Книга: Pro темную материю
Назад: Адам Рисс и одна далекая сверхновая
Дальше: Частицы-претенденты

Сильное и слабое гравитационное линзирование

Дэвид Шрамм, считающийся одним из лучших специалистов по теории Большого взрыва, вместе со своими студентами занимался изучением открытого космоса и, в частности, обнаружил, что дейтерий, или тяжелый водород (изотоп водорода, в ядре которого имеется один нейтрон и один протон), мог только разрушаться в звездах, но не создаваться (как могут другие элементы). Поэтому весь дейтерий, который имеется во Вселенной на сегодняшний день, должен был присутствовать и в ранней Вселенной, и можно сделать вывод, что имеющееся сегодня количество дейтерия – это в лучшем случае то его количество из ранней Вселенной. Проведя дополнительные расчеты, можно выяснить, насколько плотной в плане барионов была ранняя Вселенная, чтобы это максимальное количество дейтерия сохранилось с тех времен. Чем плотнее барионная материя, тем сильнее падение «выживаемости» дейтерия. Проведенный анализ показал потолок плотности барионной материи.



Дэвид Шрамм, американский астрофизик (1945–1997)





Шрамм назвал дейтерий «бариометром». Рассуждая аналогичным образом и проведя соответствующие расчеты, можно получить низшее возможное значение для барионной материи. Гелий-3 (два протона плюс нейтрон) мог только создаваться в звездах, а не разрушаться. Соответственно, нынешнее его количество – это, по крайней мере, количество из ранней Вселенной. Какой должна была быть плотность барионов в ранней Вселенной, чтобы выжило это минимальное количество гелия-3? Отсюда получается низшее значение плотности барионной материи.

Используя физику частиц для установления верхней и нижней границ плотности барионной материи во Вселенной, Шрамм определил значение омеги для барионной материи – около 0,1. Но это значение ничего не говорило о небарионной материи, как, впрочем, ничего не было сказано и о значении омеги для общего количества материи.

«Взвешивание» Вселенной на различных весах давало омегу в районе 0,2, возможно, выше. Одно это расхождение (0,1 барионной материи против 0,2 общего количества материи) являлось доказательством существования небарионной материи. В теории Большого взрыва эта материя могла иметь только один источник – тот же самый, что протоны, нейтроны, фотоны и все остальное во Вселенной: первичная плазма.

Если специалисты, занимающиеся физикой частиц, и не знали, что это, они знали, что, как и все остальные частицы, эти должны были идти потоком через Вселенную с первой секунды ее существования и должны были быть или быстрыми, или медленными. Легкие частицы, которые двигались на скоростях, приближающихся к скорости света, назвали горячей темной материей. Более тяжелые частицы и, соответственно, более медленные, которые прикреплялись к галактикам и двигались на той же скорости, что звезды и газ, назвали холодной темной материей. Но два вида темной материи – горячая или холодная – давали два противоположных эволюционных сценария Вселенной. При горячей темной материи сценарий развивался «от сложного к простому». При холодной темной материи, наоборот, «от простого к сложному».

Проводившиеся в начале 1980-х годов наблюдения показали, что наша галактика, Млечный Путь, является частью местного сверхскопления галактик, а сверхскопления разделены огромными пустотами. Это подтверждало модель с холодной темной материей, и к середине десятилетия большинство ученых склонялись к этому варианту. Затем, с конца 1980-х годов, ученые стали использовать красное смещение для составления карт Вселенной. В период с 1997 по 2002 год были представлены карты 221000 галактик. К настоящему времени мы можем говорить о картах уже порядка 900000 галактик. И во время этих наблюдений ученые обнаружили, что чем дальше во Вселенную они заглядывают (то есть чем дальше назад во времени), тем меньше сложности они видят. Проще говоря, чем ближе к настоящему времени, тем сложнее картина.

Первыми сформировались галактики при красном смещении от 9 до 12 млрд лет назад. Затем эти галактики собрались в скопления, при красном смещении меньше 6 млрд лет назад. А сегодня (в космическом смысле) эти скопления собираются в сверхскопления. То есть вначале материя собиралась в малые структуры, а эти малые структуры продолжали собираться вместе. Очевидно, что история Вселенной шла от простого к сложному, то есть это соответствует модели холодной темной материи.

В результате проводившихся наблюдений на карты наносились источники света. Они показывали, где находятся галактики, а ученым приходилось делать умозаключения по поводу того, где находится темная материя. В 2006 году проводился Обзор Эволюции Космоса (проект получил сокращенное название COSMOS – от англ. Cosmic Evolution Survey), в результате которого была выпущена карта темной материи. Участники проекта изучали результаты работы телескопа «Хаббл» – 575 полученных снимков тех случаев, когда две галактики или два скопления галактик выстраивались одна (одно) за другой (другим). Как и в случае применения техники микролинзирования для выявления несветящихся тел MACHO, здесь также полагались на концентрацию массы, искажающую свет от более далекого источника. Использовалось слабое гравитационное линзирование, которое связано с распределением масс во Вселенной.

В основе любого линзирования лежит эффект искривления пространства вблизи массивного тела, а следовательно, и эффект искривления световых лучей. Хотите представить, что происходит? Возьмите кусок ткани, натяните его на жесткую рамку. В отсутствие массивного тела на этой поверхности она останется ровной и плоской, в случае же появления массивного тела поверхность деформируется, искривляясь под его весом.

Различают сильное и слабое гравитационное линзирование. Главная ценность любого линзирования состоит в том, что оно позволяет собрать данные не только и не столько о наблюдаемом объекте, изображение которого искажается линзой, сколько о самой «линзе», ее свойствах и параметрах. При слабом линза только искажает форму и видимые положения удаленных объектов. При сильном линзировании влияние линзы настолько велико, что изображение наблюдаемого объекта расщепляется на несколько изображений, они образуют кольца, дуги и другие более сложные фигуры. Имея изображение, полученное в результате сильного линзирования, можно восстановить массу центральной части «линзы», а следовательно, если в качестве линзы используется скопление галактик, мы получим массу центральной части скопления. По слабому линзированию мы можем с определенной степенью достоверности оценить форму (вытянутость) удаленных источников, линзируемых скоплением галактик, и из этого получить пространственное распределение массы «линзы». Результаты оценки массы линзирующих галактик и их скоплений сами по себе представляют интерес для внегалактической астрономии, но самое главное – это возможность использовать полученные результаты для решения проблемы темной материи.

На гравитационные линзы возлагаются большие надежды. Несмотря на все свое оптическое несовершенство даже в сравнении с линзами обычных очков они позволяют «увидеть» невидимое – вещество, не излучающее ни в одном из оптических диапазонов. Но оно, к счастью для нас, отклоняет лучи света, приходящие от более удаленных объектов, расщепляя и искажая их изображения.

Современные ученые наблюдают взаимодействующие или, правильнее будет сказать, сталкивающиеся скопления галактик. Потом находятся гидродинамические аналогии, описывающие столкновения конечных объемов жидкости или газа. Это могут быть брызги, возникающие при падении капель в чашку с водой, разбегание кругов по поверхности воды. В космосе происходит что-то похожее. Результат (естественно, после соответствующей обработки изображений) можно увидеть воочию.

Кольцевую форму называют «кольцом Эйнштейна». Механизм формирования такой же, как и у колец на поверхности воды: взаимодействие двух массивов частиц. Однако его природа совсем иная: его частицы – это частицы темной материи.

Участники проекта Обзора Эволюции Космоса 2006 года регистрировали не отдельные события, когда одни объекты проходили перед другими, а постоянные «отношения» между ними, которые, с точки зрения целей наблюдателей, можно было считать стационарными относительно друг друга, – речь шла о галактиках и скоплениях галактик. Свет от объекта на переднем плане говорил астрономам, сколько там кажущейся массы. А эффект гравитационного линзирования объекта на заднем плане показывал, сколько реальной массы на переднем плане. Разница между двумя показателями – и есть темная материя.

Карта, составленная участниками проекта, была трехмерной: она показывала и глубину. Это как если сравнивать карту, показывающую дороги, с картой, на которой построены горы и равнины, которые эти дороги пересекают. А поскольку смотреть дальше в космос означает смотреть в более далекое прошлое, карта участников проекта также показала и «как горы с долинами» оказались там где оказались – то есть как эволюционировала темная материя. Члены команды стали называть свой подход «космопалеонтологией». Получилось, что темная материя вначале коллапсировала, то есть схлопнулась, а потом те центры, в которых произошло схлопывание, выросли в галактики и скопления галактик. Этот образ опять получился соответствующим версии холодной темной материи.

Пожалуй, самое известное непрямое доказательство существования темной материи было получено тоже в 2006 году Дугласом Клоуи, который тогда работал в университете Аризоны и занимался так называемым «скоплением Пули». Весь мир облетела фотография столкновения двух скоплений галактик, которые вместе и получили название «скопление Пули».

Это словосочетание стало синонимом темной материи. Скопление находится на расстоянии 3,4 млрд световых лет от Земли. Кроме вещества видимых галактик на фотографии видны два облака газа, ярко излучающих в рентгеновских лучах. Как известно, темная материя не видна при прямых наблюдениях, карты ее распределения были составлены на основе регистрации далеких галактик с использованием гравитационного линзирования. Клоуи наблюдал столкновение рентгеновских лучей и использовал гравитационное линзирование, а потом отделил видимый газ от невидимой массы. Наблюдаемый в рентгеновских лучах газ от обоих скоплений собирался в центре столкновения, где атомы вели себя так, как обычно ведут атомы – привлекали друг друга. Тем временем темная материя, как казалось, собиралась по обеим сторонам от точки столкновения. Если провести земную аналогию, можно сказать, что произошло крушение поездов после столкновения, а несколько вагонов с темной материей из обоих поездов неслись, подобно призракам, прямо сквозь то, что осталось.

Распространению фотографии помогло НАСА, которое для наглядности ее раскрасило: видимый газ красным цветом, а темную материю голубым. Одно облако газа похоже на изображение ударной волны от летящей пули, которое знакомо многим по учебникам. Облако изменило свою форму во время столкновения двух скоплений галактик. В результате этого столкновения образовалось бóльшее скопление, получившее название скопление Пули (эту знаменитую фотографию вы видите на обложке настоящей книги).

Имеющаяся в скоплении темная материя взаимодействовала с обычной материей только посредством гравитационных сил. Явное разделение темной материи указывает на то, что темная материя действительно существует. В газетах, где печаталась фотография, заголовки гласили: «НАСА находит прямое доказательства существования темной материи». С этим не согласился Дуглас Клоуи, который заявил, что «прямым» доказательством будет «поимка частицы». А разве такое возможно? Ее нельзя поместить в бутылку и привезти вашей тетушке в Миссури.

Назад: Адам Рисс и одна далекая сверхновая
Дальше: Частицы-претенденты