Книга: PRO Антиматерию
Назад: Большой электрон-позитронный коллайдер
Дальше: Ловушка Пеннинга

Будкер, Руббиа и Ван дер Меер

Бруно Тушек укротил позитроны, а Герш Будкер решил посмотреть, не сможет ли он сделать то же самое для протонов, а затем и антипротонов.

Протоны и антипротоны почти в две тысячи раз массивнее электронов и позитронов, соответственно, энергия, которая требуется для их создания, тоже должна быть больше.

Однако производство антипротонов не является проблемой, если у вас достаточно доступной энергии, и впервые это было сделано в 1955 году – выше мы рассказывали про «Беватрон». Управление ими было большой проблемой. Вначале нужно выстрелить пучком протонов в кусок металла. Примерно в одном случае на 250 000 столкновений кинетическая энергия преобразуется в массу в форме новой пары антипротон-протон. Антипротоны двигаются на скорости, близкой к скорости света, во все стороны. Магнитные поля, которые способны сфокусировать позитроны и отправлять их на стабильные орбиты, не смогли управлять дикими протонами, которые летели вбок от предполагаемых путей, врезались в стенки туннеля и уничтожались.

Требовалось что-то для их укрощения. На профессиональном языке это называется «охлаждение», и электронное охлаждение протон-антипротонных пучков является одним из достижений Будкера: он провел антипротоны сквозь облака холодных электронов. Хотя электроны – это материя, а антипротоны – антиматерия, они не представляют опасности друг для друга: электроны уничтожаются своей античастицей, позитроном, а антипротонам угрожают только протоны или нейтроны. Постепенно судорожный неровный ход антипротонов выровнялся, и их энергия, или «тепло», было передано электронам. К 1974 году Будкер преуспел в создании и охлаждении антипротонов, но он не получал их в достаточном количестве для сильного пучка.



Герш Будкер (1918–1977) – это российский ученый, основатель и первый директор Института ядерной физики. Он оставил после себя труды по ядерным реакторам, ускорителям, физике плазмы, физике частиц высоких энергий. Начинал с экспериментов на циклотроне, известен созданием ускорителей на встречных пучках. Метод встречных пучков используется для исследований по физике элементарных частиц





Следующим мы должны упомянуть Карло Руббиа. Он работал в ЦЕРН (какое-то время даже был генеральным директором) и предложил переделать один ускоритель, суперпротонный синхротрон, для столкновений протонов и антипротонов в одном и том же кольце. Предложенный Руббиа коллайдер начал работу в 1981 году, после чего в январе 1983 года появилось сообщение о том, что были зарегистрированы W-бозоны, а через несколько месяцев – также более неуловимые Z-бозоны.

По мнению Руббиа, для производства частиц W и Z требовалась совершенно новая техника – аннигиляторы высокой энергии между протонами и антипротонами. В теории было рассчитано, что при таких условиях возможно произвести не только электромагнитное излучение, свет, но и квантовые пучки, известные как W и Z, которые являются посредниками, переносящими слабые силы радиоактивности.

Самой большой проблемой стало укрощение антипротонов и успешное помещение их в суперпротонный синхротрон. Ее решил Симон Ван дер Меер, который получил Нобелевскую премию вместе с Карло Руббиа. В ЦЕРН построили небольшую машину под названием Аккумулятор (или накопитель) антипротонов, известную как АА. В ней аккумулировались антипротоны и охлаждались, превращаясь в управляемый пучок. Таким образом они сохранялись до тех пор, пока их не окажется достаточно, чтобы использовать. Вот тут и пригодились идеи Ван дер Меера. Электронные детекторы на противоположных сторонах кольца проводили мониторинг антипротонов в пучке – где они проходят. Сигнал шел в компьютер, который рассчитывал отклонение пучка и усилие, требуемое, чтобы лучше выровнять пучки; затем сигнал на скорости света отправлялся к электродам в дальней части кольца. Идея Ван дер Меера заключалась в том, что антипротонам требуется примерно на 50 % больше времени, чтобы пройти по полукругу, чем сигналу, срезающему путь по центру круга, а если кольцо достаточно большое, то для электроники останется время принятия решения и подачи инструкций, на основании которых начнут действовать ресиверы до того, как антипротоны, наконец, пройдут по дуге. За одну миллиардную долю секунды (или наносекунду) свет проходит одну треть метра (один фут). Это был по-швейцарски точный расчет времени – и буквально, и метафорически. Каждые две секунды из протонного синхротрона вылетали протоны, врезались в цель и производили антипротоны. Антипротоны заходили в Аккумулятор антипротонов, по одной партии за раз, там в течение двух секунд происходило охлаждение – до прибытия следующей партии.





Карло Руббиа (род. в 1934 году) – итальянский физик, лауреат Нобелевской премии по физике за решающий вклад в открытие квантов поля W и Z – переносчиков слабого взаимодействия, 1984





Аккумулятор антипротонов напоминал два кольца в одном, соединенных заслонками, которые можно закрывать и открывать. По внутреннему кольцу между заслонками циркулировали группы огражденных антипротонов, а снаружи, у заслонок, находились последние, только что прибывшие антипротоны, которые все еще пребывали в процессе охлаждения. Как раз перед следующим выбросом заслонки открывались, и антипротоны с внешнего кольца, теперь охлажденные, переходили на внутреннее. Затем заслонки закрывались, потом приходила следующая партия, процесс повторялся снова и снова.





Симон Ван дер Меер (1925–2011) – голландский инженер, изобретатель метода стохастического охлаждения пучков в ускорителях





После того как антипротоны оказывались на внутреннем кольце, электронные послания Ван дер Меера передавались по кольцу, и антипротоны охлаждались еще больше. Требовалось немного больше суток для накапливания и охлаждения ста миллиардов антипротонов. Уловка Ван дер Меера привела к мощным пучкам антипротонов с высокой энергией, которые могли использоваться в экспериментах.

Антипротоны с их большей массой было сложнее укротить, чем позитроны, но после того как антипротоны брали под контроль, получались гораздо бо́льшие пучки и гораздо больше энергии. Именно это приводило в возбуждение физиков. Через аннигиляцию антипротонов и протонов они смогли в экспериментах воспроизвести условия, которые существовали в первые моменты Большого взрыва. Технологи проявили изобретательность, обеспечив охлаждение, ряд различных специальных «беговых дорожек» и сложную электронику. Все это поражало и показывало, что антиматерию можно укротить. Да, возможно произвести и укротить антипротоны, но это медленный процесс, он требует большого терпения и стоит он дорого: миллионы долларов.

Назад: Большой электрон-позитронный коллайдер
Дальше: Ловушка Пеннинга