Книга: PRO Антиматерию
Назад: Другие античастицы
Дальше: Хранение антиматерии

Кварки и антикварки

Когда Дирак выступил с предположением о существовании антиматерии, он знал только электрон и протон. Даже после открытия нейтрона (которое произошло в тот же год, что и открытие позитрона, о котором говорил Дирак), «меню» частиц все равно оставалось небогатым. Однако в течение тридцати лет было открыто столько частиц в космических лучах и в новых ускорителях частиц, что кажется, если бы Дирак выступил со своим предположением тридцать лет спустя, на него мало кто обратил бы внимание. Еще одна частица? Ну и что?

Ускоритель в Беркли, о котором мы только что рассказали, разработанный для производства антипротонов, также добавил и другие новые частицы в «меню». Все эти новые частицы были нестабильными, некоторые жили не дольше, чем лучу света требуется для того, чтобы пересечь атомное ядро. По сути это – сказать, что частица умирает в момент ее создания. Поскольку теория относительности Эйнштейна подразумевает, что информация не может путешествовать быстрее скорости света, частице требуется какое-то мгновение на то, чтобы сформироваться, а потом распасться на более мелкие части. Другие обнаруженные частицы жили дольше, но и в этом случае мы имеем в виду менее одной миллиардной доли секунды или примерно то время, которое свету требуется, чтобы пройти по вашей ладони. Вы можете задуматься: а как кто-то вообще смог узнать о чем-то таком эфемерном? Ответ заключается в мощи современной электроники и в том факте, что, когда эти частицы путешествуют на скоростях, близких к скорости света, они могут преодолевать измеримые расстояния в период своей короткой жизни.

Любая частица, имеющая электрический заряд, может выбивать электроны из атомов в воздух, когда в них врезается. Если воздух влажный, то после прохождения частицы образуется след из паров. Камера Вильсона революционизировала понимание атомных частиц, включая открытие позитрона в первой половине ХХ века. Но изобретение более мощных инструментов сделало ее музейным экспонатом во второй половине ХХ века.

Американский физик и нейробиолог Дональд Артур Глейзер (1926–2013), сын еврейских иммигрантов из России, наблюдал за пузырьками в кружке пива. И это наблюдение в 1952 году, когда он работал в Мичиганском университете, привело к изобретению им пузырьковой камеры для регистрации заряженных частиц, за которую он в 1960 году был удостоен Нобелевской премии по физике. В дальнейшем Глейзер работал в Калифорнийском университете в Беркли, где изобрели «Беватрон», на котором он лично проводил эксперименты. До пузырьковой камеры Глейзер сконструировал множество улучшенных камер Вильсона и искровых камер, разработал несколько типов пузырьковых камер для экспериментов в области высоких энергий и сам экспериментировал на них.

Пузырьковая камера очень быстро стала поразительным средством для открытия танца субатомных частиц. В камере Вильсона частицы формировали пузырьки жидкости в окружающем газе, а в пузырьковой камере они формировали пузырьки газа в жидкости. И образы пузырьковых следов – спиралей в магнитном поле, которые дробятся при распаде частиц, производя «потомство», будто родители, передающие свои гены, стали удивительными произведениями искусства и открытием невероятных истин для тех, кто научился эти следы расшифровывать.

К протону и нейтрону вскоре присоединились частицы, которые во многом казались более тяжелыми их версиями, но со свойствами, благодаря которым их назвали «странными частицами». Некоторые являются более странными, чем другие. Еще были частицы, не имеющие того особого характера, который позволил бы называть их «странными», но они были своеобразными, они волновали и дразнили ученых. Им стали давать имена, используя греческие буквы и обозначения этих букв в греческом языке. Так, например, появились лямбда (Λ), омега (Ω), сигма (Σ), дельта (Δ) и другие. Когда греческого алфавита не стало хватать, перешли на латинский.

По мере появления все большего количества частиц постепенно у некоторых из них начали выделять общие черты – значит, все они не являются независимыми, а принадлежат к нескольким семьям. Происходящее напоминало то, что произошло с элементами атома в предыдущем столетии. Менделеев обратил внимание на регулярность среди элементов, на основании чего построил свою периодическую систему элементов. В дальнейшем было найдено объяснение этой периодичности: атомы состоят из нескольких общих составляющих, электроны вращаются вокруг ядра из протонов и нейтронов. Доказательство того, что атомы на самом деле состоят из более мелких частей, впервые было получено Джозефом Джоном Томсоном, когда он высвободил из них электроны, о чем мы рассказывали выше, а потом Эрнестом Резерфордом, открывшим существование атомного ядра. Все шло подобным образом и с множеством других частиц, которые живут очень недолго, в духе «атомного дела», хотя имелись отличия в деталях.

Открыв ядро атома, Резерфорд негативно отзывался о перспективах ядерной энергетики: «Каждый, кто надеется, что преобразования атомных ядер станут источником энергии, исповедует вздор». Также он открыл альфа- и бета-лучи и установил их природу, разработал теорию радиоактивности, осуществил первую искусственную ядерную реакцию и именно он предсказал существование нейтрона. Правда, Нобелевскую премию Резерфорд получил по химии – за исследования в области распада элементов в химии радиоактивных веществ.

Резерфорд был ярким представителем английской экспериментальной школы в физике, для которой характерно стремление разобраться в сути физического явления и проверить, может ли оно быть объяснено существующими теориями. Этим английская школа отличается от немецкой школы экспериментаторов, которая исходит из существующих теорий и стремится проверить их опытом. Резерфорд мало пользовался формулами и мало прибегал к математике, но был гениальным экспериментатором. Важным качеством Резерфорда как экспериментатора была его наблюдательность, что отмечали многие коллеги. Резерфорд понял, что у атома имеется некий твердый центр, после того как наблюдал за альфа-частицами, ударяющими атомы. Иногда они отскакивали от атомов так сильно, будто ударили по какому-то твердому предмету внутри. Это и было атомное ядро. Подобное произошло и много лет спустя, но в более грандиозных масштабах, когда открылось, что протон, нейтрон и их многочисленные родственники не являются основными зернами материи, а сделаны из еще более мелких частиц под названием кварки.

Резерфорд с помощниками открыл атомное ядро, проводя эксперименты в Манчестерском университете, а для проникновения внутрь протонов и нейтронов потребовался ускоритель длиной 3 километра. Электронные лучи выходили из ускорителя на территории Стэнфордского университета, который находится к югу от Сан-Франциско, и ударяли по цели из водорода, а затем прокладывали путь глубоко внутрь протонов, которые находятся в центре каждого атома. Время от времени электроны резко отскакивали, сбиваясь с курса, причем гораздо сильнее, чем было бы, если бы протоны являлись просто миниатюрным мячиком с электрическим зарядом. Как было и с ядром атома, так и с протоном: электрический заряд протона не размазан ровно по всему объему, а вместо этого сконцентрирован на трех гораздо меньших частицах внутри, известных как кварки. В действительности то, что мы называем протоном, – это не больше, чем три кварка, которые дергаются в разные стороны, пойманные и заключенные в постоянную тюрьму, размер которой не больше одной миллионной части одной миллиардной метра. Если взглянуть на муравейник, то он на первый взгляд кажется единой коричневой кучей, но если приглядеться повнимательнее, он окажется шевелящейся массой крошечных существ. Точно так же протон издали кажется компактным шаром с зарядом, но при внимательном рассмотрении оказывается беспорядочной смесью кварков.

Кварк – фундаментальная частица, обладающая электрическим зарядом. Кварки не встречаются в свободном состоянии, но входят в состав других сильно взаимодействующих частиц, например, протонов и нейтронов. Кварки являются бесструктурными, точечными частицами. В настоящее время известно 6 разных типов кварков, иногда говорят – «ароматов» кварков (u, d, s, c, b, t). Они обладают и дополнительной внутренней характеристикой, которая называется «цвет» (что является специфическим квантовым числом). Каждому кварку соответствует антикварк с противоположными квантовыми числами.



Пузырьковая камера Глейзера произвела революцию – и появились целые семьи новых частиц. Упорядочить их удалось только спустя десять лет





Гипотеза о существовании кварков, то есть о специфических субъединицах, из которых состоят протоны, нейтроны и другие частицы, была впервые выдвинута в 1964 году, причем это сделали двое ученых – американский физик Мюррей Гелл-Манн и американский физик и нейробиолог Джордж Цвейг – независимо друг от друга. Оба предложили свои названия. Цвейг называл их «тузами» (он предполагал, что существует четыре кварка), но это название не прижилось, поскольку кварков в признанной модели три, а к настоящему времени известно шесть типов. Гелл-Манн позаимствовал слово «кварк» из романа Джеймса Джойса «Поминки по Финнегану», в котором чайки кричат: «Три кварка для мистера Марка!». Скорее всего, это подражание звукам, которые издают чайки, но точно это неизвестно. Еще в 1961 году Гелл-Манн предложил классификацию элементарных частиц – и в настоящее время она объясняется при помощи кварковой модели. Вообще, современная теория взаимодействия кварков основывается на работах Гелл-Манна. Он был удостоен Нобелевской премии по физике в 1969 году за открытия, связанные с классификацией элементарных частиц и их взаимодействий.

Кварки естественным образом группируются в три так называемых поколения (правда, пока неизвестно, почему это происходит). Кваркам, таким образом разделенным на группы, были даны интересные названия: верхний и нижний (первое поколение); странный и очарованный (второе поколение); прелестный и истинный (третье поколение). В каждом поколении один кварк обладает зарядом +2⁄3, а другой – зарядом -1⁄3.





Эрнест Резерфорд (1871–1937) – создатель учения о строении атома. Предложил планетарную модель атома (положительно заряженного очень маленького ядра, содержащего бо́льшую часть массы атома, и отрицательно заряженных легких электронов, вращающихся вокруг него)





Кварки участвуют в различных взаимодействиях, среди которых можно назвать электромагнитные, гравитационные, сильные и слабые. Сильные взаимодействия могут изменять цвет кварка, но не меняют его аромат. Слабые взаимодействия, наоборот, не меняют цвет, но могут повлиять на аромат. Необычные свойства сильного взаимодействия приводят к тому, что одиночный кварк не способен удалиться на какое-либо существенное расстояние от других кварков, а значит, кварки не могут наблюдаться в свободном виде, как было сказано выше. Разлететься могут лишь «бесцветные» комбинации кварков, они называются адронами.

Естественно возникает вопрос: а почему ученые уверены в существовании кварков, если в свободном виде их увидеть нельзя? Не будем нагружать вас многочисленными подтверждениями, которые приводились до появления мощных ускорителей частиц. Но теперь они есть, и их энергии постоянно повышаются, поэтому стало возможным попытаться выбить отдельный кварк из адрона при высокоэнергетическом столкновении. Кварковая теория давала четкие предсказания, как должны выглядеть результаты таких столкновений – в виде струй. Такие струи действительно наблюдаются в экспериментах. А если бы протон ни из чего не состоял, то струй бы не было. Также эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая теоретически ожидалась для объекта, состоящего из трех кварков. А при столкновениях протонов с высокими энергиями экспериментально наблюдается аннигиляция кварка одного протона с антикварком другого протона с образованием пары мюон—антимюон. Также можно сказать, что гипотеза кварков и все, что из нее вытекает относительно строения адронов, способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.

Однако до сих пор не найдены ответы на ряд вопросов. Почему существует три поколения кварков? Почему существует три цвета? Почему такой разброс в массах и из чего состоят сами кварки? Некоторые ученые считают, что кварки состоят из чего-то более простого. Рабочее название для гипотетических частиц—составляющих кварков уже придумано: преоны. С точки зрения данных экспериментов, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от экспериментов.

Кварки плотно прикрепляются друг к другу, по три (в случае барионов, мезоны состоят из кварка и антикварка), и таким образом получаются протоны, нейтроны и другие многочисленные частицы. Два типа ядерных частиц, протоны и нейтроны, сами состоят из двух типов кварков, верхнего и нижнего, которые мы упоминали выше при рассказе о поколениях кварков. У этих зерен материи есть электрические заряды, величины которых являются лишь частями заряда протона. У протона положительный заряд, а, например, заряд верхнего кварка – 2/3 положительный, заряд нижнего кварка – 1/3 отрицательный. Два верхних кварка и один нижний кварк составляют протон (2/3 + 2/3 – 1/3 = 1). Два нижних кварка и один верхний дают нулевой заряд (2/3 – 1/3 – 1/3 = 0), а это и есть нейтрон.

Существуют комбинации трех верхних кварков и трех нижних, эти частицы имеют короткий срок жизни, они называются «дельта». Добавим к паре верхний и нижний кварк третий тип кварка, который называется «странный» (это второе поколение, как мы упоминали выше), с тем же электрическим зарядом, что и нижний кварк (-1/3). Он по сути идентичен последнему во всем, кроме массы (примерно на 20 % тяжелее) – и вы получаете странную частицу. Чем больше странных кварков в тройке, тем более странной получается частица. В протоне и нейтроне нет странных кварков. В более тяжелых и немного странных частицах под названиями «лямбда» и «сигма» есть по одному странному кварку. Более странная частица кси содержит два странных кварка, а самая странная из всех – омега – состоит из трех странных кварков.

Уравнение Дирака относится к кваркам точно так же, как к электронам и протонам, и при этом имеется тот же намек на антиматерию. Позитрон – это зеркальная античастица по отношению к электрону, и точно так же антикварк – это зеркальное отражение кварка, у него та же масса, тот же размер и тот же электрический заряд, что и у кварка, только знак этого электрического заряда меняется на противоположный. Таким же образом антиверхний кварк (вы можете называть его «верхний антикварк», если вам так больше нравится, или «антиверхний антикварк», поскольку общепринятого названия не существует) имеет заряд -2/3 вместо +2/3, а у антинижнего кварка заряд +1/3 вместо -1/3. Точно так же, как два верхних и один нижний составляют положительный протон, два антиверхних и один антинижний составляют отрицательный антипротон. И так же два антинижних и один антиверхний составляют антинейтрон. У всех странных частиц под греческими названиями, например, лямбда, сигма, кси и омега, имеется какой-то «анти»-двойник. Замените любой из типов кварков на соответствующий антикварк, и вы получите антилямбду, антисигму и т. д. Их получали во время экспериментов, когда свободная энергия при столкновении луча протонов, выходящего из ускорителя, и цель в лаборатории давали новые частицы и античастицы. Каждая из полученных частиц, похоже, имеет своего двойника, идеальное зеркальное отражение – это нечто типа инь и ян.

* **

Что происходит, когда кварк встречается с антикварком? Мощная сила, удерживающая кварки и антикварки по три, также может притянуть и единичный кварк к антикварку. Многие частицы, которые встречаются в космических лучах и ускорителях, например пионы и странные каоны, – это крошечные пучки кварка и антикварка. Такая комбинация не является ни материей, ни антиматерией, но содержит образцы каждой, кварк материи и антикварк антиматерии. Если кварк и антикварк заключены в миниатюрной вселенной, которая простирается только на одну тысячную часть миллиардной части метра, они практически мгновенно встретятся и уничтожат друг друга. Поэтому пион и каон живут только очень короткое время.

Эксперименты показали, что случается, когда протон встречается с антипротоном. Иногда они просто плывут друг к другу, иногда на скорости врезаются друг в друга, и конечный продукт варьируется. Чем больше скорость, на которой происходит столкновение, тем больше их энергия, тем больше пионов или гамма-лучей создается при взрыве. В процессе экспериментов ученые узнали, чего ожидать, если кто-то с успехом создаст источник энергии на основе антиматерии, или бомбу, или если в нашу атмосферу прилетит антикамень из космоса. Мы уже поняли достаточно, чтобы предсказать возможные результаты.

Эксперименты показали, что аннигиляция не происходит мгновенно. Вместо этого протон и антипротон немного «танцуют», как бы ухаживая друг за другом, и только потом происходит их окончательное судьбоносное слияние. Представьте протоны в куске материи, когда приближается антипротон. Положительный заряд протона создает электрическое поле, которое распространяется в пространстве в масштабах атомов. Эти расстояния составляют примерно десять миллиардных метра и кажутся нам крошечными, но при этом они примерно в десять тысяч раз больше, чем размер и самого протона, и самого антипротона. Если антипротон приближается к протону относительно медленно, то он окажется в ловушке из-за противоположных зарядов и начнет вращаться по орбите вокруг протона подобно тому, как делает электрон в обычном атоме. Изначально эта орбита далеко, но по мере того как антипротон станет терять свою энергию, он будет переходить с внешних орбит на внутренние и при этом эмитировать гамма-лучи. Именно эти гамма-лучи можно уловить, а их энергию измерить. Это подобно тормозным следам автомобиля на месте аварии, по которым можно определить последовательность событий.

Наконец, антипротон оказывается на близко расположенной орбите и в радиусе действия мощной силы, сопротивляться которой не могут ни протоны, ни антипротоны. Описанный танец мог продолжаться в течение одной сотой доли секунды, но, как только частица попадает под действие мощной силы, конец наступает практически мгновенно. Новость о катастрофе идет со скоростью света через протон и антипротон, и они исчезают за менее чем миллиардную долю миллиардной доли секунды, оставив после себя гамма-лучи и пионы. Потом они тоже исчезают: пионы, состоящие из кварка и антикварка, живут очень недолго, они саморазрушаются, тоже превращаясь в гамма-лучи, или в электроны, позитроны и нейтрино, и все они несут энергию аннигиляции.

Аннигиляция дает уникальную возможность – высвобождение энергии из материи. Что это? Благо или зло? В нашем материальном мире антиматерия разрушает все. Если мы хотим, чтобы антиматерия приносила пользу, мы должны научиться ее сдерживать и удерживать вне любой материи и так долго, как нужно перед тем, как захотим ее использовать. Теперь расскажем о решении этой проблемы.

Назад: Другие античастицы
Дальше: Хранение антиматерии