Исследования, которые привели к открытию электрона, начались с попыток объяснения расхождения поведения катодных лучей под действием магнитных и электрических сил.
А. Томсон.Прохождение электричества через газы
В 1897 году в кембриджской лаборатории Кавендиша была решена загадка катодных лучей. Молодой директор лаборатории Джозеф Джон Томсон наглядно показал корпускулярную природу катодного излучения. Неожиданное развитие получили в Кембридже и исследования с Х-лучами, в которых Томсон успешно использовал ионизирующее действие рентгеновского излучения для анализа закономерностей прохождения электричества через газы. В результате этой коллективной работы, где кроме самого Томсона участвовали некоторые из его наиболее талантливых сотрудников, в 1903 году появилась классическая монография «Прохождение электричества через газы». Именно данное направление исследований в конечном итоге привело к открытию первой субатомной элементарной частицы – электрона.
В 1874 году ирландский физик и астроном Джордж Стони (1826–1911) выступил в Белфасте с докладом, в котором на основе законов электролиза Фарадея предложил «атомарную» теорию электричества. Стоней пробовал отстаивать приоритет концепции «атомов электричества», но в истории науки сохранилось утверждение, что именно Гельмгольц высказал на примере электролиза гипотезу о связи атомной валентности с минимальным электрическим зарядом. Тем не менее в ходе полемики со сторонниками Гельмгольца Стоней все же стал «крестным отцом» «атомов электричества», в 1891 году назвав носитель элементарного заряда «электроном».
Вернемся теперь к катодным лучам и вспомним, что еще в конце семидесятых годов позапрошлого века в Кавендишской лаборатории были проведены обширные серии экспериментов, показавшие, что проводимость газов скорее всего обусловлена движением потоков ионов, а сами катодные лучи возникают в результате бомбардировки катода ионами газа, ускоренными в мощном электрическом поле. Там же в 1884 году было предложено измерять удельный заряд, равный отношению заряда к массе катодно-лучевых частиц по их отклонению в магнитном поле, как потока молекул или атомов.
Тогда же исследования катодных лучей проводились в Германии, однако там опыты по электрическому отклонению катодных лучей не были признаны достаточно убедительными. В этой обстановке зреющего открытия к экспериментам с катодными лучами в 1894 году приступила «кембриджская команда Томсона», а уже через год во Франции Жан Батист Перрен (1870-1942) предложил удачный метод для определения знака заряда катодного излучения, убедительно продемонстрировав, что лучи действительно переносят отрицательный заряд. Классические эксперименты Томсона и Перрена стали тем последним и решающим аргументом в пользу признания корпускулярной природы катодного излучения как потока, состоящего из мельчайших отрицательно заряженныхчастиц.
Томсон со своими ассистентами и учениками, шотландским физиком Чарльзом Томсоном Рисом Вильсоном (1869–1959) и Джоном Сили Эдвардом Таунсендом (1868–1957) разработали уникальную методику получения громадного количества ионов в разряженном воздухе и других газах с помощью воздействия на вакуумированные колбы рентгеновских лучей и радиевого излучения. Детально изучив диффузию и подвижность ионов, они убедительно доказали, что в пределах погрешностей экспериментов произведение концентрации газовых ионов на заряд электрона близко совпадает с аналогичной величиной для одновалентных ионов, растворенных в электролите. При этом средний заряд ионов практически не зависел от вида газовой среды самого источника ионизации. Таким образом, элементарный электрический заряд в электролите, переносимый ионами, оказался в точности равным ионному элементарному заряду в газовой среде.
Используя электронно-лучевую трубку собственной конструкции с электродами в виде пластин конденсатора и магнитными катушками, Томсон подвергал катодный пучок попеременному действию электрического и магнитного полей. При этом ученый получил возможность надежно и достаточно точно определять отношение заряда к массе катодных лучей. Подобное отношение оказалось независимым от вида разреженной газовой среды в вакуумированной колбе и в тысячу раз большим, чем такое же отношение для водородных ионов в электролитах, полученное на основе законов электролиза. Этот результат имел ошеломляющие следствия, ведь если допустить, что заряд «катодной корпускулы» равен заряду водорода, то ее масса будет в тысячу раз меньше, чем у легчайшего атома водорода. В 1906 году Томсон сделал окончательный вывод о том, что катодные лучи состоят из заряженных частиц, а их элементарный заряд соответствует аналогичной величине одновалентных ионов и равен 1,03 × 10–19 Кулона, при средней массе в 1 / 1700 атома водорода.
Джозеф Джон Томсон (1856–1940)
Томсон был гениальным ученым, отличался творческим воображением и оригинальностью, его работы имели новаторский характер – они явились исходной точкой для всех дальнейших исследований.
Р. Собесяк.Шеренга великих физиков
Между тем Томсон упорно продолжал свои исследования, перейдя к анализу отношений для зарядов к их массам уже для частиц, генерируемых ультрафиолетовым излучением и просто испускаемых накаленным катодом. Во всех случаях порядок отношения заряд / масса оказался очень близким к катодному излучению. Эти мельчайшие частицы вещества Томсон назвал «катодными корпускулами», однако это несколько громоздкое название не удержалось.
Между тем общее признание факта существования электрона пришло лишь в 1911 году после ряда блестящих измерений элементарного заряда, выполненных американским физиком-экспериментатором Робертом Эндрюсом Милликеном (1868-1953), удостоенным Нобелевской премии 1923 года «За исследования в области элементарных зарядов и фото электрического эффекта». Сам по себе термин «электрон» вошел в широкое повсеместное употребление только после того, как в 1925 году немецкие физики Джеймс Франк (1882-1964) и Густав Людвиг Герц (1887-1975) стали нобелевскими лауреатами «За открытие законов столкновений электронов с атомами».
Электронно-лучевая трубка Томсона
Сегодня считается, что именно Томсон разработал экспериментальную технику управления «электронными лучами», дополнив это физическими методами изучения положительно заряженных частиц. Именно в кембриджской лаборатории Томсона начались первые измерения элементарного электрозаряда путем наблюдения движения потоков заряженных частиц в электромагнитных полях. Так появились методы, составившие основу электронной оптике, конструированию электронных ламп, «электронных пушек» и ускорителей элементарных частиц. Под руководством Томсона были созданы модели первых массспектрометров и разработаны методики анализа и разделения изотопов. Все эти экспериментальные разработки были суммированы и тщательно классифицированы в монографии ученого «Лучи положительного электричества», вышедшей в 1913 году, положившей начало масс-спектроскопии.
Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики, а также физики элементарных частиц очень велика. Но сам Джи-Джи, как называли своего учителя и коллегу сотрудники Кавендишской лаборатории, до самого конца своего жизненного пути оставался горячим сторонником «мирового светоносного эфира», разрабатывая всяческие модели движения в этой призрачной среде и пытаясь (увы – безуспешно) найти хоть какие-либо наблюдаемые явления, свидетельствующие о реальности эфирных представлений. Так, одно время Томсон упорно пытался ошибочно интерпретировать отклонение катодного пучка в магнитном поле своей трубки как некую «эфирную прецессию» гироскопической природы, наделяя совокупность электрического и магнитного полей «эфирным вращательным моментом».