТРЕТ ВРАГА
Дальше: 2. Клетки: между жизнью и смертью

1. МОЛЕКУЛЫ: МУСОРНАЯ КАТАСТРОФА

Около года назад в мой дом пришел раздельный сбор мусора. Начавшись как простая детская игра "разложи предметы разной формы и цвета по кучкам", эта практика постепенно превратила нашу жизнь в детектив, а квартиру — в мусорный храм.

Казалось бы, быт должен был стать проще и приятнее: никакого противного запаха, никакой беготни с пакетами, только аккуратные стопки вторсырья. На деле же все оказалось куда сложнее. Забота о мусоре стала занимать мои силы и время: его нужно мыть, сушить и сортировать. Потом мусор захватил половину квартиры: выстроил баррикады по углам и облюбовал себе место сушки на подоконниках и прочих поверхностях; на балкон я и вовсе опасаюсь выходить.

Но что самое удивительное — от сортировки мусора в доме не становится чище. То тут, то там от него отваливаются частички. Каждый раз, когда мы его выносим или передвигаем из угла в угол, приходится внепланово перемывать полы. Иногда я думаю: а что мы, собственно, выигрываем? Мы тратим место, силы и ресурсы на то, чтобы мусора в доме стало только больше.

И если человек еще может отказаться от раздельного сбора мусора и сохранить свое душевное равновесие, пусть и ценой благополучия планеты, то отдельно взятой клетке это не под силу. Клетка, как и мы, страдает от мусорной катастрофы — старение внутри нее проявляется в виде испорченных молекул: жиров, белков и ДНК. Но сортировка и переработка отходов стоит довольно дорого, а кроме того, плодит дополнительные отходы. В такой ситуации выживание определяется только экономическим благополучием клетки: хватит ли у нее сил и энергии, чтобы уничтожать мусор быстрее, чем он копится.

Пятна на ДНК

Рассказ о внутриклеточном мусоре я начну с мутаций в ДНК. Они не похожи на мусор в прямом смысле слова — ведь ДНК при этом остается целой и функциональной, — а напоминают, скорее, пятна на обоях. Правда, именно эти пятна и досаждают клетке сильнее всего.

Минимальной поломкой, единицей старения ДНК можно считать точечные мутации. Чаще всего это замена одного нуклеотида ("буквы") на другой. Но бывает и по-другому: в тексте гена могут появиться новые "буквы" (инсерция), а также исчезнуть (делеция) или поменяться местами (инверсия) уже существующие.

Язык нашего генетического кода избыточен, а текст, записанный им, огромен — около трех миллиардов "букв". В геноме каждой клетки они образуют около 20 000 генов — участков ДНК, которые содержат информацию о строении какой-нибудь молекулы. В большинстве случаев замена или удаление одной или нескольких "букв" не оказывает никакого влияния ни на работу ДНК, ни на качество записанной в ней информации, ни на жизнь клетки и тем более организма. Такие мутации, которые проходят незамеченными, называют нейтральными. Но есть и те, что меняют "смысл" гена, то есть его работу или структуру кодируемой молекулы, их можно считать значимыми. Именно они двигают старение на более высоком, клеточном уровне.

Точечные мутации — это в некотором роде неудачные попытки клетки справиться с поломками в ДНК. Все начинается с того, что в каком-то месте "текста", на одной из цепей, одна "буква" по какой-то причине ломается или превращается в другую. При этом рушится основной принцип, по которому построена ДНК: две нити, состоящие из нуклеотидов, должны быть комплементарны друг другу. Это значит, что напротив любого аденинового нуклеотида (А) на другой цепи должен находиться тиминовый (Т), а напротив гуанинового (Г) — цитозиновый (Ц). Пары А–Т и Г–Ц одинакового размера, поэтому вся спираль получается одинаковой толщины.

Как только друг напротив друга оказываются некомплементарные нуклеотиды, на цепи возникает выпячивание. Его распознает система репарации — группа белков, которые отвечают за ремонт ДНК. Они отрезают участок поврежденной нити и достраивают его заново, чтобы он подходил (был комплементарен) к нетронутой цепи. Однако не во всех случаях система репарации верно определяет, какая из цепей "неправильная". Белки то и дело промахиваются — и тогда в ДНК закрепляется ошибка, то есть мутация.

Кроме того, белки репарации могут остановить деление клетки, если повреждений накопилось слишком много. Это служит защитой от опухолевой трансформации — ведь если сразу несколько генов в клетке оказались изменены, то она может начать неконтролируемо размножаться. Поэтому мутации в конечном счете приводят к тому, что клетка теряет способность делиться или — если система репарации не успела забить тревогу — становится раковой.

Вот приблизительный список тех, кто вносит смуту в нашу ДНК и ответственен за первичные поломки:

 

1. Ультрафиолетовые лучи. Они рвут одну из связей внутри тиминовых нуклеотидов, а новая образуется уже между двумя соседями (получается тиминовый димер). Чем больше в клетке таких димеров, тем выше шанс, что система репарации один из них пропустит. Это происходит, например, в коже больных ксеродермой — я приводила это заболевание в качестве примера ускоренного старения, — из-за врожденного дефекта системы репарации клетки не справляются с количеством мутаций и перестают делиться. А те, кто все-таки смог размножиться невзирая на поломки, дают начало опухолям.

 

2. Канцерогены. Это вещества, которые похожи по структуре и форме на нуклеотид и поэтому способны вклиниться между соседними элементами спирали. При этом сами по себе "буквы" в тексте ДНК остаются целыми, но изменяется форма спирали — что привлекает белки репарации.

Так действует на клетку, например, курение: при сгорании смолы образуются канцерогенные полициклические углеводороды. Примерно то же самое происходит при жарке красного мяса: при нагревании в нем появляются полициклические углеводороды, а также два других типа опасных веществ: гетероциклические амины (они же придают жареному мясу золотистый цвет) и производные гема (составной части гемоглобина, которого особенно много в красном мясе). Все они напоминают нуклеотиды по химической структуре — в их основе лежит кольцо, которое и помогает им встроиться между звеньями цепи ДНК.

Именно поэтому в любых рекомендациях по здоровому образу жизни можно встретить отказ от курения. А в последнее время появились и призывы отказаться от красного мяса: Международный фонд исследований рака, например, рекомендует есть его не более килограмма в неделю. И если вред курения ни у кого не вызывает вопросов, то споры о вреде красного мяса продолжаются. До сих пор неизвестно, какая именно доза красного мяса допустима и не вызывает критического количества мутаций. Некоторые исследователи считают, что абсолютно безопасной дозы мяса вообще не существует: наблюдения за жителями полуофициальной "голубой зоны" — общины церкви адвентистов седьмого дня — показывают, что даже одна сосиска в день увеличивает риск смерти от всех причин на 6%.

3. Радиация. Это поток частиц, энергия которых достаточно высока, чтобы разрушить обычно стабильные связи в крупных молекулах, например белках и липидах. В результате их распада образуются свободные радикалы — молекулы, которым до стабильного состояния не хватает одного электрона. Радикалы пытаются "отобрать" недостающий электрон у окружающих клеточных молекул. Под горячую руку может попасть и ДНК — тогда в нуклеотидах тоже рушатся связи, они меняют свою структуру и деформируют цепь.

Большинство людей с серьезными дозами радиации обычно не встречается — за исключением, конечно, шахтеров на урановых рудниках и жертв ядерных катастроф, — но она может стать одним из главных препятствий для полетов к далеким планетам и звездам: в космосе она гораздо сильнее.

 

4. Кислород. Это куда более опасный источник свободных радикалов, чем радиация, — хотя бы потому, что мы постоянно с ним контактируем. Время от времени его молекулы превращаются в активные формы кислорода, самая известная из которых — перекись водорода. Подобно прочим свободным радикалам, активные формы кислорода разрывают связи в крупных молекулах — белках, липидах и ДНК. Молекулы-жертвы теряют электрон и сами превращаются в радикалы — происходит цепная реакция.

Этот процесс называют окислительным стрессом, потому что активные формы кислорода работают как химический окислитель, отбирая электроны у других молекул. О последствиях окислительного стресса мы еще будем говорить в следующих главах, но, забегая вперед, скажу, что он для клетки куда важнее и страшнее, чем любые другие виды стресса.

Сильнее всего достается митохондриям — органеллам, которые отвечают за клеточное дыхание и производство энергии. Именно они поглощают кислород и становятся рассадником свободных радикалов и очагом внутриклеточного бунта. Митохондрии — бывшие бактерии, которые когда-то давно поселились внутри клетки, которая стала нашим общим предком. На память о самостоятельной жизни они сохранили небольшое число собственных генов — митохондриальную ДНК. Она страдает от окислительного стресса гораздо сильнее, чем ДНК в клеточном ядре. Активные формы кислорода образуются прямо у нее под боком, а она от них ничем не отгорожена — у нее нет ни собственной оболочки, ни защитных белков, которые могли бы принять на себя удар.

К тому же митохондриальная ДНК содержит далеко не все гены, необходимые ей для полноценной жизни. Большинство из них давно мигрировали в клеточное ядро. Поэтому многие белки митохондрия не может создать себе сама — например, белки системы репарации. Их приходится заимствовать у клетки, и часто их все равно не хватает. Тогда в митохондриальной ДНК накапливаются мутации, органелла начинает производить дефектные белки, клеточное дыхание перестает быть эффективным, энергии становится меньше, а активных форм кислорода больше — и число мутаций продолжает расти.

Сильнее всего от этого страдают ткани с высокими энергетическими запросами: мышечная и нервная. Поэтому мутации в митохондриальной ДНК некоторые ученые называют причиной многих возрастных синдромов, например саркопении (атрофии мышечной ткани) или болезни Альцгеймера.

Есть и обратный эффект: для того чтобы исправлять мутации в митохондриях, необходимы запасные "буквы"- нуклеотиды. Когда мутаций много, начинается отток нуклеотидов из ядра, и белкам репарации, которые собрались чинить ядерные мутации, не хватает подручного материала. Таким образом, поломки в митохондриях влекут за собой поломки и в "основной" ДНК клетки.

 

5. Ошибки копирования. При делении клетки ДНК необходимо скопировать, чтобы каждый потомок получил полный набор информации. Для этого специальный белковый комплекс — ДНК-полимераза — разъединяет две цепи ДНК и к каждой из них достраивает комплементарную цепь нуклеотидов.

Однако эта белковая машина время от времени ошибается, как и любая живая система. Чтобы скопировать всю ДНК в клетке, ей приходится несколько миллиардов раз провести одну и ту же химическую реакцию: подобрать подходящий нуклеотид и присоединить его к строящейся цепи. Полимераза подхватывает "правильный" нуклеотид с более высокой вероятностью, чем "неправильный", потому что тот лучше укладывается в форму спирали ДНК. Но, даже если один раз на миллион белок проведет реакцию с неподходящим нуклеотидом, в клетке появится несколько тысяч новых мутаций.

К счастью, полимеразы умеют вовремя останавливаться и исправлять ошибки: вырезать неверный нуклеотид и проводить реакцию заново. Но и этот механизм иногда дает сбой, и неподходящий нуклеотид остается на месте. Тогда за дело берутся белки репарации, которые тоже время от времени ошибаются — в этом случае ошибка закрепляется в ДНК. В среднем за один раунд деления клетка приобретает около пяти новых мутаций.

Мутации в ДНК, как и пятна на обоях, возникают неизбежно. Как бы аккуратно люди ни относились к вещам, рано или поздно кто-нибудь споткнется, прольет что-нибудь на стену или брызнет клюквенным соком. Виноватым может оказаться кто угодно. С ДНК происходит то же самое — с течением времени она так или иначе сталкивается с тем или иным мутагеном. Даже когда ткани защищены от канцерогенов или радиации — например, в материнской утробе, — ДНК в клетках продолжает ломаться. К моменту рождения, как мы уже обсуждали, каждый нейрон человека несет около тысячи мутаций. Это дело рук других мутагенов: окислительного стресса — ведь нервная система активно снабжается кровью, которая приносит с собой кислород, — и ошибок копирования, поскольку клетки зародыша постоянно размножаются.

Беспорядок в хромосомах

Старение ДНК не ограничивается появлением маленьких пятен. В ее нитях — хромосомах — может возникнуть и более существенный беспорядок, который делает жизнь клетки практически невозможной.

Когда свободные радикалы атакуют ДНК, время от времени они попадают по обеим ее цепям одновременно. В этом месте возникает двунитевой разрыв, и хромосома распадается на две части. Белки системы репарации пытаются ухватить концы и вновь соединить хромосому, но не всегда угадывают. Пытаясь стянуть края одной "дыры", они то и дело сшивают друг с другом концы разных дыр. В конечном счете оказывается, что хромосомы обменялись участками и возникла хромосомная аномалия.

Может случиться и так, что хромосомы пропадают или появляются целиком. Обычно в клетках человека 23 пары хромосом, но иногда некоторые из них остаются без пары, это называют анеуплоидией. Она может возникнуть как неудачный результат деления клеток. Прежде чем распределить генетический материал по двум полюсам, клетка "выкладывает" хромосомы парами на середину и на некоторое время замирает в таком состоянии. Если к этому моменту, например, в ее ДНК накопилось достаточно мутаций и микроповреждений, белки системы репарации останавливают процесс деления. И клетка "зависает", как бы колеблясь: размножаться или нет. Когда после долгой паузы она наконец решается завершить деление, то может оказаться, что некоторые хромосомы слишком крепко слиплись друг с другом. При попытке растащить их к полюсам они разрываются, обмениваются частями или отходят вместе в одну сторону, таким образом оставляя одну из клеток без нужной хромосомы, а вторую снабжая бессмысленным или даже вредным довеском.

В похожей ситуации оказываются и женские половые клетки. Яйцеклетки перестают размножаться еще до появления девочки на свет, они замирают в середине деления и остаются в таком состоянии до начала полового созревания. Позже в каждом менструальном цикле одна из яйцеклеток созревает и продолжает делиться. Но до этого момента они могут десятки лет провести в промежуточном состоянии. Поэтому чем старше женщина, тем выше риск образования яйцеклеток с лишними, дополнительными или перестроенными хромосомами — а из них после оплодотворения получаются анеуплоидные зародыши.

Для большинства наших клеток анеуплоидия губительна: они либо гибнут, либо продолжают существовать с поломками и не могут размножаться. Дело в том, что нехватка или избыток хромосом нарушают расположение ДНК в ядре, и добраться до генов с нужной информацией становится сложнее. Кроме того, изменяется количество работающих генов, поэтому каких-то белков клетка начинает производить больше или, наоборот, меньше. Поэтому анеуплоидные клетки часто встречаются в опухолях — если приобрели себе, например, лишнюю копию гена, который отвечает за деление клеток.

По этой же причине люди с синдромом Дауна, клетки которых несут лишнюю 21-ю хромосому, не только бесплодны, но стареют быстрее своих сверстников, по крайней мере, если верить подсчетам профессора Франчески. Спасает их только то, что 21-я хромосома — самая маленькая в геноме человека. Анеуплоидия по другим хромосомам (не считая половые) дается людям гораздо тяжелее. С лишней 13-й или 18-й хромосомой — следующими по размеру с конца — больные живут максимум до 10 лет, а чаще и вовсе умирают в младенчестве.

В отличие от мелких мутаций, анеуплоидия и хромосомные аномалии возникают гораздо реже и далеко не во всех клетках. Этого беспорядка можно избежать, если клетка не размножается и не испытывает действительно сильный окислительный стресс.

Тем не менее в отдельных случаях анеуплоидия может принести определенную пользу. По крайней мере, ее неоднократно обнаруживали и в здоровых клетках мозга, и в клетках печени, которые находились под действием стресса. В некоторых ситуациях клеткам выгодно вместе с лишней хромосомой заполучить себе дополнительную копию каких- нибудь генов или, наоборот, избавиться от них. Таким образом, иногда и беспорядок может оказаться полезным — например, чтобы пережить тяжелые для клетки времена.

Генетические тараканы

В длинном списке бед, которые с возрастом настигают ДНК, кроме пятен и трещин, есть еще и паразиты. Это ретротранспозоны, то есть участки ДНК, которые могут независимо от клетки размножаться и перемещаться по геному. Они напоминают по структуре ретровирусы, к которым относится, например, вирус иммунодефицита человека. Так что ретротранспозоны можно считать объектами наподобие вирусов, которые застряли навсегда в нашей ДНК (хотя, строго говоря, кто из них появился раньше, вирусы или ретротранспозоны, до сих пор неясно). Эти паразиты с нами с самого рождения, их можно найти у кого угодно в любой клетке, и с возрастом их становится только больше.

Ретротранспозон получил первую часть своего названия, потому что способен не только считывать информацию с ДНК, но и "вписывать" ее обратно. Выглядит цикл его размножения так: клетка принимает паразитический участок ДНК за свой и копирует с него информацию в виде промежуточной молекулы РНК (аналог ДНК, состоящий из одной цепи). Эта РНК несет информацию о белке под названием обратная транскриптаза, или ревертаза. Этот белок запускает обратный процесс: на основе РНК он строит новый участок нити ДНК, который затем встраивается в случайное место в хромосомах клетки, — и размножение совершилось.

Гены ретровируса, в отличие от ретротранспозона, кодируют еще и белки оболочки, из которых собирается вирусная частица. Затем вирус выходит из клетки (нередко разрушая ее) и отправляется на поиск новых жертв. А ретротранспозон — это "недоделанный" ретровирус, у него нет белковой оболочки и соответствующих ей генов. Поэтому все, что он может, — это размножаться и перемещаться в пределах ДНК одной клетки.

Ретротранспозоны, которые навеки поселились в ДНК человека, занимают, по разным оценкам, от 45% до двух третей нашего генома. Не стоит удивляться таким большим цифрам: непосредственно генетической информации (такой, которая кодирует клеточные молекулы) в нашем геноме всего около 2%. Остальные участки ДНК — это "технические" зоны или генетический мусор (вроде последовательностей-паразитов), а про некоторые мы так и не знаем до сих пор, откуда они появились и зачем нужны. Так или иначе, почти половина нашей ДНК в некотором роде — не наша, чужеродная. И почти все это — ретротранспозоны одного типа, LINE-1 (или коротко L1). Правда, большинство из них "пассивны": из примерно 500 000 копий L1 в нашей ДНК лишь 80–100 могут размножаться, остальные оказались нейтрализованы собственными мутациями.

В подавляющем большинстве случаев разгул транспозонов не приносит клетке ничего хорошего. Представьте себе, что у вас дома живет сумасшедший ксерокс, который копирует одну и ту же страницу и вставляет ее случайным образом в ваши книги. В некоторых случаях это хулиганство останется незаметным — если страница оказалась, например, между обложкой и титулом. Но иногда оно становится серьезным преступлением — если вирусный лист встроился посередине вашего паспорта или других ценных документов. Для вас это означает, что ваш паспорт больше не действителен, а для клетки — что ретротранспозон оказался посередине какого-нибудь гена, который в результате подобного вторжения перестал работать (то есть клетка не может больше производить белки, которые этот ген кодирует).

Примерно 1 из 1200 возникающих у нас мутаций — результат размножения ретротранспозона L1. Иногда их перемещение вызывает генетические болезни, например некоторые типы гемофилии или мышечную дистрофию Фукуямы. В других случаях приводит к опухолевому перерождению клетки — если повреждает гены, контролирующие деление. Третья же группа мутаций не затрагивает жизненно важных генов, генетические паразиты прячутся по углам и до поры остаются незамеченными, пока их не становится слишком много — и тогда клетка теряет способность делиться.

Подобно точечным мутациям, прыжки ретротранспозонов неизбежны. Паразиты поселились в этом клеточном доме задолго до того, как мы получили его в наследство. Искоренить их невозможно, да и вырезать злосчастные страницы из своей ДНК клеткам не под силу. Единственное, что они могут сделать, — это помешать ретротранспозонам размножаться. Для этого в молодых клетках есть специальные механизмы, которые заставляют скручиваться те участки ДНК, где расположены копии L1. Пока они свернуты, информация с них не считывается, РНК не образуется и ксерокс бездействует. Однако со временем эти механизмы дают сбой, ретротранспозоны выходят из-под контроля, и мутации продолжают прибывать.

Впрочем, как и в случае с хромосомными аномалиями, прыжки паразитов по геному клетки тоже могут использовать в своих целях. Известно, например, что ретротранспозоны особенно активны в клетках, которые постепенно превращаются в нейроны развивающегося головного мозга. Хаотично перемещаясь между хромосомами, L1 вносят случайные изменения в гены, ответственные за работу нервных клеток, и тем самым работают как генератор разнообразия. Таким образом ретротранспозоны увеличивают спектр нейронных сетей, которые можно из этих клеток построить. Есть даже данные о том, что у взрослых мышей ретротранспозоны "просыпаются" в ходе физических тренировок: генератор разнообразия помогает им адаптироваться к стрессу.

Белковая пыль

Белки — вторые по длине молекулы в клетке после ДНК. В некотором смысле их тоже можно воспринимать как текст: подобно тому, как ДНК складывается из отдельных букв-нуклеотидов, белок строится из слов-аминокислот. Но если в ДНК имеет значение каждая буква, для белка принципиален скорее общий смысл. От последовательности аминокислот зависит форма, которую примет белковая цепь, а вместе с тем и функция молекулы в целом. Под формой здесь стоит понимать не только геометрические очертания белка, но и набор химических групп и электрических зарядов на поверхности молекулы. В зависимости от них белок может прилипнуть к другому белку, вступить с ним в химическую реакцию или — как делают белки-ферменты — создать условия для химической реакции, захватив реагирующие вещества в специальный карман.

С точки зрения белков старость — это накопление в клетке молекул неправильной формы. Белки могут быть деформированы с самого начала своего существования или потерять структуру после какого-нибудь случайного столкновения. Так или иначе, они не выполняют своих функций и не вступают в химические реакции — это внутриклеточный мусор в прямом смысле этого слова. Зато деформированные белки хорошо слипаются друг с другом — подобно тому как по углам дома скапливаются комья пыли, — занимают место внутри органелл и мешают клетке транспортировать между ними вещества.

Испорченные белки могут появиться в результате ошибки сборки. Подобно системе копирования ДНК, молекулярная машина, которая синтезирует белки, — рибосома — не работает безупречно. Рано или поздно она ошибается и встраивает в белковую последовательность неверную аминокислоту. Точность работы рибосомы в каждом организме, судя по всему, не меняется с возрастом, это постоянная характеристика. А вот у разных видов точность может различаться. Самыми аккуратными оказываются (кто бы сомневался!) рибосомы голого землекопа, а также других долгоживущих грызунов: слепыша, американского бобра и серой белки.

Но даже аккуратно собранные белки могут испортиться, если станут жертвой каких-нибудь незапланированных химических реакций. Повредить белок могут, например, уже знакомые нам активные формы кислорода. Атакуя с нескольких сторон, они изменяют химическую структуру множества аминокислот разом, "покусанный" белок раскручивается, а потом скручивается заново — и часто принимает совсем другую форму, чем раньше. Если белок сворачивается неправильно, то на его поверхности могут оказаться "липкие" участки, которыми он цепляется за соседей — так возникают белковые агрегаты, которые только занимают место внутри клетки, не принося никакой пользы.

Кроме активных форм кислорода, у клеточных белков есть еще один враг — углеводы, они же сахара. Сами по себе сахара не агрессивны и вступают в реакции с белками довольно редко. Но поскольку они постоянно находятся рядом, в одном внутриклеточном растворе, то реакции все же происходят, и углеводы то и дело цепляются за белки. В результате образуются белки с углеводными "хвостами", конечные продукты гликирования (advanced end-glycation products, AGE) — тоже, по сути своей, белковый мусор. Внутри клеток их образуется немного, а вот снаружи — гораздо больше, особенно если сахара в крови много, как при диабете. После гликирования, то есть реакции с углеводами, многие белки теряют свою активность: например, инсулин хуже связывается с рецепторами на поверхности клеток, антибактериальные белки становятся безобидными для бактерий, а поломка сигнальных молекул мешает быстро заживлять раны. В крови и межклеточном веществе тоже копится мусор, от чего стенки сосудов становятся жестче, а тонкие капилляры почек забиваются белковыми агрегатами.

На борьбу с такими агрегатами клетка отправляет уборщиков мусора. Это, например, белки шапероны — они пропускают неправильно свернутые белки сквозь себя и так восстанавливают их форму. Если же "причесать" поломку не получается, другие белки навешивают на поврежденные молекулы "черные метки" — химические опознавательные знаки. На эту метку реагирует молекулярная машина протеасома, которая расщепляет белки. Если же дело совсем плохо и клетку заполняют крупные белковые агрегаты, в ход идет аутофагия, или самопоедание, — клетка заключает мусор в мембранный пузырек и переваривает, как если бы он был крупногабаритной пищей.

Дальше развитие событий зависит от соотношения сил у противников: если системы уборки мусора работают медленнее, чем он появляется, то клетка постепенно начинает функционировать все хуже и хуже. А с возрастом активность "коммунальщиков" часто становится ниже. К тому же шапероны и протеасомы, подобно системам ремонта ДНК и рибосомам, тоже неидеальны и совершают ошибки. Каждая такая ошибка оборачивается накоплением мусорных белков, которые слипаются со своими соседями и приближают "мусорную катастрофу".

Ветхие липиды

Старость не щадит и еще один тип клеточных макромолекул — фосфолипиды, из которых построены клеточные оболочки (мембраны). Это похожие на жиры молекулы с одной гидрофильной "головкой" и двумя длинными гидрофобными "хвостами" — жирными кислотами.

В состав жирной кислоты входит длинная цепь атомов углерода, обвешанных атомами водорода. Если водородов хватает на все свободные связи атомов углерода, кислоты называют насыщенными. Есть и ненасыщенные жирные кислоты — в них водородов меньше, чем в насыщенных, и между атомами углерода встречаются двойные связи, которые можно было бы дополнить, то есть насытить, атомами водорода. Если такая связь одна, кислота считается мононенасыщенной, если больше одной — полиненасыщенной.

Именно в ненасыщенных жирных кислотах кроется серьезная опасность для жизни клетки и организма в целом. Под действием активных форм кислорода двойные связи рвутся гораздо легче, чем одинарные. Тогда безобидный фосфолипид превращается в свободный радикал, который атакует соседние фосфолипиды, расщепляя их на новые радикалы. Мембрана клетки рушится, как забор из фишек домино.

В отличие от других радикалов, липидные радикалы дольше живут, легче проходят сквозь мембраны — потому что они и есть часть мембраны — и распространяются по клетке. Поэтому из митохондрии, где больше всего активных форм кислорода, эти радикалы добираются до отдаленных участков клетки и там атакуют другие молекулы — вносят мутации в ДНК и реагируют с белками, сшивая их друг с другом. В результате таких перекрестных сшивок образуется белковый агрегат липофусцин, который придает коже пожилых людей характерный желтоватый цвет.

Тем не менее вы могли встречать упоминания о полиненасыщенных жирных кислотах на этикетках "полезных" продуктов. Дело в том, что среди ненасыщенных жирных кислот две группы для человека считаются незаменимыми, поскольку наш организм не может их произвести самостоятельно. Первая группа — это омега-3 кислоты, например линоленовая кислота. Их молекулы содержат три двойные связи, мы получаем их в основном из рыбы и морепродуктов. Вторая группа — омега-6 кислоты: линолевая кислота и ее родственники. В них по две двойные связи, а основной их источник — растительные масла. Цифры 3 и 6 здесь обозначают не количество двойных связей, а номер атома углерода, на котором расположена первая из них, начиная с "хвоста" молекулы.

Входя в состав клеточных мембран, эти ненасыщенные жирные кислоты делают их более рыхлыми, а следовательно — более гибкими и эластичными. Поэтому их часто назначают как пищевые добавки. В то же время, как и другие полиненасыщенные жирные кислоты, омега-3 и омега-6 могут нести в себе дополнительную опасность. В организме человека есть ферменты, которые превращают омега-3 кислоты в молекулы с бóльшим числом двойных связей — то есть в потенциальные свободные радикалы. А при расщеплении омега-6 отлично получаются сигнальные молекулы, которые усиливают воспаление в тканях.

Поэтому до сих пор доподлинно неизвестно, влияет ли их прием на продолжительность жизни и здоровье человека. Несмотря на то что употребление ненасыщенных кислот в целом снижает риск смертности от всех причин, омега-3 кислоты в отдельности, по последним данным, никак на нее не влияют. Вероятно, дело не в количестве жирных кислот, а в их соотношении: чем больше омега-3 по сравнению с омега-6, тем менее опасна каждая в отдельности.

Таким образом, липиды оказываются жертвой окислительного стресса точно так же, как белки или ДНК. И даже полезные ненасыщенные кислоты с течением времени оборачиваются разрушительной силой. А чем больше в них двойных связей, тем хуже. Об этом, кстати, прекрасно знают пчелиные царицы, которые живут в разы дольше простых рабочих пчел. Царицы почти никогда не едят пыльцу, которая содержит много полиненасыщенных кислот, поэтому их мембраны устойчивы к стрессу. А простые рабочие пчелы регулярно питаются пыльцой — и это, вероятно, одна из причин, по которой их жизнь короче. И у множества млекопитающих, в том числе и людей-долгожителей, в организме редко встречаются ненасыщенные кислоты с более чем двумя двойными связями.

Убирать или жить дальше

День за днем человек не замечает, как облетают чешуйки с его кожи и откалываются крупицы побелки с потолка. И то и другое становится проблемой только тогда, когда по комнате начинают летать клочья пыли и мешают свободно дышать. И на молекулярном уровне старение выглядит не столько как распад тела, сколько как накопление мусора в разных его формах — от белковых клубков и изломанных липидов до пятен на ДНК. Весь этот спектр клеточных несовершенств геронтолог Вадим Гладышев предложил называть единым емким термином "делетериом" (по аналогии с набором генов — геномом, от английского слова "deleterious" — вредоносный). И подобно тому, как предотвратить образование пыли невозможно, даже если обмотать стены дома полиэтиленовой пленкой и завернуться в нее самому, спастись от делетериома тоже не получится.

Виноватого здесь искать бесполезно: иногда это какие-то внешние факторы вроде ультрафиолетовых лучей, в других случаях — проявление несовершенства клеточной машинерии, которая то и дело позволяет себе совершать роковые ошибки. Но чаще всего мусор возникает как неизбежное следствие того, что множество молекул заперты в клетке и постоянно сталкиваются друг с другом. В густом супе из веществ, которым заполнена клетка, некоторые реакции происходят сами собой и образуются токсичные продукты обмена веществ, которые и губят клетку в конце концов. Это обратная сторона обмена веществ, параметаболизм, расплата за то, что "нужные" молекулы имеют возможность быстро найти друг друга и вступить в необходимые клетке химические реакции.

Есть множество способов справиться с делетериомом, и каждый организм выбирает свой. Можно быстро размножаться, "растворяя" мусор в клетках своих потомков, как делают одноклеточные организмы. Можно постоянно обновлять клетки своего тела с помощью регенерации, как гидра. Можно оставить все старое в одной клетке и отпочковать новую — молодую, чистую, без мусора, — так поступают дрожжи в стрессовых условиях.

Но большинству многоклеточных организмов это недоступно. В нашем теле есть принципиально необновляемые (или плохо обновляемые) структуры, например нервная ткань или внеклеточное вещество кости (то самое, которое придает ей прочность). Чтобы позволить себе такой сложный орган, нужно запретить ему регенерировать, то есть терять и приобретать отдельные части. Тем самым мы ограничиваем время жизни своего тела сроком годности этих структур.

Большинства неприятностей, описанных выше, можно было бы избежать, если бы на помощь вовремя приходили белки системы репарации. Но они, в свою очередь, тоже не работают со 100%-ной эффективностью и тоже могут ошибаться, например, сшивая друг с другом обрывки разных хромосом. Поэтому количество мутаций с возрастом постепенно растет, и в какой-то момент скорость их накопления обгоняет скорость ремонта. Если мы посмотрим на уже знакомых нам животных-долгожителей, то увидим, что у большинства есть какие-то свои секреты репарации ДНК и обновления белкового состава. Акулы, попугаи, черепахи — каждый раз, когда ученые расшифровывают геном какого-нибудь очередного рекордсмена, обнаруживается, что гены, кодирующие его белки системы репарации, подверглись тщательному отбору в ходе эволюции. Иными словами, преимущество получили те, кто усовершенствовал свои навыки ремонта.

Проблема лишь в том, что уборка не бывает бесплатной, она требует серьезных вложений. А у стареющей клетки энергии часто не хватает: с возрастом в митохондриальной ДНК накапливаются мутации и митохондрии начинают работать хуже. Поэтому перед каждой клеткой встает дилемма: имеет ли смысл тратить силы на поддержание своих клеток в чистоте или, возможно, стоит направить энергию на размножение?

Согласно теории одноразовой сомы (disposable soma, что я позволю себе перевести как "тело на выброс") Томаса Кирквуда, большинство организмов решили для себя эту дилемму следующим образом: они оставили себе "неприкосновенный запас" клеток, с помощью которых будут размножаться, и в них стараются поддерживать чистоту и порядок. А остальным клеткам — в нашем случае всему остальному телу — энергия достается по остаточному принципу. Но так как они никогда не получают 100% возможных ресурсов, то делетериом с неизбежностью разрастается. И рано или поздно наше тело (сома) вместе со своим мусором отправляется на выброс, а половые клетки остаются жить дальше — в виде следующего поколения организмов.

Назад: ЧАСТЬ II. ПОРТРЕТ ВРАГА
Дальше: 2. Клетки: между жизнью и смертью