Книга: PRO Антиматерию
Назад: Позитроны на Земле
Дальше: Другие античастицы

Аннигиляция

Есть материя, например электрон, и есть антиматерия, например позитрон, а еще есть то, что не является ни материей, ни антиматерией. Самый известный пример последнего – электромагнитное излучение. Все электромагнитное излучение, от гамма-лучей до рентгеновских и от ультрафиолета до видимого света, инфракрасных лучей и радиоволн, состоит из фотонов с различной энергией. Материя и антиматерия могут уничтожить друг друга, а их аннигиляция оставляет не-вещество в форме фотонов. При соответствующих условиях эта последовательность может иметь место в обратном порядке, и фотоны превратятся в материю и антиматерию.

Чистая энергия, концепция, которую так любят ученые, в особенности говоря о естественных процессах, – это тоже не-вещество. Она может перейти из одной формы в другую, например быть электрической, химической или энергией движения, она может также превратиться в материю и антиматерию. Эйнштейн сказал нам, сколько вещества может конденсироваться из энергии, для этого есть формула E = mc2. Минимальное количество энергии для производства электрона и позитрона – это 2mc2: одной порции mc2 достаточно для производства стационарного электрона, а второй – позитрона. После появления, если они созданы стационарными, они почти точно сразу же уничтожат друг друга и высвободят энергию, которая на мгновение была поймана в ловушку внутри них. Чтобы дать позитрону шанс на выживание, нужно иметь больше энергии, чем этот минимум; «излишек» становится кинетической энергией, движением, так что после рождения электрон и позитрон понесутся прочь и сбегут друг от друга.



Шатьендранат Бозе (1894–1974) – индийский физик, один из создателей квантовой статистики





Фотон света является одним из более сотни известных примеров частиц, являющихся не-веществом. Они называются бозоны, или бозе-частицы, – в честь Шатьендраната Бозе, специалиста по математической физике. Термин был предложен Полем Дираком. Бозоны – это частицы, или квазичастицы с целым спином, они подчиняются статистике Бозе—Эйнштейна, которая допускает, что в одном квантовом состоянии может находиться неограниченное количество одинаковых частиц. Различают элементарные и составные бозоны.

В отличие от них вещественные частицы, которые являются основными частями материи или антиматерии, называются фермионами (или ферми-частицами) в честь итальянского физика Энрико Ферми. Он разработал теорию бета-распада, открыл искусственную радиоактивность, вызываемую нейтронами, замедление нейтронов в веществе. Преуспел как в теоретической физике, так и в экспериментальной. Именно Ферми после того, как эмигрировал в США, построил первый ядерный реактор и первым осуществил в нем цепную ядерную реакцию в 1942 году. Он был удостоен Нобелевской премии в 1938 году за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами.

Ядерной физикой Ферми стал заниматься в 1932 году и в 1934 году создал первую количественную теорию бета-распада, известную также как четырехфермионная теория слабого взаимодействия. Ее суть в том, что при бета-распаде в одной точке взаимодействуют четыре фермиона (протон, нейтрон, электрон и нейтрино). Эта теория стала прототипом современной теории слабых взаимодействий элементарных частиц. В 1939 году Ферми высказал мысль, что при делении ядра урана следует ожидать испускания быстрых нейтронов, и если число вылетевших нейтронов будет больше, чем число поглощенных, то тогда путь к цепной реакции будет открыт. Проведенный эксперимент подтвердил наличие быстрых нейтронов.

Ферми был одним из руководителей Манхэттенского проекта, в частности занимался первым испытанием бомбы в Аламогордо и являлся одним из научных консультантов президента Трумана по вопросам использования бомбы. В честь него названа уже упоминавшаяся в этой книге «Фермилаб» – Национальная ускорительная лаборатория (США).

Фермионы, названные в честь Энрико Ферми, – это частицы, или квазичастицы с полуцелым спином. К этой группе относятся электрон, протон, нейтрон, мюон, нейтрино, кварки и ряд других. Поведение фермионов описано в уравнении Дирака; бозоны следуют другим правилам. По сути Дираку повезло. Его целью было уравнение для частиц, имеющих массу, и решение проблемы положительной и отрицательной энергии. В 1928 году единственными известными частицами, имеющими массу, были электрон и протон. Кстати, оба являются фермионами. Другая идентифицированная частица, фотон, была бозоном, но без массы. Через двадцать лет после революции в науке, которую произвело уравнение Дирака, в космических лучах был открыт бозон с массой – пион. Если бы пион открыли к 1928 году, маловероятно, что Дирак стал бы так напряженно работать над своим уравнением, если бы вообще стал.

Вселенная построена из базовых частиц, которые оказываются пойманными в ловушку в бесконечном танце природными силами, самыми известными из них являются сила тяжести, а также электромагнитные силы. Они действуют на большие расстояния, по сути бесконечные, если сравнить с размерами атомов. Благодаря силе тяжести планеты остаются на своих орбитах, вращаясь вокруг Солнца, одновременно кружащиеся электрические потоки внутри Земли порождают магнитные поля, которые поворачивают маленькую стрелку компаса, направляя потерявшихся путников к дому. По крайней мере раньше было так. Сегодня люди скорее будут полагаться на систему GPS, но лежащий в основе принцип подобен использовавшемуся в старые добрые времена: связь со спутником посредством радиоволн, электромагнитной радиации, и это проявление все тех же вездесущих сил.





Энрико Ферми (1901–1954), один из создателей ядерной физики, в развитие которой он внес огромный вклад, и нейтронной физики, а также квантовой статистики





Если вы наблюдаете за магнитом, притягивающим кусок металла, или компасом, стрелка которого поворачивается к Северному полюсу, вы можете задуматься: что между ними общего? Какой агент тут действует? Происходящее в данном случае можно назвать «электромагнитным полем», но, по большому счету, это не объяснение. Мы просто придумали ярлык для странного явления, для действия через весьма существенное расстояние. Один из результатов работы Дирака – открытие того, что самим электромагнитным полем управляет квантовая теория. Фотоны – пучки электромагнитной радиации, подобные частицам, и они передают электромагнитную силу по мере того как перемещаются от одной заряженной частицы к другой. Двигающийся взад и вперед электрон в радиоантенне в Лондоне может вызвать подобную реакцию внутри вашего радиоприемника, стоящего у вас дома (а ваш дом может находиться очень далеко от Лондона), и передатчиком в данном случае будут электромагнитные волны – благодаря радиоволнам также происходит и движение фотонов. Движение в одной точке приводит к движению в другой; фотоны проходят по разделяющему две точки пространству; сила приходит к вам.





«Фермилаб» – Национальная ускорительная лаборатория имени Энрико Ферми, США





В современной «квантовой теории поля» не только электромагнитная, но и все силы передаются бозонами. Считается, что то, что фотон делает для электромагнитной силы, то и «гравитон» делает для силы тяжести. Пока никто еще не обнаружил гравитон, но мало кто сомневается, что он существует и когда-нибудь будет открыт. Есть две другие силы, которые также передаются бозонами.

Эти силы менее широко известны, потому что в основном действуют в атомном ядре и вокруг него, их можно раскрыть только благодаря высокочувствительной аппаратуре, способной работать на таком уровне. Они известны как сильное взаимодействие и слабое взаимодействие, названия отражают их очевидную мощь относительно знакомой нам электромагнитной силы.





Схема ядерного синтеза





Сильное взаимодействие строит протоны и нейтроны из более мелких частей, известных как кварки (о них мы подробнее поговорим ниже), и склеивает вместе атомное ядро. Слабое взаимодействие заставляет Солнце светить и является очень важным для строительства элементов, без которых Земля и мы сами не можем существовать. Эта сила действует внутри атомных ядер, медленно съедая их изнутри и в конце концов трансформирует составляющие их части в более стабильные комбинации. Таким образом на Солнце, где протоны являются топливом, слабое взаимодействие постепенно превращает четыре из этих протонов в компактный кластер, который является ядром гелия, состоящим из двух протонов и двух нейтронов. Оперируя таким образом, слабое взаимодействие трансформирует два из протонов в нейтроны, их положительный электрический заряд забирают позитроны. За пять миллиардов лет примерно половина солнечного топлива, его протоны, изменилась таким образом. Это дает представление о том, насколько слаба эта сила при работе внутри солнечной печки, за что мы можем быть благодарны: Солнце живет достаточно долго, чтобы появились разумные существа, но при этом работает достаточно быстро для обеспечения условий, при которых жизнь вообще смогла появиться.

Сильные и слабые силы интересуют физиков уже более полувека – с тех самых пор, как их существование было признано. Сегодня мы понимаем, как они работают, и их секреты фактически раскрыло использование антиматерии. Они тоже передаются бозонами.

Глюоны – это то, что склеивает кварки друг с другом для построения протонов и нейтронов, а затем пионы помогают построить ядра атомов с использованием последних. Пионы также именуются пи-мезонами, это субатомные частицы, открытие в 1947 году. Слабое взаимодействие проявляется двумя определенными путями, и есть бозоны, которые его передают. Одно из проявлений подобно электромагнитной силе, но гораздо слабее, оно передается электрически нейтральным бозоном известным как Z0 (ноль обозначает отсутствие заряда). Этот Z0 подобен фотону, за исключением того, что очень массивен, массивнее даже атома железа. Для него даже придумали название – «тяжелый свет». Второй способ проявления слабого взаимодействия – это обмен участвующих частиц количествами электрического заряда. Например, при трансформации протона в нейтрон внутри Солнца слабая сила взяла электрический заряд у протона и передала его позитрону. А откуда появился этот позитрон? Он был создан из энергии, унесенной носителем слабой силы, известным, как W+. В данном случае плюс обозначает, что у W положительный электрический заряд. W также может существовать и с отрицательным зарядом, как при распаде нейтрона. В данном случае нулевой заряд нейтрона превратился в положительный (протон) и отрицательный (W), отрицательный электрический заряд W передается электрону.

Все эти агенты, которые передают силы, являются не-веществом, они и не материя, и не антиматерия, они – бозоны. Они воздействуют на частицы материи или антиматерии и сами могут превращаться в уравновешивающие части этих двух форм вещества, которые являются фермионами. Так что, похоже, природа обеспечила два варианта частиц: носители силы, которыми являются бозоны, и основные кирпичики вещества, которыми являются фермионы. Бозоны могут приходить и уходить; фермионы в конечном счете распадаются до своих самых стабильных форм, электронов и комбинаций протонов и нейтронов, на этом этапе риск для них представляют их вторые «Я» из антиматерии.

Сражение между материей и антиматерией во Вселенной шло четырнадцать миллиардов лет назад, победила материя. Фермионы порождают структуру, обладают стабильностью и ведут к жизни. Мы сформированы из атомов, которые существуют уже миллиарды лет, и только теперь они конфигурируются в соединения, которые думают, что они – это мы. Мы вдыхаем кислород, выдыхаем углекислый газ, растем и умираем, но наши атомы продолжат свое существование. Их базовые части снова соединятся или пересоединятся в бесконечном разнообразии в далеком будущем – пока (и если) не встретятся с антиматерией.

Назад: Позитроны на Земле
Дальше: Другие античастицы