Книга: Вселенная в вопросах и ответах. Задачи и тесты по астрономии и космонавтике
Назад: Простые тесты по астрономии
На главную: Предисловие


1. Путешествия по Земле

1.1. Полярная

Что мы знаем о Полярной звезде? Это α Малой Медведицы (α UMi), звезда 2,0 визуальной звездной величины, удаленная от Солнца на 470 световых лет. В нашу эпоху она расположена на расстоянии около 1° от северного полюса мира и поэтому удобна для ориентирования: она всегда указывает приблизительное направление на север (что полезно для туристов) и на северный полюс мира (что ценят любители астрономии). К тому же по ней легко определить широту места, приблизительно равную высоте Полярной звезды над горизонтом (а это раньше, до появления GPS, очень ценили штурманы).

Положение Полярной звезды относительно северного полюса мира со временем меняется. В 1900 г. она отстояла от полюса мира на 1° 14′, а в 2000 году — на 44′. В 2102 г. Полярная приблизится к полюсу на минимальное расстояние 27° 31′ и затем будет удаляться от него. В прошлом роль Полярной звезды как указателя полюса мира принадлежала (и в будущем будет принадлежать) иным светилам. Причиной этого служит явление прецессии, т.е. медленный поворот земной оси. Например, 14 000 лет назад роль Полярной звезды исполняла Вега.

Самое главное для нас в этом описании Полярной то, что сейчас она расположена на расстоянии около 1° от северного полюса мира. Следовательно, часовая ось монтировки телескопа, направленная на Полярную, не параллельна земной оси. Поэтому фотографические наблюдения окажутся некачественными: при длительной экспозиции картинка «смажется». Для визуальных наблюдений эта проблема незначительна, поскольку медленный сдвиг изображения можно время от времени компенсировать вручную.

1.2. Зима—лето

Вот два самых распространенных варианта неверных ответов:

1) летом Земля ближе к Солнцу, а зимой — дальше;

2) в течение года Земля меняет наклон своей оси вращения, подставляя Солнцу то одно, то другое полушарие.

Ошибочность первого ответа сразу станет очевидной, если вспомнить, что сезоны в Северном и Южном полушариях Земли меняются в противофазе: когда в Северном полушарии лето, в Южном зима. Значит, в смене сезонов года виновато не изменение расстояния от Солнца (иначе бы они менялись синхронно по всей Земле), а что-то другое. Второй ответ уже ближе к истинному, поскольку в нем говорится о наклоне земной оси, но и этот ответ неверен. Ось вращения Земли не изменяет своего направления в пространстве, во всяком случае — за год. Но само существование этого наклона как раз и служит причиной смены сезонов года. Если бы земная ось была перпендикулярна плоскости земной орбиты (эклиптике), то независимо от положения Земли на орбите солнечные лучи грели бы разные участки ее поверхности с неизменной интенсивностью: максимально интенсивно всегда обогревался бы экватор, а полюсов свет практически не достигал бы никогда.

Отклонение земной оси на 23,4° относительно перпендикуляра к плоскости орбиты приводит к тому, что в течение полугода Земля в большей степени демонстрирует Солнцу одно свое полушарие, а вторые полгода — другое. С 21 марта по 23 сентября Солнце сильнее обогревает Северное полушарие, а с 23 сентября по 21 марта — Южное. В этом и заключается причина смены сезонов. Разумеется, в этот процесс немного вмешивается изменение расстояния нашей планеты от Солнца: ближе всего к нему мы в первых числах января, а дальше всего — в начале июля. Но это изменение столь невелико, что заметно повлиять на смену сезонов оно не может.

Итак, правильный ответ на вопрос «Что служит причиной смены сезонов на Земле?» выглядит так: наклон оси вращения Земли, из-за которого Солнце полгода лучше греет одно полушарие планеты, а вторые полгода — другое.

1.3. Падают кометы

Сначала посмотрим на первый куплет.

Очевидно, речь идет о метеорах. Казалось бы, автор стихов явно спутал метеоры с кометами. Но если вдуматься, «звездные дожди», т.е. метеорные потоки, наблюдаются, когда Земля пересекает орбиты комет, теряющих со своей поверхности пылевые частицы. Сгорая в атмосфере Земли, они-то и вызывают «звездный дождь». Поэтому автор прав: к нам падают частицы комет!

Со второй строчкой тоже не поспоришь: метеоры видны только до рассвета. Ну а третья строка — явная поэтическая вольность, выдумка; разве может лунный диск качаться? Оказывается, может! Эти качания называются либрациями. Их несколько типов. Суточные покачивания, позволяющие нам заглянуть немного то за левый, то за правый край Луны, возникают из-за нашего собственного движения на вращающейся Земле. За ночь мы «переезжаем» с одной стороны земного шара на другую (если смотреть на нас с Луны), поэтому можем наблюдать лунный шар немного с разных сторон. Это явление называется суточным параллаксом. Но есть еще и месячные либрации Луны — по лунной широте и по лунной долготе. Первые возникают оттого, что ось вращения Луны не перпендикулярна плоскости ее орбиты. Поэтому две недели Луна демонстрирует нам свой северный полюс, а вторые две недели — южный. Это либрации по широте. А либрации по долготе возникают потому, что вокруг своей оси Луна вращается с постоянной угловой скоростью, а вокруг Земли — с переменной, ведь ее орбита эллипсоидальна. Так что «лунный диск качается, словно в полусне», т.е. медленно.

Теперь рассмотрим второй куплет. Первые две строчки, вероятно, говорят о том, что от метеорных дождей на поверхность Земли не падают крупные метеориты. Это действительно так. Мелкие частицы комет распыляются в воздухе, поэтому найти их остатки на земле совершенно невозможно. Тем не менее — прочитаем третью строчку — метеорное вещество медленно оседает на поверхность планет в немалом количестве. И на Земле, и на Луне, и на других планетах под ногами у нас метеорная пыль, мелкие метеориты, перемешанные с родным веществом планеты.

Похоже, автор стихов знал толк в астрономии. Как вы думаете?

1.4. К полюсу

Формально для перелета на расстояние 10 000 км (четверть окружности Земли) самолету понадобится 11,1 часа. Однако, придерживаясь направления магнитной стрелки, он, скорее всего, вообще не пролетит над Северным полюсом. Дело в том, что магнитный полюс не совпадает с географическим полюсом Земли. Но некоторые магнитные меридианы, разумеется, проходят через географические полюсы. Хотя истинная форма магнитного поля Земли довольно сложна, в первом приближении ее можно представить как помещенный в центре Земли диполь: такую форму имеет поле простого полосового магнита. Ось симметрии такого упрощенного дипольного поля проходит через поверхность Земли в двух диаметрально противоположных точках, называемых геомагнитными полюсами. Разумеется, на поверхности Земли есть и истинные магнитные полюсы, где свободно подвешенная магнитная стрелка стоит вертикально. Со временем магнитные полюсы довольно активно перемещаются, а геомагнитные — заметно медленнее. Поэтому положение тех и других следует привязывать к дате. Текущие и прогнозируемые данные о положении магнитных и геомагнитных полюсов можно найти на сайте . Например, координаты полюсов в 2016 г. были такие:

Предположим, самолет мог бы лететь по линиям геомагнитного поля — например, внося поправки в показания компаса. Тогда в случае, если бы он взлетел на экваторе в точке 107,3° восточной долготы, то, двигаясь в сторону геомагнитного северного полюса, он пролетел бы над географическим Северным полюсом в 11 час 06 мин по Гринвичу. Но если самолет будет строго придерживаться стрелки компаса, он достигнет магнитного полюса, наверняка не пролетев над географическим. Впрочем, в 2016 г. расстояние между ними невелико — 3,6°, т.е. всего около 400 км. В 2017–2018 гг. магнитный полюс будет на минимальном расстоянии от географического, а затем начнет удаляться.

1.5. Где же юг?

В любом городе, расположенном, как Москва, в средних широтах Северного полушария, все «тарелки» (антенны спутникового телевидения) на домах ориентированы на юг, в область небесного меридиана. Дело в том, что спутники прямого телевизионного вещания движутся по геостационарной орбите, лежащей в плоскости земного экватора на расстоянии RГС = 42 164 км от центра Земли, или 35 786 км от ближайшей точки экватора. Период обращения на этой круговой орбите строго равен периоду вращения Земли (23 часа 56 минут 04 секунды), поэтому спутник неподвижно «висит» над некоторой точкой экватора. Нередко эту орбиту называют «орбитой Кларка» в честь английского инженера и писателя-фантаста Артура Кларка, предложившего в 1945 г. размещать на ней спутники связи.

Для наблюдателя на Земле, находящегося на географической широте φ, геостационарная орбита видна почти параллельно линии небесного экватора, но на несколько градусов ниже его. На пересечении с небесным меридианом угол между небесным экватором и орбитой Кларка составляет

где R = 6371 км — средний радиус Земли. Попробуйте сами вывести эту формулу.

Учтем, что RГС /R = 6,62 не зависит от широты, и получим простое выражение для α = arctg [sin φ/(6,62 – cos φ)]. Поскольку высота небесного экватора в меридиане равна 90° − φ, наивысшая точка геостационарной орбиты в данной местности поднимается над горизонтом на угол β = 90° – φ – α. Для некоторых российских городов значения этих величин приведены в таблице ниже.

Как видим, в средних и особенно северных широтах России геостационарная орбита даже в меридиане видна невысоко над горизонтом. А если еще учесть, что в городе истинный горизонт всегда выше математического (дома мешают!), то понятно, что сигнал можно принимать только от спутников, «висящих» вблизи меридиана, максимально высоко над горизонтом. Именно поэтому телевизионные «тарелки» всегда нацелены почти точно на юг. При этом чем ниже на доме располагается «тарелка», тем, как правило, точнее она ориентирована на юг.

Вычислите углы α и β для своего места проживания. Найдите широту, выше которой геостационарные спутники вообще не видны. Учтите, что для радиоволн атмосферная (астрономическая) рефракция пренебрежимо мала.

1.6. Гелиограф

Будем считать, что горы имели одинаковую высоту (H), а земная поверхность между ними была идеально сферическая. Тогда мы можем использовать формулу для расстояния до горизонта, которую вывели при решении задачи «Обозреваем окрестности» из раздела «Прогулка с братьями Стругацкими». Если радиус планеты R, а высота наблюдателя H, то расстояние до горизонта: А расстояние между горными пиками (S) в нашей задаче составит 2D. Таким образом, Отсюда найдем высоту гор:

Ясно, что это минимально возможная высота, поскольку в горах не бывает идеального горизонта, да и высокая плотность воздуха вблизи поверхности Земли (т.е. у горизонта) вызывает сильное рассеяние света. Однако высоты в 2–3 км, очевидно, было бы вполне достаточно для такого эксперимента. А подобных вершин в североамериканских Скалистых горах немало.

1.7. Где мы?

Очевидно, профессор сказал: «Если через 5 минут тень сдвинется влево, то мы в Северном полушарии. А если вправо — в Южном». Можете проверить это сами, если у вас есть карандаш. Еще древние астрономы научились использовать в своей работе тонкую палку, вертикально воткнутую в землю, и назвали ее гномоном. Подумайте, какие еще астрономические измерения можно проделать с помощью этого нехитрого прибора.

1.8. Так где же мы?

В Южном полушарии в полдень стрелка компаса будет указывать на Солнце своим северным концом, а в Северном полушарии — южным.

1.9. Знаки зодиака

Действительно, знаки зодиака не совпадают по положению на небе с одноименными созвездиями. Они совпадали 2000 лет назад. Но с тех пор созвездия остались на месте, а знаки зодиака (30-градусные секторы эклиптики, отсчет которых идет от точки весеннего равноденствия) «переехали» по эклиптике вслед за точкой весеннего равноденствия из-за явления прецессии.

Прецессия — это коническое движение земной оси вокруг полюса эклиптики с периодом около 25 800 лет и раскрывом конуса около 23,5°, вызванное гравитационным влиянием Луны и Солнца на экваториальное вздутие Земли. Вследствие прецессии небесный экватор поворачивается с тем же периодом в направлении суточного движения светил, а точки его пересечения с эклиптикой (точки равноденствия) перемещаются навстречу видимому годичному движению Солнца по эклиптике со скоростью около 50″ в год, делая более ранними (т.е. предваряя) моменты равноденствий. Слово «прецессия» происходит от латинского praecessio — предварение.

В большинстве книг и энциклопедий объяснение прецессии ограничивается данным выше определением. Если не иметь в виду ничего другого, кроме движения земной оси, то, как видим, фраза «положение созвездий относительно эклиптики… постоянно меняется из-за прецессии» совершенно ошибочна. Из-за прецессии меняется положение знаков зодиака, но не созвездий.

Однако не все так просто. Из серьезных астрономических руководств мы узнаем, что описанный эффект астрономы иногда называют лунно-солнечной прецессией, отделяя его от другого явления, также влияющего на положение точки весеннего равноденствия. Это изменение ориентации плоскости земной орбиты (эклиптики) под влиянием притяжения планет. Этот эффект называют планетной прецессией; она уменьшает прямое восхождение всех звезд примерно на 0,13″ в год и почти в 400 раз слабее лунно-солнечной прецессии, но при очень точных вычислениях ее необходимо учитывать.

Суммарное действие лунно-солнечной прецессии и планетной прецессии называют общей прецессией. Она изменяет положение эклиптики, экватора и точки весеннего равноденствия. Таким образом, общая прецессия смещает эклиптику относительно созвездий. Знала ли об этом журналист, сказать трудно.

Теперь по поводу созвездия Кит. Действительно, современная граница этого созвездия одним из своих уголков касается эклиптики. А поскольку эклиптика понемногу перемещается под действием планетных возмущений, то формально Кит может стать зодиакальным созвездием, как и Змееносец.

1.10. Лунный полярный круг

Когда мы встречаемся с фразами типа «хорошо известно», или «как все знают», или «ясно, что…», то нелишне задуматься, насколько хорошо нам это известно и ясно и понимаем ли мы по-настоящему суть и детали того, что «всем хорошо известно». К примеру — полярный круг на Земле. Он нарисован на глобусе вокруг каждого из полюсов по широте 66,5°. Это та широта, выше которой бывают полярный день и полярная ночь. Причина явления в целом понятна: наклон оси вращения Земли к плоскости ее орбиты, т.е. к плоскости эклиптики, составляет 66,5° (обычно называют цифру 23,5°, но это угол между земной осью и перпендикуляром к плоскости эклиптики). Вкупе с движением Земли по орбите это приводит к изменению угла между направлением на Солнце и земной осью (рис. в ответе 1.2 «Зима—лето»). Для наблюдателя на Земле это проявляется в том, что суточное перемещение Солнца по небу происходит то выше небесного экватора (летом), то ниже (зимой).

Если обратиться к астрономическим справочникам, то мы увидим, что наклон земной оси в нашу эпоху составляет 23,44° = 23° 26′ (мы ограничиваемся минутной точностью). Замечание об эпохе важно, и мы к нему еще вернемся. А пока дадим более точное определение полярным кругам: это параллели в Северном и Южном полушариях с широтами 66° 34′. В Северном полушарии в день зимнего солнцестояния (21–22 декабря) к северу от полярных кругов Солнце не восходит (без учета атмосферной рефракции и углового размера солнечного диска), а в день летнего солнцестояния (21–22 июня) не заходит. Аналогичные явления наблюдаются в Южном полушарии со смещением на полгода.

Казалось бы, все ясно. Но нет! Оказывается, земная ось не сохраняет неизменным свое направление в пространстве. Ее перемещение (точнее, его главная составляющая!) называется прецессией (от лат. praecessio — движение впереди, предварение). Прецессия — это коническое движение земной оси вокруг полюса эклиптики с периодом около 25 800 лет и раскрывом конуса около 23,5° (см. рис. в ответе 1.9 «Знаки зодиака»), вызванное преимущественно гравитационным влиянием Луны и Солнца на экваториальное вздутие Земли. В физическом смысле это сродни покачиванию волчка под действием земного притяжения.

Вследствие прецессии небесный экватор поворачивается с тем же периодом в направлении суточного движения светил, а точки его пересечения с эклиптикой (точки равноденствия) перемещаются навстречу видимому годичному движению Солнца по эклиптике со скоростью около 50″ в год, делая более ранними (т.е. предваряя) моменты равноденствий. Отсюда и латинское praecessio.

Однако зачем мы вспомнили о прецессии? Ведь она не изменяет наклон земной оси к эклиптике, значит, и полярные круги остаются на месте. Это не совсем так. Прецессией называют основное коническое движение земной оси, но на него накладываются небольшие быстрые колебания, которые принято называть нутацией (от лат. nutatio — колебание). Это колебательное движение оси собственного вращения тела, происходящее одновременно с прецессией, при котором изменяется угол между осью собственного вращения тела и осью, вокруг которой происходит прецессия. Как и прецессия, нутация вызвана гравитационным влиянием Луны и Солнца. Проблема же в том, что Луна и Солнце движутся относительно Земли в разных плоскостях: плоскость лунной орбиты наклонена к эклиптике примерно на 5°. Поэтому в разные годы силы Луны и Солнца, действующие на экваториальное вздутие Земли, складываются по-разному. Ведь сама плоскость лунной орбиты тоже испытывает своеобразную прецессию под влиянием солнечной гравитации! Узлы лунной орбиты движутся по эклиптике с периодом 18,6 года; такой же период имеет основной компонент нутации. Правда, размах нутационных качаний земной оси невелик, около ±9″, но для астрономии это немало.

Казалось бы, мы разобрались с положением солнечных полярных кругов на Земле: их географическая широта зависит от наклона земной оси, на значение которого прецессия не влияет, а нутационные колебания этого наклона очень малы (±9″). Но остается ли с годами неизменным положение плоскости земной орбиты, т.е. эклиптики? Оказывается — нет! Описанные выше эффекты, влияющие на положение земной оси, принято называть лунно-солнечной прецессией (и нутацией), чтобы отделить их от другого эффекта, также влияющего на положение точки весеннего равноденствия и наклон земной оси к эклиптике. Речь идет об изменении ориентации плоскости земной орбиты под влиянием притяжения планет. Этот эффект называют планетной прецессией. Проявляется это, например, в том, что траектория полюсами на небе, связанная с лунно-солнечной прецессией, оказывается незамкнутой. Суммарное действие лунно-солнечной прецессии и планетной прецессии называют общей прецессией. Она изменяет положение эклиптики, земного экватора и точки весеннего равноденствия.

Например, в нашу эпоху наклон земной оси к эклиптике уменьшается на 47″ в столетие. За прошедшие 8000 лет он уменьшился почти на 0,8°, а за будущие 8000 лет уменьшится еще на 0,8°. В результате солнечные полярные круги на Земле вполне заметно перемещаются в сторону полюсов, испытывая при этом небольшие нутационные «подрагивания». Через некоторое время уменьшение наклона оси замедлится, остановится и сменится его увеличением. На масштабах в миллионы лет угол наклона испытывает сложные колебания, не выходя, однако, за пределы интервала от 22,0° до 24,5°. Соответственно широта полярных кругов изменяется от 65,5° до 68,0°. А вы думали, что с ними все так просто и ясно?

А теперь вернемся к Луне. Ее движение на нашем небе еще сложнее. Мы уже знаем, что плоскость лунной орбиты испытывает прецессию относительно плоскости эклиптики с периодом 18,6 года. Но при этом и наклон ее не остается постоянным: в среднем он равен 5,145°, но изменяется от 4,99° до 5,30°. Поэтому максимальное удаление Луны от небесного экватора в разные годы изменяется от 18° до (через 9,3 года) 29°. Следовательно, не остается постоянным и положение «лунного полярного круга»: он колеблется относительно солнечного полярного круга с амплитудой около 5°. Как видите, в условии задачи мы немного слукавили, спросив вас о лунном круге. На самом деле на масштабах времени в десятки лет это довольно широкие полярные пояса.

Если бы Луна двигалась, как Солнце, строго по эклиптике, то в пределах полярного круга как минимум раз в месяц (а на полюсе — целых две недели) Луна в течение суток не скрывалась бы за горизонтом, а через полмесяца — в течение как минимум суток (а на полюсе — две недели) не восходила бы над горизонтом. Но наклон орбиты Луны к эклиптике заметно усложняет эту картину и делает «лунный полярный круг» подвижным, изменяя его широту за 9,3 года на 11°.

1.11. Затмения

Сначала проверим справедливость утверждений, сделанных в условии задачи. В XXI в. будет 85 полных и 58 частных теневых лунных затмений, т.е. лунный диск 143 раза коснется диска земной тени. А статистика солнечных затмений за тот же период такова: 68 полных, 72 кольцеобразных, 7 гибридных (смешанных) и 77 частных затмений; всего 234, т.е. почти вдвое больше. В чем же дело?

За счет горизонтального параллакса, наблюдая из разных точек Земли, мы имеем возможность смещать видимое положение лунного диска относительно солнечного: ведь Луна к нам намного, в 400 раз, ближе, чем Солнце, следовательно, ее параллакс намного больше. Поэтому в условии наступления солнечного затмения есть свободный параметр — положение наблюдателя на Земле (в основном это касается географической широты наблюдателя, поскольку Луна сама передвигается в направлении, близком к долготному). А в условии наступления лунного затмения этого свободного параметра нет, поскольку Луна и тень Земли находятся на одинаковом расстоянии от нас. Изменение точки наблюдения на Земле не меняет условия наступления лунного затмения — оно либо есть, либо его нет.

Можно рассуждать и по-другому. Условием солнечного (хотя бы частного) затмения служит попадание лунной полутени на Землю: диаметр «мишени + ударника» составляет: 12 742 км (Земля) + 10 183 км (полутень Луны у Земли) = 22 926 км.

Условием лунного (теневого) затмения служит попадание земной тени на Луну: диаметр «мишени + ударника» составляет: 1 диаметр Луны + 2,7 диаметра Луны (тень Земли у Луны) = 3,7 × 3475 км = 12 858 км.

Важно, что нужно брать не площади мишеней, а диаметры, поскольку происходит сканирование по одной из координат (практически по эклиптической долготе). Итак, условие для лунного затмения почти вдвое более жесткое, чем для солнечного. Поэтому лунные затмения и происходят вдвое реже, чем солнечные.

Если принять во внимание полутеневые лунные затмения, то полный диаметр: 19 451 км (полутень Земли у Луны) + 3475 км (диаметр Луны) = 22 926 км, т.е. ровно такой же, как и для частных (как минимум) солнечных затмений

1.12. Солнце в зените-1

Поскольку во всех точках земного экватора через зенит всегда проходит небесный экватор, то ответ очевиден. Если не настаивать на высокой точности, то ответ простой: на экваторе солнце бывает в зените дважды в году — в дни равноденствий, летнего и зимнего. Но более точный ответ должен учитывать тот факт, что центр солнечного диска пересекает небесный экватор мгновенно, поэтому не все точки экватора удовлетворяют условию задачи, а лишь две: одна весной, а вторая — осенью. Это те точки, в которых моменты равноденствий совпадают с моментами истинного солнечного полдня.

1.13. Солнце в зените-2

На земном шаре всегда существует точка поверхности, над которой солнце в данный момент в зените. Все эти точки в указанный момент лежат на полуденном меридиане Земли и перемещаются по нему в течение года от одного тропика к другому и обратно. На глобусе их совокупность напоминает туго закрученную вдоль экватора спираль, заполняющую пояс между тропиками — от 23,4° с. ш. до 23,4° ю. ш.

1.14. Солнце внизу

Можно — за полярным кругом летом. При этом чем ближе наблюдатель к полюсу, тем большее количество нижних кульминаций за один сезон можно увидеть. Мы не уточняем, о каком из полюсов идет речь — Северном или Южном. Где в данное время лето (полярный день), там и наблюдается нижняя кульминация Солнца.

1.15. «Феникс» летит на Марс

Решение этой задачи не представляет труда, если воспользоваться любой программой-планетарием, демонстрирующей на экране компьютера вид звездного неба из заданной точки в заданное время. Главное — правильно определиться со временем. Флорида расположена в минус пятом часовом поясе, т.е. на 5 часов западнее Гринвича, но в США действует летнее время (+1 час), поэтому в августе местное время Флориды равно UTC − 4 часа. Аббревиатура UTC означает по-французски Temps Universel Coordonné, по-английски это Coordinated Universal Time, а по-русски — Всемирное координированное время. Оно почти не отличается (не более чем на секунду) от простого Всемирного времени (UT), которое называют также Средним гринвичским временем, Greenwich Mean Time (GMT). В разных программах может быть одна из этих аббревиатур. Используйте любую.

Установив точку наблюдения на полуострове Флорида в районе космодрома им. Кеннеди, дату 4 августа 2007 г. и Всемирное время равным 9 час 15 мин (= 5 час 15 мин + 4 час), мы увидим, что небо там было темное, поскольку до восхода Солнца оставалось еще полтора часа, а местность весьма южная (28,5° с. ш.). На востоке поднимается Орион, и одно над другим стоят три ярких красноватых светила: Бетельгейзе (высота 14°), Альдебаран (35°) и Марс (47°). Среди строений космического центра, вероятно, нелегко было заметить Бетельгейзе, но вполне возможно — Альдебаран, а Марс просто нельзя было пропустить. Он действительно сиял как звезда почти нулевой величины (точнее, 0,4m), Так что описание Питера Смита является полностью достоверным.

1.16. Земля — шар

Утверждение довольно точное, поскольку полярный радиус земного шара (Rp = 6 356 752 м) короче его экваториального радиуса (Re = 6 378 137 м) всего на 21 385 м. Обычно относительную разницу этих радиусов выражает в виде полярного сжатия Земли:

Иными словами, отличие Земли от шара составляет 0,3%.

1.17. Голубая планета Земля

Действительно, нашу Землю стали называть «голубой планетой» задолго до того, как ее увидели со стороны космонавты и сфотографировали космические роботы. С какого бы расстояния — от Юпитера, Сатурна или даже из-за пределов планетной системы — мы ни посмотрели бы на нашу планету, она голубая. Это стало ее нарицательным именем и даже проявилось в названиях книг (например, «Голубая точка» Карла Сагана. М.: Альпина нон-фикшн, 2016). О том, что Земля голубая, ученые узнали еще в начале ХХ в. благодаря работам российских астрономов Г. А. Тихова и С. С. Гальперсона, которые наблюдали отраженный от Земли свет, падающий на темную сторону лунного диска — так называемый «пепельный свет Луны». Кстати, по-английски это явление ученые называют именно «earthshine» — «отблеск Земли», хотя иногда используется и «Moon’s ashen glow» — «пепельный свет Луны», и даже поэтичное народное «the old Moon in the new Moon’s arms» — «старая Луна в объятьях молодой». Можно вспомнить, что еще Аристотель полагал, будто бы лунный диск — это зеркало, в котором отражается Земля. Сколь наивными казались эти мысли в эпоху Просвещения! Но оказалось, что в определенном смысле древнегреческий мудрец был прав: в начале ХХ в. астрономы, глядя на Луну, изучали Землю!

Детали этого исследования мы узнаем из статьи Гавриила Адриановича Тихова, опубликованной в журнале «Природа» (1914, №12). К ней мы уже обращались в задаче о пепельном свете Луны. В этой статье в разделе «Цвет пепельного света» Тихов пишет:

Несколько лет тому назад мне пришла в голову мысль исследовать при помощи фотографии цвет пепельного света, чтобы таким образом составить понятие о том, какого цвета кажется из пространства наша Земля. Для решения этой задачи я начал производить снимки пепельного света и серпа через разные светофильтры: красный, желтый, зеленый и фиолетовый. На каждой пластинке фотографировался с длинной выдержкой пепельный свет, а рядом — несколько раз (с короткими выдержками разной продолжительности) серп; при этом выдержки для серпа были, на основании предварительных опытов, таковы, чтобы на каждой пластинке получались среди других и такие изображения серпа, яркость которых равна по возможности яркости пепельного света. Такая серия пластинок позволила определить яркость пепельного света относительно серпа в разных цветах. Таким образом, явилась возможность сравнить цвет Земли с цветом Солнца, так как, повторяем, пепельный свет — это есть Луна, освещенная Землею, а яркий серп — Луна, освещенная Солнцем.

Наблюдения Тихова показали, что

сравнительно с серпом пепельный свет вдвое богаче фиолетовыми лучами, чем красными; при этом яркость увеличивается весьма последовательно при переходе через лучи желтые и зеленые. Уже отсюда мы можем заключить, что Земля, рассматриваемая из пространства, имеет голубоватый цвет. Это заключение, естественно, привело к мысли, что в отражении Землею света в пространство значительную роль играет наша атмосфера, которая, вероятно, и придает Земле голубоватый цвет.

Далее Тихов обращается к работе о голубом цвете неба, опубликованной в 1871 г. знаменитым английским физиком лордом Рэлеем. Основываясь на созданной им теории рассеяния света мелкими частицами, диаметры которых малы по сравнению с длиною световых волн, Рэлей объяснил голубой цвет нашего неба тем, что короткие световые волны рассеиваются такими частицами значительно сильнее, чем длинные: обратно пропорционально четвертой степени длины волны. Так, например, крайние фиолетовые лучи имеют длину волны в два раза меньшую, чем крайние красные, а потому первые рассеиваются в 16 раз сильнее, чем последние. Если же диаметры частиц больше, чем длина волны, то лучи всех цветов рассеиваются одинаково и мы наблюдаем цвет совершенно белый, как, например, цвет облаков. Тихов заключает:

Таким образом, цвет Земли представляет смесь нормальной синевы неба с значительным количеством белого света; иными словами, Земля имеет цвет сильно белесоватого неба. Смотря на Землю из пространства, мы увидели бы диск указанного цвета.

Ну а если посмотрим издалека, то увидим не диск, а точку. Именно так назвал свою книгу по-английски Карл Саган — «Pale Blue Dot», «бледно-голубая точка». Ведь поводом для этого названия послужил снимок Солнечной системы, переданный 14 февраля 1990 г. «Вояджером-1» с расстояния 6 млрд км (40 а. е.), откуда Земля — точка.

Продолжая наблюдения Луны, Тихов заметил изменения в окраске и яркости пепельного света и заключил:

Мы нашли, что пепельный свет происходит от освещения Луны светом, отраженным нашей атмосферой и всем, что в ней взвешено, а потому, если меняется отражательная способность атмосферы в целом, то должны меняться яркость и цвет пепельного света. Что отражательная способность нашей атмосферы в целом меняется, об этом можно судить по многим фактам. Над каждым данным местом изменения отражательной способности атмосферы очевидны и зависят от облачности неба, прозрачности воздуха и от других метеорологических элементов. Эти изменения в разных местах могут взаимно уравновешивать друг друга, но, несомненно, не всегда. Бывают целые месяцы необыкновенной облачности или ясности, захватывающих громадные пространства земной поверхности. Кроме того, бывают периоды, когда вся земная атмосфера становится как бы загрязненной вулканической или даже космической пылью, вызывающей особенно яркие зори. Все это вызывает изменение отражательной способности нашей атмосферы в целом и, как в зеркале, должно отражаться на яркости и цвете пепельного света. Из этого видно, какой интерес представляют систематические наблюдения пепельного света Луны. Исследуя пепельный свет, мы изучаем нашу Землю в том виде, как она видна из пространства.

Так в начале XX в. ученый нашел способ, чтобы изучать нашу планету «со стороны». Астрономы использовали этот метод. Наблюдая пепельный свет, они выяснили, что его яркость месяц от месяца меняется. Это связывают с интенсивностью облачности на дневном полушарии Земли: чем больше облаков в атмосфере, тем больше солнечного света Земля отражает к Луне. Разумеется, теперь, в эпоху искусственных спутников, непрерывно фотографирующих Землю со всех сторон, метод Тихова выглядит архаичным. Но недавно о нем вспомнили вот по какому поводу.

За последние десятилетия астрономы обнаружили тысячи экзопланет, т.е. планет у других звезд. Среди них есть похожие на Землю. Как узнать, существует ли на них жизнь? В ближайшие годы вступят в строй гигантские телескопы, которые смогут не только получить изображения некоторых землеподобных экзопланет, но и собрать от них достаточно света, чтобы разложить его в спектр для поиска в нем молекулярных линий. Мы надеемся обнаружить биомаркеры — молекулы, характерные для земной жизни (другой-то мы пока не знаем!), т.е. молекулы кислорода, воды, метана… Было бы неплохо отработать этот метод на нашей Земле. Но запускать космическую обсерваторию, чтобы она издалека посмотрела на Землю, очень дорого. Как же быть?

И тут астрономы вспомнили про метод Гавриила Тихова. Они направили телескоп со спектрометром на темную сторону молодой Луны и узнали, каков спектр нашей планеты при взгляде на нее из далекого космоса. Ведь пепельный свет образуют лучи, трижды прошедшие сквозь земную атмосферу: от Солнца к поверхности Земли, от нее к Луне и обратно к телескопу. Спектр пепельного света в ближнем инфракрасном диапазоне показал, что в нашей атмосфере содержатся двуокись углерода, вода, кислород и озон. Это и есть признаки планеты, на которой присутствует основанная на воде жизнь и происходит фотосинтез. Мощные линии воды, кислорода и озона отличают спектр Земли от спектров Марса и Венеры. Если фотосинтез на Земле остановится, кислород в атмосфере будет сохраняться не более 6000 лет, так что, когда жизнь на Земле погибнет, кислород исчезнет почти мгновенно. Его наличие служит верным признаком жизни. Именно эти заметные детали в спектрах экзопланет астрономы будут искать в ближайшие годы.

1.18. Пепельный свет

1) Вот как объясняет пепельный свет Луны сам Г. А. Тихов в той же статье:

Причина этого явления хорошо известна со времен Леонардо да Винчи и Местлина, учителя Кеплера, впервые давших верное объяснение пепельному свету. Объяснение Местлина опубликовано в 1604 г. в сочинении Кеплера «Astronomiae Pars Optica», объяснение же Леонардо да Винчи, данное на сто лет раньше, найдено в его рукописях.

Представим себе момент, когда Луна проходит между Землей и Солнцем. Если центры всех трех светил лежат близко от одной прямой линии, то для наблюдателя с Земли произойдет полное или частное солнечное затмение. Если же Луна удалена более значительно от прямой Земля—Солнце, то она не будет видна на диске Солнца. Момент прохождения Луны в ближайшем расстоянии от прямой Земля—Солнце носит название новолуния. В этот момент к Земле обращена темная, не освещенная Солнцем сторона Луны, и мы ее не видим вовсе. Но что увидели бы мы, глядя в этот момент с Луны на Землю? Обращенная к Луне сторона Земли обращена в то же время и к Солнцу, а потому с Луны мы увидели бы Землю в виде полного освещенного диска, так сказать, «полноземелие». Этот свет «полной» Земли должен освещать Луну весьма значительно, гораздо сильнее, чем то освещение, которое посылает на Землю полная Луна, так как земной диск, видимый с Луны, имеет поверхность приблизительно в 13 раз бо́льшую, чем поверхность Луны, видимая с Земли. За несколько дней до новолуния или через несколько дней после него, когда Луна удалена на некоторое расстояние от прямой Земля—Солнце, мы видим небольшую часть освещенной Солнцем ее поверхности в виде узкого серпа. В это самое время Земля с Луны кажется несколько «ущербленной», но все еще весьма яркой. Земля освещает Луну, и мы видим пепельный свет рядом с серпом, освещенным самим Солнцем.

Это и есть верное объяснение пепельного света. Как оно ни просто, людям понадобилось несколько тысячелетий занятия астрономией, чтобы найти его. До Леонардо да Винчи и Местлина одни объясняли пепельный свет фосфоресценцией Луны, другие (напр., философ древности — Посидоний) — тем, что вещество Луны прозрачно. Знаменитый астроном XVI века Тихо Браге объяснял пепельный свет Луны освещением ее поверхности планетой Венерой.

Пепельный свет дает прекрасный способ сравнить яркость Земли, освещенной Солнцем, с яркостью самого Солнца. В самом деле, яркий серп и пепельный свет Луны представляют собою части одного и того же тела, освещенные соответственно Солнцем и Землею. Поэтому, измерив отношение яркости серпа и пепельного света, можно получить отношение яркости Солнца и Земли. Мы как бы получаем возможность взглянуть на нашу Землю с Луны.

Оказалось, что Земля отражает свет в не меньшей степени, чем планета Венера, которая превосходит в этом отношении все остальные планеты. Известно, что на Венере никогда не видно каких-либо резких и определенных подробностей. Видимые на ней пятна всегда очень слабы и неопределенны. Из этого, а также из-за сильной отражательной способности Венеры заключили, что она всегда покрыта густыми облаками, закрывающими от нас самую ее поверхность. Исследования… приводят к мысли, что Земля наша, рассматриваемая из пространства, весьма схожа с Венерой. Земля также весьма ревниво скрывает от посторонних взоров свою поверхность, закутываясь атмосферой и облаками.

Прервем на этом цитату из статьи Тихова и заметим, что простые методы измерения яркости в ту эпоху не обладали высокой точностью, поэтому полного подобия между Землей и Венерой, как мы теперь знаем, нет. Однако заключение Тихова оказалось близким к реальности: по значению своего геометрического альбедо (т.е. оптической отражательной способности) среди планет земного типа Земля идет вслед за Венерой.

Одно время казалось, что астрономические исследования планет, которыми занимался Тихов, потеряли актуальность. Действительно, сегодня космические зонды передают с поверхности планет и из их окрестностей такую детальную информацию, какую никогда бы не смогли получить астрономы, наблюдая эти планеты с поверхности Земли. Но в истории науки не раз случалось, что старые приемы обретали новую жизнь.

Сумев задолго до космической эры посмотреть на Землю со стороны, астрономы как бы поставили ее в ряд с другими планетами, изучавшимися тогда дистанционно. В первой половине ХХ в. были предприняты фотометрические и спектроскопические исследования планет, результаты которых частично подтвердились, а частично были опровергнуты прямыми измерениями космических зондов. На время дистанционные методы потеряли актуальность, но не были забыты. О них вспомнили после 1995 г., когда началась эпоха открытия экзопланет — далеких планет у иных звезд. Вряд ли в обозримой перспективе мы сможем послать к ним исследовательские автоматы, поэтому вся надежда на астрономические методы: работы Гавриила Тихова и его последователей вновь становятся актуальными.

2) Разобравшись с природой пепельного света Луны, мы легко ответим на второй вопрос: поскольку с обратной стороны Луны Земля не видна, то и пепельного света там нет.

3) Поверхностная яркость пепельного света невелика и не всегда способна соперничать с яркостью голубого неба. Чем темнее сумеречное небо, тем легче заметить пепельный свет. Весной Солнце находится близ точки весеннего равноденствия, поэтому после его захода на западе эклиптика круто поднимается над горизонтом, и молодая Луна, которая всегда недалеко от эклиптики, стоит высоко, на фоне заметно потемневшего сумеречного сегмента неба. Такая же ситуация и осенью на востоке.

1.19. Звездопад

Чтобы получить аккуратную оценку, необходимо сделать некоторые предположения о «наблюдательности наблюдателя». Мой личный опыт подсказывает, что при длительном наблюдении ночного неба поле зрения человека ограничено окружностью диаметром 50÷60°. Значит, в атмосфере, на высоте 90 км, мы охватываем зрением круг радиусом около 90 км × tg (55°/2) = 37 км. Площадь этого круга около 4400 км2. А полная площадь атмосферы на этой высоте равна 4π (R+ 90 км)2, где R= 6371 км — средний радиус Земли. Вычислим эту площадь «метеорной сферы» и получим около 525 млн км2. Следовательно, в атмосфере Земли вспыхивает

метеоров за час. Это около 24 млн метеоров в сутки. Или около 300 метеоров в секунду.

Масса метеороидов, вызывающих вспышки метеоров, обычно оценивается в 0,01 г. Проверить порядок этой величины мы с вами можем. Используем связь между болометрической звездной величиной (mb) и потоком энергии вблизи наблюдателя (Сурдин, 2012; статья «Звездная величина»):

f = 2,5 ×10–8 × dex{–0,4mb} Вт/м2

Обозначение «dex{…}» означает «десять в степени…». Используя эту формулу для визуального диапазона, перейдем к видимым звездным величинам:

f = 2,5 · 10–8 × 10 – 0,4m Вт/м2.

Пусть m = 3, расстояние до метеора 100 км, а продолжительность его вспышки составляет 1 сек. Тогда f = 1,6 · 0–9 Вт/м2, полная мощность вспышки F = 4πf (100 км)2 = 200 Вт, а ее полная энергия E = 200 Дж. Весьма произвольно примем эффективность преобразования кинетической энергии метеороида (MV 2/2) в свет равной η = 10%. При средней скорости метеороида 30 км/с это даст его массу

что практически не отличается от 0,01 г.

Профессиональные исследователи метеоров дают весьма близкие оценки: «При условии, что метеор достигает 1 звездной величины при скорости вхождения в атмосферу Земли 40 км/с, загорается на высоте 100 км, а потухает на высоте 80 км, при длине пути в 60 км и расстоянии до наблюдателя в 150 км, продолжительность полета составит 1,5 сек, а средний размер составит 0,6 мм при массе 6 мг» (Петров В. Н. Некоторые проблемы физики метеоров // УФН. 1939. Т. 22, вып. 4. С. 449).

Итак, мы выяснили, что принимаемая обычно масса частицы, вызывающей вспышку метеора, действительно порядка 0,01 г. Это масса пляжной песчинки. Умножив эту массу на количество наблюдаемых в сутки метеоров (24 млн), получим 240 кг/сут. В год это около 100 т. Весьма мало по сравнению с массой самой Земли.

Разумеется, кроме тех частиц, что регулярно вызывают вспышки метеоров, еще бывают кратковременные, но обильные метеорные дожди, изредка падают крупные метеориты и невидимыми остаются многочисленные очень мелкие частицы. Например, если раз в столетие падает метеорит размером 20 м (Тунгусский, Челябинский), то в среднем это дает еще 100 т/год.

1.20. Месяц всходит и заходит…

Тут сразу две астрономические неточности. Во-первых, период между восходами Луны около 25 часов, поэтому бывают сутки без восходов Луны. Во-вторых, по этой же причине (25 часов длиннее солнечных суток) восходы Луны происходят в произвольное время суток, а не только по ночам.

1.21. Передвинем города

Утверждение Б. Паркера неверно. На разных (по абсолютной величине) широтах одинаковое линейное смещение по-разному изменяет долготу, поскольку длина параллелей зависит от широты. Расположение городов, а значит, и расстояние между городами, лежащими на разных широтах, при этом изменится. Это легко понять на простом примере. Пусть два города лежат на одном меридиане. Передвинем их по долготе на одинаковое линейное расстояние. После этого они окажутся на разных меридианах, но на исходных широтах. Теперь расстояние между ними определяется длиной гипотенузы, хотя исходное расстояние было лишь катетом в этом треугольнике. А гипотенуза, как известно, длиннее катета.

Похоже, Б. Паркер знаком лишь с плоской картой Земли и никогда не видел глобуса. И пример для иллюстрации своего утверждения он выбрал крайне неудачный, поскольку широты Нью-Йорка (40° 3′ 42″ с. ш.) и Лос-Анджелеса (34° 02′ 00″ с. ш.) существенно различаются. Вот если бы он выбрал Сан-Франциско и Вашингтон, ошибка была бы намного меньше.

1.22. «Наутилус» на Южном полюсе

Во-первых, подводной лодке не попасть на Южный полюс, поскольку Антарктида — это материк, а не океан, покрытый льдом, как Арктика. Во-вторых, созвездие Южный Крест не может быть в зените над Южным полюсом, поскольку оно располагается на расстоянии около 30° от южного полюса мира. Это ошибки писателя. А в чем же он неожиданно оказался прав? Если лодка подошла по открытой воде к границе антарктических льдов зимой, то она остановилась приблизительно на 60° ю. ш. Там один раз в сутки Южный Крест в зените. К концу лета граница льдов прижимается к берегу материка и проходит между 65° и 70°. Но и на этих широтах Южный Крест поднимается почти в зенит.

1.23. Урожайная Луна

В период осеннего равноденствия на северной широте около 67°, когда и где по вечерам в момент восхода точки весеннего равноденствия эклиптика располагается вдоль горизонта. Наклон лунной орбиты к эклиптике в расчет не принимаем, поскольку он невелик.

В самом деле, период осеннего равноденствия Солнце находится вблизи точки осеннего равноденствия, следовательно, Луна в период полнолуния располагается вблизи точки весеннего равноденствия. Если наблюдатель на широте 67° с. ш., то небесный экватор пересекает его небесный меридиан на высоте 23° от горизонта. В момент захода Солнца одна точка эклиптики (точка осеннего равноденствия, та, где Солнце) лежит на горизонте. Дальше к югу эклиптика проходит ниже небесного экватора на 23°, а значит, вся эклиптика в момент захода Солнца совпадает с математическим горизонтом.

Если забыть о небольшом наклоне лунной орбиты, то можно считать, что и она движется по эклиптике. Следовательно, в конце сентября полная Луна в течение нескольких дней восходит в момент захода Солнца, то есть практически в одно и то же время. Это очень удобно для крестьян в период сбора урожая, поскольку после захода Солнца сразу появляется «ночное светило» и можно продолжать полевые работы. В другие сезоны полная Луна каждый следующий вечер восходит почти на час позже, поскольку ежесуточно перемещается по эклиптике на 13°, а эклиптика образует с горизонтом довольно большой угол.

Разумеется, на широте 67° полевые работы не особенно продуктивны, но и на значительно более южных широтах эффект «урожайной Луны» вполне заметен. Даже на широте 40° последовательные восходы Луны сдвигаются на полчаса, а не на 50 мин, как в среднем в течение года.

1.24. Горы и долины

Действительно, высочайшая гора на Земле — Эверест (8848 м) меньше глубочайшей Марианской впадины, а точнее, ее самой глубокой точки — Бездны Челленджера (10 994 м), если ту и другую мерить от уровня моря. И горные цепи, и морские желоба возникают в результате движения литосферных плит, их наползания друг на друга, подныривания или выжимания при столкновении. Гора растет до тех пор, пока своей тяжестью она не продавливает основание. Это легко проверить. Удельный вес пород земной коры около ρ = 3000 кг/м3. Прочность на сжатие гранита около σ = 300 МПа. Подсчитаем, какова максимальная высота гранитного столба (L), который начинает своим весом (ρL) разрушать свое основание (мы помним, что один килограмм силы примерно равен 10 ньютонам):

Как видим, на Земле невозможны горы высотой более 10 км, что и доказывает Эверест. Впрочем, слава Эвереста не вполне заслуженная: на нашей планете найдутся горы и повыше Эвереста. Чемпионом высоты считается потухший вулкан Мауна-Кеа, высочайшая вершина острова Гавайи (4205 м над уровнем моря). Дело в том, что большая часть этой горы находится под водой. Относительно подножия, находящегося на дне Тихого океана, ее высота составляет 10 203 м. Даже удивительно, что наша оценка оказалась такой точной.

Океанический желоб тоже можно представить как долину между двух гор. Давление на основание этих гор создает их собственный вес, а также вес столба воды над ними. Глубина океана рядом с Марианским желобом около H = 3500 м, плотность воды около 1000 кг/м3. Отсюда для максимальной глубины желоба:

(L – H) × 3000 кг/м3 + H × 1000 кг/м3 = 300 МПа

Окончательно получаем глубину скального основания Марианской впадины около 12 км. Измеренная глубина составляет около 11 км, но не исключено, что разницу в 1 км заполняют рыхлые морские осадки, скопившиеся в Марианской впадине. Так или иначе, перепад высот примерно в 10 км как вверх, так и вниз относительно уровня твердой земной поверхности определяется прочностью и удельным весом пород.

Эти же рассуждения можно отнести и к другим телам Солнечной системы с учетом плотности и прочности их пород, а также силы тяжести на поверхности. Например, если плотность и прочность марсианской коры такая же, как земной, а сила тяжести в 2,6 раза меньше, то высочайшие горы на Марсе должны достигать 2,6 · 10 км = 26 км. Действительно, именно такова высочайшая вершина Марса — гора Олимп.

Можете продолжить эти изыскания в отношении других планет. А если наша простая теория не будет «сходиться» с наблюдениями, то подумайте — почему?

1.25. Короткие сумерки

Сумерки — это период плавного перехода от дневного света к ночной темноте и обратно. Это время суток, когда Солнце находится под горизонтом (перед рассветом или после заката), но еще или уже виден солнечный свет, рассеянный в верхних слоях земной атмосферы. Сумерки наблюдаются на любой планете, имеющей атмосферу, но нас сейчас интересуют земные сумерки, продолжительность которых диктуется свойствами земной атмосферы, наклоном земной оси и положением наблюдателя.

Продолжительность сумерек определяется промежутком времени между заходом Солнца и временем, когда надо прибегать к искусственному освещению; зависит от географической широты места, сокращаясь с приближением к экватору. При ясном небе гражданские сумерки заканчиваются, когда Солнце опускается на 6° под горизонт; в этот момент становится трудно различать окружающие предметы и требуется включать искусственное освещение. Навигационные сумерки заканчиваются, когда Солнце опускается на 12° под горизонт; в этот момент на чистом небе становятся видны яркие (навигационные) звезды. А когда Cолнце опускается на 18°, заканчиваются астрономические сумерки и окончательно наступает ночь.

В районе экватора независимо от сезона солнечный диск пересекает горизонт почти перпендикулярно и поэтому опускается очень быстро. Легко оценить, какова продолжительность суток на экваторе. За час солнечный диск проходит по небу 15° (= 360°/24 ч). Поэтому продолжительность гражданских сумерек составляет 60 мин × 6°/15° = 24 мин. Навигационные сумерки заканчиваются после захода Солнца через 60 мин × 12°/15° = 48 мин, а астрономическая ночь наступает через 60 мин × 18°/15° = 1 час 12 мин. Мы не стали здесь учитывать атмосферную рефракцию и годичное движение Солнца, поскольку это слабые эффекты.

Наши вычисления довольно точно согласуются с субъективными впечатлениями путешественников, побывавших в районе экватора. Из записок туриста, побывавшего на о. Пхукет (Таиланд, широта около 8° с. ш.):

Еще только полчаса назад солнце нещадно палило над головой, и вы не знали, куда же от него скрыться, а уже сейчас вокруг вас кромешная тьма. Причем наступила она так быстро, что вы даже не успели насладиться погружающимся в море солнцем. А времени всего лишь чуть больше 18 часов…

1.26. Полная Луна

Судя по описанию, Солнце только что скрылось за горизонтом, значит, полная Луна должна была только что появиться из-за горизонта и никак не могла быть видна «в высоте». К тому же лунный диск должен был иметь красноватый оттенок, как у любого светила вблизи горизонта (из-за сильного рассеяния голубых лучей в атмосфере).

1.27. Арктический НЛО

Валентин Иванович Аккуратов (1909–1993) — действительно архиопытный полярный летчик, легендарный человек. В его профессиональных знаниях трудно сомневаться. Однако в приведенном тексте, якобы записанным с его слов, есть грубая географическая ошибка, которая говорит о том, что «охотники за НЛО» обладают поверхностными знаниями и некритически относятся к своим текстам. Все направления от Северного полюса лежат строго на меридианах и являются направлениями на юг, поэтому опытный штурман не мог указать направление «к юго-юго-востоку от Северного полюса». Такого направления не существует. А значит, и точку встречи самолета с НЛО на карте найти невозможно.

1.28. Календарь Магеллана

Корабельный календарь отстал на 1 день. Обогнув Землю с востока на запад, моряки совершили на 1 суточный оборот меньше, чем неподвижный порт на материке, откуда они выплыли и куда вернулись.

1.29. Прохождения Венеры

1) Орбита Венеры наклонена к эклиптике на 3,4°, а угловой размер солнечного диска, наблюдаемого с Земли, 0,5°, поэтому мы можем увидеть Венеру на фоне Солнца только в те моменты, когда она и Земля находятся вблизи одного из узлов орбиты Венеры. Долгота ее восходящего узла 76,7°. Чтобы Земле от точки весеннего равноденствия (21 марта) пройти такой путь по своей орбите (считаем ее круговой), требуется

Получаем дату возможного прохождения Венеры по Солнцу в районе восходящего узла:

21 марта + 78 сут = 7 июня.

Конечно, дата приблизительная, поскольку календарь конкретного года (либо простого, либо високосного) может менять ее на 1–2 дня. К тому же угловой размер Солнца делает возможным прохождение по его диску в пределах 2–3 дней до или после пересечения Венерой эклиптики (0,5°/sin 3,4° = 8,4°; их Венера проходит за 5 суток). Ну а вторая возможная дата прохождения наступает, когда Земля проходит у нисходящего узла венерианской орбиты — полгода спустя.

2) Через окрестности узла орбиты Венеры должны одновременно пройти Земля и Венера с точностью до 2–3 сут, т.е. до 1/100 года. Орбитальный период Венеры — 0,61521 года. Умножая его последовательно на целые числа (1, 2, 3, …), впервые получим целое число с точностью выше 1/100 при умножении на 13:

0,61521 года × 13 = 7,998 года.

То есть через 13 оборотов Венеры и 8 оборотов Земли они снова сходятся у того же узла орбиты Венеры.

3) В этом случае нам надо решить уравнение:

0,61521 года × (k + 0,5) = (n + 0,5) года,

где k и n — целые числа, с точностью до 1/100.

Приводим уравнение к виду

0,61521 k – 0,192395 = n

и методом перебора находим пары (k = 171, n = 105) и (k = 197, n = 121).

1.30. Инспекция

Начальник станции был вежливый человек. Он согласился с замечанием и пообещал исправить оплошность. «Однако, — добавил он, — поскольку станция находится на свободно дрейфующей льдине, которую течением и ветром сносит иногда на несколько километров в сутки, отметку земной оси придется каждый день переставлять. Для этого понадобится дополнительная штатная единица, а также снегоход или вертолет и топливо». Руководитель комиссии замахал руками и сказал, что в смету эти расходы не заложены, дополнительных фондов нет и он не выделит на это ни копейки. Начальник станции пожалел, что такая хорошая идея не может быть реализована. «Бюджет — святое дело», — вздохнул он, и дискуссия о земной оси завершилась к обоюдному удовольствию. Мораль: учитесь разговаривать с чиновниками!

1.31. Эх, раз! Еще раз?

Как известно, звездные сутки длятся 23 часа 56 минут. Следовательно, в следующий раз звезда взойдет в 23:57 того же дня. Но между двумя восходами звезда должна пересечь линию горизонта при заходе. Следовательно, в течение текущих суток звезда появится на горизонте еще как минимум дважды.

Но и это не предел! Звезда может проходить видимую (из данного места) часть своего пути очень низко над горизонтом, и тогда после второго восхода она еще может успеть сесть за оставшиеся до окончания суток три минуты. Поэтому полный ответ: звезда пересечет горизонт еще минимум 2, но, возможно, и 3 раза.

1.32. Замкнутый маршрут

Задача кажется очень легкой: искомая точка — Северный полюс. Но не торопитесь: существуют и другие решения.

Кроме одной точки на Северном полюсе существует также бесконечное множество точек в окрестности Южного полюса, также удовлетворяющих условию задачи. Они лежат на концентрических окружностях с центром в Южном полюсе, имеющих радиусы Rk = 100 × (1 + 1/2 πk) км, где k = 1, 2, 3, … Например, при k = 1 мы выходим с расстояния около 116 км от полюса и, двигаясь на юг, приближаемся к нему до расстояния 16 км. Затем поворачиваем на восток и обходим вокруг полюса целый круг (длина окружности 2π · 16 = 100 км. Затем по уже пройденному пути возвращаемся на север в исходную точку. При k = 2 придется сделать два обхода вокруг полюса по кругу вдвое меньшего размера. При этом движение происходит все время строго на восток. Между расстояниями 116 и 100 км от Южного полюса заключено бесконечное число окружностей, все точки которых удовлетворяют условию задачи.

Решая эту задачу, мы считали поверхность Земли в районе полюса плоской, поскольку расстояния невелики. Но можно было бы учесть кривизну Земли. Это имело бы смысл, если бы в условии задачи был задан путь не 100 км, а 1000 км, 10 000 км, 20 000 км. Попробуйте решить эту задачу с такими условиями. Последнее из них особенно интересно. Землю мы считаем шаром с окружностью 40 000 км по экватору.

1.33. На все четыре стороны

Такие точки расположены на параллели, отстоящей на 5 км к югу от экватора.

1.34. Небо вверх ногами

Перемещение наблюдателя из Восточного в Западное полушарие принципиально не меняет ориентацию созвездий относительно горизонта (это происходит только при существенном изменении широты, например при перемещении из Северного полушария в Южное). Тем не менее небольшое, но заметное даже для любителя астрономии изменение вида звездного неба при переезде из Москвы (широта около 56°) в Сан-Франциско (широта около 38°) все же происходит.

1.35. Что позади?

Позади фотографа — Солнце вблизи горизонта.

1.36. Зимний пейзаж

Судя по фазе Луны в виде тонкого месяца, она либо близка к новолунию, либо недавно прошла через него, т.е. расположена на небе недалеко от Солнца. Значит, это либо раннее утро перед восходом Солнца, либо ранний вечер, сразу после захода Солнца. Чтобы сделать однозначный выбор, нам нужно знать, в каком полушарии Земли находится эта местность. Если это Северное полушарие, то ориентация лунного серпа подсказывает, что на картине изображен вечер в средних широтах, если Южное — то утро в средних широтах. Однозначный выбор сделать невозможно. Однако общий вид пейзажа и строений на нем скорее соответствует Северному полушарию. Поэтому с большой вероятностью это вечер.

О хорошей наблюдательности художника говорит тот факт, что он не забыл изобразить пепельный свет на темной стороне молодой Луны и правильно сориентировал «рога» лунного серпа, не направив их вниз (чем нередко грешат ненаблюдательные художники). Лунный серп у горизонта всегда имеет форму «лодочки», ориентированной «рогами» вверх и выпуклым «донышком» вниз, поскольку Солнце освещает Луну в этой фазе из-под горизонта. В экваториальных областях Земли «лодочка плывет» почти параллельно горизонту, в средних широтах — под наклоном, и чем ближе к полюсу, тем сильнее поднимается «нос лодочки» и опускается «корма». Но «лодочка» никогда не переворачивается.

1.37. Подзорная труба

Поскольку действие происходило практически на уровне моря, в трубу с любым увеличением поверхность моря видна не далее чем на 5–6 миль. На этом расстоянии проходит линия горизонта. Но если бы персонаж романа воскликнул: «Господа, миль на 100 квадратных вокруг не видно обломков кораблекрушения!», то он был бы прав: при R = 5,5 км площадь круга πR2 ≈ 100 км2.

2. Визит в обсерваторию

2.1. Темная сторона Луны

В момент солнечного затмения ночная сторона Луны освещена солнечным светом, отраженным дневной стороной Земли. Это слабое сияние называют «пепельным светом Луны».

2.2. Тропики

Между тропиками заключен тот широтный пояс Земли, где солнце хотя бы раз в году достигает зенита. Широта тропиков, естественно, связана с наклоном земной оси (23,5° относительно перпендикуляра к плоскости земной орбиты, т.е. к эклиптике). В день летнего солнцестояния солнце проходит через зенит на широте северного тропика, а день зимнего солнцестояния — на широте южного. В эти дни солнце, перемещаясь по эклиптике, максимально удаляется от небесного экватора. Само слово «тропик» произошло от греческого τροπικός (поворот) и связано с «разворотом» движения Солнца от небесного экватора к нему в день солнцестояния.

Если мы посмотрим на современную карту звездного неба, то увидим, что точка летнего солнцестояния на эклиптике лежит на границе созвездий Близнецы, Орион и Телец, а созвездие Рак находится значительно восточнее, на расстоянии 2÷3h (т.е. 30÷45°) по прямому восхождению. То же самое мы увидим и в отношении южного тропика: сегодня точка зимнего солнцестояния располагается в Стрельце, на расстоянии 2h÷3h по прямому восхождению от Козерога. И это не случайно.

Ось Земли, а вместе с ней и земной экватор со своим продолжением, небесным экватором, испытывают прецессию — медленное конусообразное движение вокруг полюса эклиптики. Вызвано это движение гравитационным влиянием Луны и Солнца на экваториальную выпуклость Земли. Вследствие прецессии небесный экватор поворачивается с периодом 25 800 лет в направлении суточного движения светил, а точки его пересечения с эклиптикой (точки равноденствия) перемещаются навстречу видимому годичному движению Солнца по эклиптике со скоростью около 50″ в год, делая более ранними (т.е. предваряя) моменты равноденствий. Слово «прецессия» как раз и происходит от латинского praecessio — предварение.

Вместе с точками равноденствия перемещаются по эклиптике и точки солнцестояния, отстоящие от них на 90°. За 2000 лет это перемещение происходит почти на 30° к западу по прямому восхождению (наклон эклиптики к экватору при этих оценках можно не учитывать, поскольку в областях солнцестояния небесный экватор и эклиптика практически параллельны). Таким образом, 2÷3 тысячи лет назад точки солнцестояний действительно были на территории современных созвездий Рак и Козерог. Разумеется, в древности не существовало нынешних точных границ созвездий, но их традиционные фигуры (астеризмы) были на тех же местах. Поэтому можно заключить, что представление о тропиках сложилось около 2500 лет назад.

2.3. Вакуумный телескоп

Солнечное излучение сильно нагревает трубу телескопа, отчего возникают мощные турбулентные потоки воздуха, портящие изображение Солнца. Вакуумный телескоп лишен этого недостатка.

2.4. Взгляд со стороны

Вторая звезда этой системы — полный аналог нашего Солнца. Следовательно, и Солнце на небе той гипотетической планеты будет иметь блеск около 5,22m. Абсолютная звездная величина Солнца MV = +4,82m, следовательно, расстояние до него (а также от него до Дзеты Сетки) составляет

R = 10 × 10(m M)/5 = 12,0 пк.

Межзвездным поглощением света на столь ничтожном расстоянии мы, естественно, пренебрегли. Эта оценка расстояния, сделанная методом спектрального параллакса, чрезвычайно точно совпадает с прямым измерением расстояния Дзеты Сетки, полученным методом тригонометрического параллакса (p = 0,0833″±0,0002″, R = 12,01 ± 0,03 пк).

Положение Солнца на небе той планеты определим как диаметрально противоположное положению Дзеты Сетки на нашем небе, т.е. Солнце будет видно в направлении α = 15h 18m, δ = +62° 32′. На нашем небе эта точка находится в созвездии Дракон, недалеко от границы с Большой Медведицей. Поскольку Дзета Сетки недалеко от нас, рисунок ее звездного неба не должен сильно отличаться от нашего. Хотя имена созвездий там, конечно, иные.

Оценим скорости движения звезд в системе Дзеты Сетки. Минимальное расстояние между компонентами составляет L = 12 пк × 5,2′/3438 (это количество минут в радиане) = 0,018 пк = 3700 а. е. Будем считать обе звезды аналогами нашего Солнца. Тогда расстояние каждой от центра массы системы составляет L/2, а центростремительное ускорение — GM/L2. Отсюда найдем орбитальную скорость v:

откуда

Чтобы упростить вычисления, вспомним, что а. е. = 30 км/с — орбитальная скорость Земли. Значит, если L выражена в астрономических единицах, то км/с. При L = 3700 а. е. орбитальная скорость компонентов этой двойной звезды составит 0,35 км/с. И это ее максимальное значение, поскольку из наблюдаемого углового расстояния между компонентами мы нашли их минимальное разделение в пространстве. Значит, независимо от положения компонентов на орбите, лучевая скорость Солнца относительно родительской звезды той планеты будет около +12 км/с.

2.5. Дневные звезды-1

Разумеется, красота ночного звездного неба днем недоступна. В этом наш астроном прав. Тем не менее, имея телескоп, можно увидеть звезды даже днем! Не все, а лишь наиболее яркие.

Прежде всего давайте подумаем, почему звезды днем не видны? Да просто потому, что небо яркое от рассеянного солнечного света. Если по какой-то причине рассеянный свет ослабнет, например произойдет полное солнечное затмение, то яркие звезды и планеты станут прекрасно видимыми днем. Так же хорошо они видны в открытом космическом пространстве или с поверхности Луны. Почему же рассеянный в атмосфере солнечный свет скрывает их от нас? Ведь свет звезд при этом не ослабевает.

Чтобы понять это, нужно представлять себе механизм нашего зрения. Как известно, объектив глаза (т.е. роговица и хрусталик) создает изображение на задней поверхности глаза, покрытой светочувствительным слоем — сетчаткой, которая содержит большое число специализированных клеток — фоторецепторов, элементарных приемников света. Они передают в мозг информацию о потоке падающего на них света, а мозг синтезирует из этих отдельных сообщений (сигналов) цельную картину увиденного.

Глаз — очень сложный приемник информации, и в некотором роде он подобен «умному» электронному устройству, например радиоприемнику. У глаза также есть система автоматической регулировки усиления, которая снижает его чувствительность при ярком свете и повышает в темноте. Есть у него и система шумоподавления, которая сглаживает случайные флуктуации светового потока как по времени, так и по поверхности сетчатки. Эта система имеет определенные пороговые характеристики, поэтому глаз не замечает быстрых изменений изображения (принцип кино) и малых флуктуаций яркости.

Когда мы наблюдаем звезду ночью, поток света от нее на один фоторецептор хотя и мал, но существенно превосходит поток от темного неба, падающий на соседние рецепторы. Поэтому мозг фиксирует это как значимый сигнал. Но днем на все рецепторы падает так много света от неба, что небольшая добавка в виде света звезды, приходящая на один из этих элементов, не ощущается мозгом как реальное различие потоков света, а «списывается на флуктуации».

Звезда может стать видимой на фоне дневного неба только в том случае, если поток света от нее сравним с потоком от площадки неба, которую зрачок проецирует на одну светочувствительную клетку. Угловой размер этой площадки называется угловой разрешающей способностью человеческого глаза и составляет около 1′.

Из всех звездообразных объектов лишь Венера иногда видна на дневном небе. Увидеть ее очень непросто: небо должно быть идеально чистым, и нужно хотя бы приблизительно знать, в каком месте на небе в данный момент находится Венера. Все остальные планеты и звезды имеют блеск значительно слабее, чем у Венеры, поэтому увидеть их без телескопа днем совершенно невозможно. Впрочем, некоторые астрономы утверждают, что при идеальных условиях им удавалось днем наблюдать Юпитер, который в несколько раз слабее Венеры. Но вот ярчайшую звезду нашего небосвода — Сириус — пока еще никому не удалось увидеть днем на уровне моря. Говорят, что его видели высоко в горах, на фоне темно-фиолетового неба.

Довольно легко убедиться, что яркий фон скрывает от нас светлые точки. Вот что советует по этому поводу Яков Перельман (1949, с. 155):

Несложный опыт может наглядно пояснить это исчезновение звезд при дневном свете. В боковой стенке картонного ящика пробивают несколько дырочек, расположенных наподобие какого-нибудь созвездия, а снаружи наклеивают лист белой бумаги. Ящик помещают в темную комнату и освещают изнутри: на пробитой стенке явственно выступают тогда освещенные изнутри дырочки — это звезды на ночном небе. Но стоит только, не прекращая освещения изнутри, зажечь в комнате достаточно яркую лампу — и искусственные звезды на листе бумаги бесследно исчезают: это «дневной свет» гасит звезды.

Что же делает телескоп, позволяя нам без труда наблюдать днем ночные светила? Разумеется, объектив телескопа собирает значительно больше света, чем зрачок глаза. Но в этом смысле изображение звезды и неба равноценны — при наблюдении в телескоп поток света от них в глаз увеличивается в одинаковое число раз, приблизительно равное отношению площади объектива к площади зрачка. Гораздо важнее другое — телескоп улучшает разрешающую способность глаза, ведь он увеличивает угловой размер наблюдаемых объектов. При этом та же площадка неба проецируется на большее число фоторецепторов, и значит, на каждый из них приходится пропорционально меньше света. Например, если телескоп увеличивает угловой размер объектов в А раз, то наблюдаемая яркость неба уменьшается в А2 раз. Однако звезда имеет очень малый угловой размер, и ее свет по-прежнему попадает на один рецептор.

Но теперь добавочный свет звезды может уже стать «солидным» на фоне уменьшенной яркости неба. Например, при 45-кратном увеличении телескопа яркость неба эффективно снижается в 452 ≈ 2000 раз, и на фоне неба становятся видны некоторые — самые яркие — звезды и планеты.

Что же получается: бери телескоп с большим увеличением и можешь рассматривать днем самые слабые звезды? Нет, это не так. Земная атмосфера неоднородна, поэтому изображение звезды размывается и имеет вполне определенный угловой размер, хотя и очень малый. Ночью при хорошей погоде высоко в горах он составляет около 1″, а днем на уровне моря — не менее 2–3″. Поэтому, если телескоп увеличивает более чем в 30÷60 раз, угловой размер звезды для наблюдателя превышает разрешающую способность глаза и ее изображение попадает на несколько фоторецепторов. Поэтому в более сильном увеличении смысла нет: яркость изображения звезды будет ослабевать так же, как и яркость неба.

Давайте оценим, какие звезды можно увидеть днем в телескоп. В ясную погоду дневное небо имеет яркость примерно −5m на квадратную минуту дуги, т.е. приблизительно на одну светочувствительную клетку сетчатки. Блеск Венеры около −4m. Поэтому будем считать, что звезда становится видна, если ее блеск не более чем на 1m меньше поверхностной яркости неба с квадратной минуты. Как мы выяснили, используя телескоп, мы можем понизить яркость неба не более чем в 2000 раз, т.е. примерно на 8m. Значит, яркость неба снизится до (−5m + 8m) = 3m с квадратной минуты и станут видны звезды с блеском до 4m. Опыт астрономических наблюдений показывает, что так оно и есть.

Важное замечание. Если вы сами решите проверить, видны ли звезды днем в телескоп, то запомните, что наблюдать в телескоп звезды днем очень опасно! Ведь ненароком вы можете повернуть трубу в сторону Солнца — и тогда вы ослепнете.

2.6. Дневные звезды-2

Автор книжки забыл про атмосферу. Именно она, рассеивая солнечный свет, служит ярким фоном, на котором не видно днем звезд. Ранним вечером, когда Солнце уже опустилось под горизонт, звезды не видны из-за рассеянного в атмосфере света. Они плохо видны даже ночью при полной Луне, поскольку и ее свет заметно рассеивается в воздухе. На небесных телах, лишенных атмосферы, звезды днем видны.

2.7. Круги на небе

Если иметь в виду звездные сутки, то каждое светило за это время завершает свою суточную параллель, дважды пересекая при этом любой из альмукантаратов, лежащих между точками верхней и нижней кульминаций светила, а также небесный меридиан, понимаемый в широком смысле — как большой круг, проходящий через зенит и полюсы мира.

Если же иметь в виду солнечные сутки, то возможно и троекратное пересечение этих кругов, если светило стартует вблизи одного из них и пересекает его первый раз не позже чем через 3 мин 56 сек солнечного времени. Частным случаем альмукантарата служит линия математического горизонта, поэтому все сказанное относится и к ней (см. задачу «Эх, раз! Еще раз?» в разделе «Прогулка по Земле»).

Исключениями в этой задаче служат географические полюса Земли, где суточные параллели светил не пересекают альмукантараты (поскольку у них нет кульминаций), а небесный меридиан не определен.

2.8. Масштаб изображения

Поскольку угол мал (что типично для астрономических наблюдений), можно не использовать синусы или тангенсы, а просто составить пропорцию из тех соображений, что 1 радиан = 180°/π = 57,2958° = 3437,75′ = 206265″ (мы округлили все числа до 6 значащих цифр). Тогда масштаб изображения в фокальной плоскости нашего телескопа составит

Кстати, исходя из этих пропорций, в прошлом для астрометрических целей строились специальные инструменты: короткофокусные камеры (F = 57,3 см) с масштабом изображения 1 °/см, зонные астрографы (F = 206 см) с масштабом изображения 100 ″/см и нормальные астрографы (F = 3,44 м) с масштабом изображения 1 ′/мм. При отсутствии электронных калькуляторов в ту эпоху это существенно облегчало измерения и последующие вычисления.

Вернемся к нашему астрографу. Теперь мы можем любой небольшой угол на небе перевести в миллиметры в его фокальной плоскости. Если угловое расстояние между звездами 5′, то в фокальной плоскости их разделяет 5′/(1,14592′/мм) = 4,363 мм.

2.9. Миллион снимков «Хаббла»

Будем считать, что 90% времени «Хаббл» тратит на экспозиции. В году 3 · 107 секунд. За 20 лет это дает 6 · 108 сек. Делим на миллион и получаем среднюю длительность экспозиции: 600 с = 10 мин.

2.10. Ртутный телескоп

Ясно, что под «большим скоплением звезд в созвездии Геркулеса» подразумевается Great Globular Cluster in Hercules, т.е. шаровое скопление М13 (NGC 6205). Его склонение 36° 28′. Если оно проходило точно через зенит (а иначе бы ртутный телескоп его не увидел), то и географическая широта места была такой же. Проверим: современный Ист-Хэмптон (East Hampton) лежит в штате Мэриленд к югу от Балтимора на широте 37° 02′. Где именно был сарай-лаборатория Вуда, сказать трудно, но поле зрения в 0,5° у рефлектора с параболическим зеркалом вполне возможно.

По поводу газет. «Нью-Йорк Таймс» ошиблась в том смысле, что линзы в телескопе все же были — в его окуляре. Хотя понятно, что имелся в виду объектив телескопа. Вторая газета оказалась еще менее аккуратной: ни Луна, ни Марс далеко от эклиптики не отходят (не более чем на 5÷6 градусов), поэтому на широтах севернее 30° видны в зените быть не могут. В балтиморской The Sun этого не знали.

Следует заметить, что физики, коллеги Вуда, не до конца оценили его изобретение. В книге Сибрука читаем:

Артур Гордон Вебстер, тогда руководитель отделения физики в Университете Кларка, одним из первых посетил Ист-Хэмптон. Он добродушно посмеялся над ртутным телескопом и написал в книгу гостей Вуда стихи. Вот они в переводе на русский:

Динг, донг, звон,

В колодце он.

Что же Вуд взял в путь?

Лоханку, и в ней ртуть.

Что же вышло из сего?

Почти что ничего!

Однако астрономы оказались более прозорливы. Астроном В. X. Пикеринг тоже приехал к Вуду, и, когда тот разрешил при нем квадруплет (четверную звезду) Эпсилон Лиры в свой телескоп, написал в ту же книгу следующую шутку:

Эпсилон Лиры виден прекрасно,

Зеркало истину ищет,

Значит, совсем не напрасно.

Его брат, еще более знаменитый, Эдуард Пикеринг, директор Гарвардской обсерватории, сказал, среди горячки и возбуждения вокруг нового изобретения: «Я думаю, лучше подождать…». Сам Вуд, найдя на стене коровника старую надпись карандашом: «Май 1860. Первый теленок», добавил к ней другую: «Июнь 1908. Ртутный телескоп» — и был вполне согласен с Пикерингом.

Действительно, ждать пришлось долго. Небольшие неподвижные ртутные зеркала астрономы в течение всего XX века использовали в качестве искусственного горизонта, однако строить большие вращающиеся зеркала с вогнутой поверхностью не решались, опасаясь ядовитых испарений ртути. Но в конце XX в. способ нашелся: налив тонкий слой прозрачного полимера поверх ртути, можно не опасаться ее испарений. В наши дни ртутные телескопы используются в некоторых обсерваториях и достигли диаметра 6 м.

2.11. На мысе Доброй Надежды

Если высота Луны и Солнца над горизонтом одинакова, то атмосферное поглощение света, падающего на гору и приходящего от Луны, также будет одинаковым. Желательно также, чтобы наблюдатель располагался недалеко от горы, чтобы исключить атмосферное рассеяние света между ним и горой.

2.12. Поиск планет у Солнца-1

Расстояние до α Кентавра составляет 1,33 пк = 274 000 а. е. Поскольку с расстояния в 1 пк отрезок длиной 1 а. е. виден под углом в 1″, максимальные видимые расстояния наших планет от Солнца для кентаврского астронома составят αmax = (a/1,33)″, где a — большая полуось орбиты планеты:

Зная, какой блеск имеют планеты при их наблюдении с Земли в период противостояния или — для Меркурия и Венеры — наибольшей элонгации (m0), а также зная расстояние до них в этот момент (Δ), мы можем оценить их звездную величину при наблюдении от α Кентавра: m = m0 + 5 lg (274000 а. е./Δ).

Вообще говоря, для современных телескопов доступны объекты 22÷25m, как и угловое разрешение в 0,3÷0,5″. Но нужно иметь в виду, что для астронома, живущего у α Кентавра, Солнце будет сиять ярко, как звезда Вега на нашем небе. Такое соседство исключает возможность обнаружить планету с поверхности Земли. Но если поднять телескоп в космос, то отсутствие рассеянного в атмосфере света сделает эту проблему разрешимой. Например, космический телескоп «Хаббл» обладает угловым разрешением до 0,05″ и проницающей способностью не хуже 26m (а при особо длительных экспозициях — вплоть до 30m). Разумеется, космический телескоп нужно будет снабдить специальной маской, закрывающей свет самой α Кентавра, т.е. превратить его в нечто подобное внезатменному солнечному коронографу (такие инструменты принято называть звездными коронографами).

2.13. Поиск планет у Солнца-2

Если их звезда расположена вблизи плоскости эклиптики, то смогут. Основное влияние на Солнце оказывает Юпитер. Оба они обращаются вокруг общего центра масс: Юпитер со скоростью 13 км/с, а Солнце, соответственно, со скоростью

Если эклиптическая широта наших «братьев» равна β, то проекция лучевой скорости Солнца на их луч зрения составляет 13 м/с cos β. Значит, при β > 40° они не смогут заметить периодического движения Солнца, а при меньшем угле — смогут.

Заметим, что, когда эта задача впервые была сформулирована в начале 2000-х гг., ее условие (точность 10 м/с) вполне соответствовало уровню развития астрономии тех лет. Однако нынешний (2017 г.) уровень существенно возрос, и уже можно ориентироваться на точность измерения лучевой скорости в 1 м/с. Вычислите, каков будет при этом критический угол β.

2.14. Поиск планет у Солнца-3

Практически вся масса нашей планетной системы заключена в Юпитере, поэтому в подобных задачах можно рассматривать двойную систему Солнце—Юпитер, обращающуюся вокруг общего центра масс. Расстояние Солнца от центра масс

где rЮ — расстояние Юпитера от центра масс, практически совпадающее с радиусом его орбиты (5,2 а. е.). Тогда амплитуда углового перемещения Солнца при наблюдении с α Кентавра при расстоянии до нее D будет

Положив М/МЮ = 1000, получим α = 0,751×5,2/1000 = 0,004″. Значит, астрономы из системы α Кентавра не узна́ют, что у Солнца есть планеты.

2.15. Снимок издалека

Ясно, что вопрос задан не о расстоянии фотографа от Луны. Поскольку видно, что Луна у горизонта (а что на это указывает?), то расстояние фотографа от Луны такое же, как ее расстояние от центра Земли, 384 000 км (а если бы Луна была в зените?). Значит, нас интересует расстояние до группы людей, наблюдаемых на фоне лунного диска.

Берем линейку и измеряем на картинке рост среднего человека и диаметр лунного диска (разумеется, горизонтальный диаметр, поскольку вертикальный уменьшился за счет дифференциальной атмосферной рефракции, да и виден не полностью). Делим одно на другое и видим, что рост человека укладывается вдоль лунного диаметра 11 раз. Значит, угловой размер роста человека с расстояния наблюдателя составляет 1800″/11 ≈ 164″ (мы приняли угловой диаметр Луны равным 30′). Этот угол мал, поэтому для расчета можно не пользоваться тригонометрическими функциями, а просто вспомнить, сколько угловых секунд в радиане (примерно 206 265), и найти длинную сторону треугольника: L = 206 265/164 = 1258 (в единицах роста человека). Если человек на снимке имеет рост 175 см, то L = 1258×1,75 м = 2,2 км. Весьма далеко. Сам фотограф (Mark Gee) оценил это расстояние в 2,1 км (). Неплохое совпадение.

Чтобы убедиться, что мы имели право заменить тригонометрические функции простым отношением углов, вычислим sin (164″) и tg (164″). Взяв в руки калькулятор, вы увидите, что значения обеих этих функций с большой точностью равны 1/1258.

2.16. Наблюдаем Марс

Фламмарион имел в виду прецессию оси вращения Марса, вызванную приливным гравитационным влиянием Солнца на экваториальное вздутие планеты. Период прецессии оценивается примерно в 175 000 лет. По истечении половины этого периода северное полушарие планеты будет повернуто к Земле в эпоху великого противостояния, совпадающую с эпохой прохождения Марса через перигелий.

2.17. Свеча на Луне

На расстоянии 570 км блеск свечи ослабнет на 5 × lg 570 = 13,8m. Следовательно, свеча на земле (ночью!) будет с орбиты «Хаббла» видна как звезда 13,8m + 8,25m = 22m. Поэтому «Хаббл» легко заметит ее. А на Луне (расстояние 384 000 км) свеча будет иметь блеск 36m, что делает ее неразличимой даже для «Хаббла».

2.18. «Модные» телескопы

Телескоп-рефрактор с объективом диаметром более 1 м практически невозможно изготовить. Во-первых, трудно отлить столь крупный диск оптически идеального стекла. Во-вторых, чем больше диаметр линзы, тем она толще и тем больше поглощение света. В-третьих, каждое прохождение света через оптическую поверхность линзы приводит к потере 4–6% энергии. Ахроматический объектив рефрактора имеет четыре такие поверхности, поэтому потери велики. К тому же тяжелая линза деформируется собственным весом, и созданное ею изображение портится. Телескоп-рефлектор лишен всех этих недостатков, поэтому он может быть значительно крупнее, а для астрономов это очень важно. Разумеется, у рефлектора есть свои недостатки. Поэтому в современных крупных телескопах сочетаются большие зеркала с относительно небольшими линзами.

2.19. Мира Кита

Мира Кита расположена на небе недалеко от эклиптики, всего в 16°. Поэтому ежегодно весной звезда скрывается в лучах Солнца, так что наблюдать ее с Земли невозможно.

2.20. Радионебо

Во-первых, оптические лучи рассеиваются в земной атмосфере значительно сильнее, чем радиоволны. Во-вторых, Солнце — относительно слабый источник радиоизлучения. Оптический поток от Солнца в миллионы раз сильнее, чем от всех прочих источников вместе взятых, за исключением Луны, хотя и она в полнолуние светит почти в полмиллиона раз слабее Солнца. А в радиодиапазоне Солнце не намного превосходит другие ярчайшие объекты. Вкупе со слабым рассеянием радиоволн в атмосфере это делает наше дневное радионебо «темным», позволяя изучать даже слабые радиоисточники. Хотя ночь все же предпочтительнее даже для радиоастрономии.

2.21. За орбитой Плутона

Заметим, что альбедо астероида такое же, как у Луны, а его диаметр в 10 раз меньше. Значит, он будет отражать в 100 раз меньше света, что даст проигрыш на 5m. Астероид в 100 раз дольше от Солнца, чем Луна. Значит, освещенность его поверхности в 10 000 раз ниже, что даст дополнительный проигрыш на 10m. Наконец, от Земли астероид в 100×150 млн км / 384 400 км = 39 022 раза дальше Луны, что снижает его блеск в 1,53 млрд раз, т.е. на 23m. В сумме мы теряем относительно Луны 38m. Поскольку астероид очень далеко, мы всегда видим его поверхность полностью освещенной Солнцем (фаза = 1,0), следовательно, сравнивать его блеск следует с блеском Луны в полнолуние (−12,7m). В результате блеск астероида будет равен 38m − 12,7m = 25,3m. Для указанного телескопа он будет недоступен.

2.22. Откуда лучше видно?

Источником возмущения света служит атмосфера Земли. Линейное разрешение составляет l = αL, где α — угловое возмущение, L — расстояние от источника возмущения до объекта наблюдения. Пусть α = 1″ для ночной атмосферы Земли и α = 3″ для дневной.

Будем считать, что земной наблюдатель смотрит на Луну сквозь ночную атмосферу, а лунный наблюдатель смотрит на Землю сквозь дневную атмосферу Земли. Характерную толщину атмосферы примем равной L = 15 км. Тогда атмосферное размытие сделает принципиально возможным наблюдение деталей следующего линейного размера:

с Луны на Земле днем: 15 км × 3″/206265 = 22 см;

с Земли на Луне ночью: 380 000 км × 1″/206265 = 2 км.

Сможет ли телескоп диаметром 10 м с учетом дифракции на его апертуре реализовать такое разрешение? Дифракционное разрешение (1,22λ/D) для λ = 5500 Å и D = 10 м составляет около 0,014″. На расстоянии Земля—Луна это соответствует линейному разрешению 380 000 км × 0,014″/206265 = 26 м.

Следовательно, возможности наземного телескопа ограничивает неоднородность земной атмосферы, не позволяющая увидеть на Луне детали размером менее 2 км. А возможности лунного телескопа ограничивает лишь диаметр его объектива, не позволяющий различить на Земле детали размером менее 26 м. Чтобы реализовать на земной поверхности линейное разрешение в 22 см, лунный астроном должен был бы иметь телескоп диаметром не менее 1 км!

2.23. Спичка

Предельная чувствительность зрения человека обычно принимается равной 6 · 10–17 Вт (Флиндт, 1992, с. 141). Это соответствует приблизительно 100 квантам света в секунду. Примем для нашей задачи полную мощность спички 1 Вт, ее КПД в оптическом диапазоне 10%, диаметр зрачка d = 7 мм и условие различимости огонька глазом — оптический поток 10–16 Вт. Тогда при отсутствии поглощения света расстояние определим из условия:

Отсюда L = 55 км.

Однако это справедливо лишь в вакууме, т.е. на Луне, причем высота горы должна быть более 1 км, чтобы с равнины на расстоянии 55 км была видна ее вершина (проверьте!)

Но на Земле даже в чистой атмосфере свет поглощается; в оптическом диапазоне ослабление света звезды, наблюдаемой в зените, составляет 0,23m (Мартынов, 1977). Высота однородной атмосферы на Земле (т.е. толщина слоя воздуха, имеющего приземную плотность и по числу молекул в проекции на луч зрения эквивалентного нашей атмосфере в зените) составляет 8 км. Если наблюдатель смотрит вдоль земной поверхности, то на расстоянии 55 км этот эффект ослабит свет на 0,23m × (55 км / 8 км) = 1,6m, или в 4,4 раза. Причем это минимальная оценка для совершенно чистого воздуха. Поэтому расстояние, полученное для безвоздушного пространства, нужно сократить как минимум в 1,6 раза (1,62/2,5121,6m/1,6 ≈ 1), т.е. до 34 км.

2.24. Черное облако

По определению, оптическая толща есть τ = kρL, где k — удельный коэффициент поглощения (на единицу плотности среды и единицу расстояния пути светового луча), ρ — плотность среды, L — путь луча. При сжатии облака в 10 раз его плотность возросла в 1000 раз, следовательно, значение τ увеличилось в 100 раз.

2.25. Межзвездные пылинки

Рассмотрим столбик пространства сечением 1 см2 и длиной L = 10 пк. Проходя вдоль него, свет ослабляется во столько раз, какую долю сечения перекрывают пылинки:

где S — площадь сечения, перекрытая пылинками, τ — поглощение (= 1% по условию задачи). Площадь сечения одной пылинки составляет s = πr2. Если поглощение невелико, то пылинки практически не проецируются друг на друга и закрывают площадь, равную суммарной площади их сечений: S = sN, где N — число пылинок в столбике. Отсюда

Считая пылинки распределенными равномерно вдоль столбика длины L, найдем среднее расстояние между ними:

2.26. Полюс эклиптики

Вспомнив смысл точки весеннего равноденствия, ее координаты (α = 0h, δ = 0°) и величину наклона земной оси (23,4°), без труда определим, что полюс эклиптики имеет прямое восхождение 18h и склонение 66,6°.

2.27. Солнечный телескоп

Солнце — очень яркий объект. Поэтому солнечные инструменты имеют большое фокусное расстояние (до 80 м), позволяющее получить в фокальной плоскости достаточно яркое изображение большого размера, удобное для его детального изучения. Однако нелегко было бы работать с поворачивающейся трубой такой длины. Поэтому объектив и трубу телескопа делают неподвижными, используя для наведения на Солнце целостат. А потеря света при отражении от зеркал целостата не очень важна для солнечного инструмента.

3. На космодроме

3.1. Первые космические полеты

Если вы думаете, что Дж. Гленн стремился побить рекорд Гагарина по продолжительности космического полета, то это неверно: Гленн совершил свой полет 20 февраля 1962 г. а за полгода до этого, 6–7 августа 1961 г., советский космонавт Герман Титов выполнил космический полет продолжительностью 1 сутки и 1 час, сделав 17 оборотов вокруг Земли.

Дело тут совсем в другом. Оборот вокруг Земли на низкой орбите длится около 1,5 часа. Земной шар за время полета поворачивается с запада на восток за каждый час на один часовой пояс. При старте с Байконура Гагарин мог сделать один оборот и приземлиться на 1,5 часовых пояса западнее, в Саратовской области. На втором обороте он бы уже попал за пределы территории СССР. По этой же причине следующий полет советского космонавта — Титова — продолжался сутки, чтобы приземлиться недалеко от места старта.

Космический корабль Джона Гленна был расчитан на приводнение, поэтому при старте из Флориды он не мог приземлиться, пока под ним была сухопутная территория США. Ему нужно было дождаться, пока Земля под ним повернется на 4 часовых пояса, проходящих по континентальной части США, и «подставит» ему для приводнения Тихий океан. Поскольку приводнение планировалось примерно на той же широте, что и старт, кораблю предстояло сделать как минимум три полных оборота по орбите, затратив на это 4,5 часа. Еще некоторое время понадобилось для стартового разгона и спуска на парашюте (примерно по 10 мин). Отсюда и время полета — около 5 часов. По этой же причине первый полет двухместного американского корабля «Джемини» тоже продолжался 4 часа 53 минуты.

3.2. С первой космической

Большая полуось (a) и орбитальный период (T) зависят только от удельной полной энергии тела (кинетическая + потенциальная), следовательно, полуоси и периоды орбит обоих объектов будут одинаковыми и равными радиусу Земли. Запущенный вертикально вверх (случай запуска вниз не рассматриваем), объект достигнет высоты около 6400 км и вернется на Землю.

Это легко проверить, пользуясь законом сохранения энергии: удельная кинетическая энергия объекта (v2/2) должна быть равна разности его удельных потенциальных энергий в гравитационном поле у поверхности Земли (M и R — ее масса и радиус) и в точке максимального подъема: GM/RGM/Rmax. А поскольку скорость старта — это первая космическая скорость v2 = GM/R, то

откуда Rmax = 2R. Значит, объект поднимется над поверхностью Земли на высоту, равную ее радиусу, около 6400 км.

Длительность полета вычислить сложнее. Она равна продолжительности (t) движения по апоцентрической половине эллиптической орбиты при e → 1. Согласно второму закону Кеплера (закон площадей),

Учитывая, что c = ae, получим: bc = abe. Тогда

При e → 1 получим t/T = 0,5 + 1/π = 0,81831…

Для T = 90 мин получим t = 74 мин, а вовсе не 45 мин, как думают некоторые! (См. статью А. Кларка «Введение» в книге «Исследование мирового пространства», М.: Физматгиз, 1959, с. 9.)

3.3. Выстрел ракетой в Луну

Положение Луны относительно космодрома повторится через «лунные сутки» (PЛ), равные периоду обращения Луны относительно поверхности Земли. Период обращения Луны вокруг центра Земли (сидерический месяц) равен Pc = 27,321662 сут, период вращения Земли равен P= 23 час 56 мин 04 сек = 23,934469 час = 0,9972696 сут. Поскольку орбита Луны не круговая, можно говорить лишь о средних лунных сутках, которые равны

Таким образом, на следующие сутки Луна окажется примерно в том же положении на небе относительно небесного меридиана космодрома на 50,5 минут позже. Учитывая неравномерность движения Луны, можно сказать, что через сутки Луна «запаздывает» примерно на 1 час. Действительно, 9 сентября 1959 г. старт к Луне был назначен на 6 час 39 мин 50 сек. Однако он тоже не состоялся. Следующая (успешная!) попытка состоялась 12 сентября в 9 час 39 мин 26 сек.

Глядя на назначенные моменты старта, легко догадаться, в какой части своей орбиты была Луна. В среднем Земля «догоняет» ее 50,5 мин, а в те дни ей каждый раз требовался без малого час. Следовательно, Луна двигалась быстрее среднего, значит, была в районе перигея своей орбиты. Заглянув в астрономический календарь или электронный планетарий, мы увидим, что это действительно так!

3.4. Спутник упал

Трение о разреженные верхние слои атмосферы действительно стало причиной падения первого спутника (как и многих других после него). Однако, приближаясь к Земле, спутник не терял скорость движения, а напротив — увеличивал ее. Это один из «парадоксов» космонавтики (см. Штернфельд, 1991). Какой бы эллиптичной орбита спутника ни была вначале, в результате трения об атмосферу она округляется, поскольку максимальное трение наблюдается в области перигея. А для скорости движения по круговой орбите справедлива формула, определяющая первую космическую скорость:

где G — гравитационная постоянная, M — масса Земли, R — радиус орбиты. Если R уменьшается, то V возрастает. Казалось бы, парадокс: трение приводит к росту скорости! Но ясно, что к росту скорости приводит не трение, а гравитация: работа силы тяжести ускоряет движение спутника и компенсирует потерю энергии на трение. При этом работа силы тяжести делится ровно пополам: половина идет на рост кинетической энергии спутника (т.е. скорости), а вторая половина уходит в тепло из-за трения.

Действительно, гравитационная энергия на единицу массы спутника равна GM/R, а ее изменение при небольшом сокращении радиуса орбиты составляет

При этом удельная кинетическая энергия (V 2/2) возрастает на

а вторая половина dU рассеивается через трение в тепло. Это частный случай теоремы вириала.

Скорость спутника возрастает до той поры, пока он не проник в плотные слои атмосферы. Начиная с некоторой высоты, гравитация уже не в состоянии компенсировать потерю энергии на сопротивление воздуха, и спутник начинает замедляться, а если он недостаточно прочный, то и разрушаться. Конкретное значение этой высоты зависит от массы и размера спутника. Обычно оно лежит в интервале 70–90 км.

3.5. Стыковки на орбите

Одновременный запуск двух ракет с одного космодрома невозможен по техническим причинам: при подготовке запуска и в первые минуты полета каждой ракеты задействованы все службы контроля космодрома. А следующая возможность запустить ракету на орбиту так, чтобы она оказалась недалеко от первой, представляется в тот момент, когда запущенная первой завершает свой первый виток вокруг Земли и пролетает сравнительно недалеко от космодрома. На низкой околоземной орбите один облет Земли длится как раз 1,5 часа.

Кроме того, эта задержка во времени дает возможность точно определить параметры орбиты первой ракеты и точнее нацелить к ней вторую ракету. Разумеется, за 1,5 часа из-за вращения Земли космодром переместится от точки первого старта. Поскольку речь идет о космодроме на мысе Канаверал (Флорида, США), расположенном на 28,5° с. ш., то это смещение составит

Но за несколько часов маневрирования на орбите корабль «Джемини» сокращал это расстояние до сотен метров и начинал операцию стыковки.

3.6. Суточный спутник

Очевидно, автор имеет в виду геостационарную орбиту. Это круговая экваториальная орбита с периодом в одни звездные сутки. Двигаясь по ней в восточном направлении на высоте около 35 800 км от поверхности Земли, ИСЗ постоянно висит над одной точкой планеты. В объяснении автора круговая орбита подразумевается, поскольку указана лишь одна высота. Однако, термин «высота» относится к расстоянию от земной поверхности, а оно составляет 5,6 радиуса Земли. Если же автор имел в виду расстояние от центра Земли, то это 6,6 земного радиуса. Видимо, полной определенности у автора не было. К тому же не указано направление движения (на восток) и наклон орбиты (нулевой, т.е. орбита лежит в плоскости экватора).

Под определение, данное автором, попадает значительно более широкий класс орбит, называемых геосинхронными, единственный признак которых — равенство орбитального периода звездным суткам. Двигаясь по таким орбитам в восточном направлении, спутники для наземного наблюдателя не остаются в одной точке неба, а в общем случае выписывают на небе «восьмерки», периодически смещаясь к югу и северу в соответствии с наклоном их орбиты.

3.7. Ориентация в пространстве

Три ортогональных оси координат необходимы для указания положения объекта в пространстве. Если же речь идет об определении направления (а именно это и требовалось для правильной ориентации космического корабля перед включением тормозных двигателей), то достаточно осуществить поворот по двум осям. Именно столько их у телескопа и артиллерийского орудия.

Однако в аэродинамике летательных аппаратов (самолетов), откуда терминология перекочевала в космонавтику, направление летящего самолета описывается тремя углами: крен, тангаж и рыскание. Крен изменяется при покачивании крыльями, тангаж — при покачивании с носа на корму, а рыскание — это повороты вправо-влево. Дело в том, что при полете в атмосфере важна ориентация плоскости крыльев, создающих подъемную силу, относительно направления силы тяжести, которую эта сила должна компенсировать.

У космического корабля нет крыльев, а если и есть (ракетоплан), то в вакууме они не создают подъемной силы. Поэтому крен для корабля на орбите, вообще говоря, безразличен. Но он важен для работы космонавта. Правильный выбор крена позволяет ему увидеть в иллюминатор или перископ поверхность Земли, видимое движение которой указывает направление полета корабля. Именно в этом направлении должна быть сориентирована продольная ось корабля, чтобы работа тормозных двигателей привела к сходу с орбиты и посадке на Землю. Так что в описании полета Джона Гленна неточности не было.

Автоматические межпланетные зонды для ориентации в пространстве осуществляют развороты по двум осям, используя в качестве опорных направления на Солнце и какую-нибудь яркую звезду, например Канопус или Сириус. При этом информацию о направлении своего движения сам зонд получить не может, и ее определяют на Земле путем небесно-механических расчетов.

3.8. От Солнца до Земли

Формально, двигаясь с постоянной начальной скоростью, снаряд преодолел бы это расстояние за 3,5 года. Однако, учитывая, что вторая космическая скорость на поверхности Солнца а скорость снаряда 1,5 км/с, ясно, что снаряд вообще не покинет Солнце.

3.9. Спрыгнуть с астероида

Чтобы улететь далеко-далеко, нужно развить вторую космическую скорость:

где M и R — масса и радиус космического тела. Чтобы облегчить расчеты, преобразуем эту формулу. Для сферического тела

где ρ — средняя плотность тела. Используя значение второй космической скорости для Земли (11,2 км/с), запишем

где R= 6371 км и ρ = 5,52 г/см3 — радиус и средняя плотность Земли. Примем плотность типичного астероида равной 2 г/см3 и получим простую формулу для второй космической скорости:

V= 1 м/с × R (км).

То есть вторая космическая скорость, выраженная в метрах в секунду, равна радиусу астероида, выраженному в километрах. Если у тела иная средняя плотность, следует умножить значение V на

А теперь вопрос посложнее: какую вертикальную скорость может развить человек в прыжке? Подпрыгивая вверх на Земле, мы в основном тратим запас мышечной энергии на преодоление силы тяжести, а на астероиде — на сообщение телу кинетической энергии. Поэтому запишем уравнение так:

где V — максимальная скорость нашего прыжка на астероиде, m — масса тела человека (она сокращается), g — ускорение свободного падения на Земле, H — максимальное вертикальное перемещение человека в прыжке на Земле. Присев и подпрыгнув, мы перемещаем свое тело примерно на 1 м. Следовательно, Трудно сказать, насколько скафандр затрудняет прыжки: ждем подсказки от тех, кто прыгал в скафандре. А пока примем оценку в 4 м/с как максимальную. Тогда максимальный размер астероида, с которого человек может спрыгнуть в космос и улететь далеко-далеко, составит

У самых плотных астероидов средняя плотность не превышает 4 г/см3, а у рыхлых ядер комет она около 0,5 г/см3, поэтому диапазон значений R составляет от 3 до 8 км. Скорее всего, эти оценки немного завышены. Ведь мы с вами никогда не прыгали в космическом скафандре на астероиде. Может быть, это совсем не легко? Ждем уточнения от тех, кому впервые удастся это сделать.

3.10. Карта Луны

Солнцем освещена половина лунного шара, поэтому на каждом орбитальном витке спутник будет снимать только половину времени. Если съемка ведется в оптическом диапазоне, то за 14 дней (примерно половина орбитального периода Луны, равного 27,3 сут) спутник снимет только половину лунного шара. Если же это тепловая (ИК) или нейтронная съемка, то можно исследовать весь шар.

Быстрее всего под спутником будут перемещаться экваториальные области Луны. Если орбитальный период аппарата P, то линейное смещение экваториальной области за это время составляет 2πRP/27,3 сут, где R = 1737 км — радиус Луны. Орбитальный период спутника составляет где M = 7,35 · 1022 кг — масса Луны. Чтобы не проводить длительных вычислений, воспользуемся знанием того, что период обращения на низкой (около 200 км) околоземной орбите равен 90 мин. Масса Луны — 0,0123 земной массы, радиус Луны — 0,273 земного радиуса, а с учетом высоты орбиты над Луной (100 км) и над Землей (200 км) — 0,280 земного радиуса. Поэтому Тогда ширина полосы составит 2π×1737 км × 2 час / 27,3 сут = 33,3 км. С высоты 100 км эта полоса видна под углом α = 2π arctg (33,3/200) = 18,9°. Таким образом, минимальный угол поля зрения прибора составляет около 19°. Но если это оптический прибор, то съемкой будет покрыта лишь половина Луны.

3.11. Космический мусор

Самопроизвольное размножение космического мусора происходит по принципу цепной реакции: при столкновении любых двух объектов возникают тысячи новых осколков, поэтому вероятность их последующих столкновений с другими объектами возрастает. До тех пор, пока все осколки не раздробятся до миниатюрного размера, их количество должно было бы возрастать экспоненциально. Однако есть и конкурирующий процесс: осколки на самых низких орбитах интенсивно тормозятся в разреженных слоях земной атмосферы, сгорают в ней или падают на поверхность Земли. Этим объясняется первоначальный спад теоретических кривых (быстро падают фрагменты с самых низких орбит), который затем сменяется ростом числа осколков на более высоких орбитах. Самое тревожное, что даже при полном запрете новых запусков этот рост не прекратится и работать на околоземных орбитах будет все опаснее. Если искусственно не очищать их от мусора. Проектами такой очистки сегодня заняты многие космические инженеры.

Пилообразная форма кривых связана с «дыханием» земной атмосферы. Синхронно с изменением солнечной активности, происходящим со средним периодом 11,2 года, верхние слои нашей атмосферы «вспухают» и «опадают». В годы повышенной активности Солнца на высотах до 600 км плотность воздуха заметно возрастает, увеличивая сопротивление движению спутников и фрагментов мусора, поэтому они чаще падают на Землю; убыль осколков превышает их размножение. В годы низкой активности Солнца торможение в атмосфере ослабевает и на первый план выходит размножение осколков.

3.12. Странные космодромы

Почти каждый космодром выполняет две функции — военную и гражданскую. Важнейшая военная задача — запуск баллистических ракет в сторону потенциального противника. Все «потенциальные противники» расположены в Северном полушарии, поэтому для минимального подлетного времени требуется полет ракеты через область Северного полюса. Кроме того, для разведывательных и гражданских целей запускают спутники дистанционного наблюдения всей поверхности Земли, которые по определению должны двигаться на полярных орбитах. Действительно, на экваториальной орбите спутник «видит» только область экватора. Чем больше наклон орбиты к экватору, тем шире область наблюдения. На полярной орбите спутник благодаря вращению Земли за 12 часов может «увидеть» всю Землю.

Кроме этого, большие преимущества для наблюдения земной поверхности дает солнечно-синхронная орбита (иногда ее называют гелиосинхронной) — это геоцентрическая орбита с такими параметрами, что объект, находящийся на ней, проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время. Например, наблюдение в утреннее и вечернее время, благодаря длинным теням, позволяет заметить небольшие объекты. Поэтому спутник должен все время двигаться недалеко от линии терминатора, которая всегда проходит недалеко от полюсов (не дальше 23,4°).

Чтобы орбита была гелиосинхронной, ее параметры выбирают такими, чтобы она прецессировала в восточном направлении на 360° в год (приблизительно на 1 градус в день), компенсируя вращение Земли вокруг Солнца. Прецессия происходит за счет взаимодействия спутника с Землей, несферичной из-за полярного сжатия. Скорость прецессии зависит от наклонения орбиты. Нужной скорости прецессии можно достичь лишь для определенного диапазона высот орбит (как правило, выбираются значения 600÷800 км, с периодами 96÷100 минут), необходимое наклонение для упомянутого диапазона высот — около 98°. Иными словами, гелиосинхронная орбита — это практически полярная орбита.

При запуске спутника на полярную орбиту с экваториального космодрома пришлось бы скоростью ракеты компенсировать вращение Земли, которое в данном случае только мешает. Поэтому высокоширотные космодромы в этом случае выгоднее.

3.13. К антиподам

Пусть М — масса Земли и R — радиус Земли. Полет спутника по низкой орбите от одного полюса к другому займет половину его орбитального периода:

Теперь определим продолжительность полета снаряда через шахту. Поскольку распределение плотности вещества внутри Земли имеет довольно сложный вид, мы рассмотрим два крайних случая.

а) Пусть Земля — однородный шар. На расстоянии r от центра Земли снаряд испытывает притяжение только от внутренней части планеты радиусом r и массой M(r) = M(r/R)3. Следовательно, он движется с ускорением

(знак минус говорит здесь о том, что направления векторов r и a противоположны). Как видим, это уравнение простых гармонических колебаний, возникающих в том случае, когда возвращающая сила пропорциональна отклонению тела от точки равновесия. В нашем случае эта точка — центр Земли.

Решить это уравнение можно по аналогии с уравнением малых колебаний маятника:

где g — ускорение свободного падения, L — длина маятника, r — его отклонение. Как известно, период колебания маятника составляет

Значит, период колебания снаряда в шахте (независимо от амплитуды колебания!) составит

А полет между полюсами будет длиться

Таким образом, в случае однородной Земли снаряды прибудут к Южному полюсу одновременно (Т1 = Т2a).

Однако известно, что к центру Земли плотность увеличивается, поэтому рассмотрим другой крайний случай.

б) Пусть вся масса Земли сосредоточена в ее центре. Тогда ускорение снаряда

Это уравнение движения в поле точечной массы, типичное для тел Солнечной системы. Движение нашего снаряда по радиальной орбите можно представить как движение по вырожденному эллипсу с эксцентриситетом, практически равным единице. Тогда большая полуось этого эллипса равна R/2, а орбитальный период

Это в раз меньше, чем Т1 или Т2a. Очевидно, что истинное значение времени полета снаряда через шахту (Т2) удовлетворяет неравенству Т2a > Т2 > Т. Следовательно, Т2 < Т1, т.е. снаряд, отпущенный падать в шахту, достигнет противоположной точки Земли быстрее, чем снаряд, выведенный на орбиту. Как видим, это очень удобный вид межконтинентального транспорта и к тому же совершенно бесплатный (если не считать затрат на создание шахты и поддержания в ней вакуума!).

Задача решена. А теперь попробуйте рассмотреть третий вариант распределения плотности Земли — совершенно невероятный: пусть вся масса планеты сосредоточена в ее бесконечно тонкой оболочке, а внутри — пусто. Желаю успеха!

3.14. К антиподам разными путями

На снаряд, движущийся в плоскости экватора, будет (в системе отсчета, связанной с Землей) действовать центробежная сила, ослабляющая силу тяготения. Поэтому он пройдет через центр Земли позже и не столкнется с полярным снарядом, а на путь к антиподам затратит большее время. Полярный снаряд его опередит.

3.15. Связь между полюсами

Максимальную широту, на которой геостационарные спутники еще видны над горизонтом, определим из условия видимости объекта на горизонте

где rГС = 42 166 км — радиус орбиты геостационарного спутника. Приняв Землю за шар и взяв R = 6371 км, получим φ = 90° – 8,7° ≈ 81°. На более высоких широтах и тем более на полюсах Земли геостационарные спутники не видны с уровня моря. Значит, и связь с их помощью невозможна.

3.16. Маршрут по Луне

Кроме очевидного решения (южный полюс) существует еще бесконечное число таких точек в районе северного полюса, на расстоянии от него (35 + 20/2πn) км, при n = 1, 2, …

3.17. Посадка на Марс

Автор ошибочно привел значение скорости на низкой околоземной орбите, тогда как для Марса значение этой скорости существенно меньше — всего около 12 800 км/ч.

3.18. Летим на Солнце

Простейшее решение — после разрыва гравитационной связи с Землей развить скорость ее орбитального движения (около 30 км/с) в сторону, противоположную этому движению, т.е. «остановиться» на орбите и начать падать на Солнце по радиусу-вектору. Для этого вблизи Земли с учетом ее притяжения ракете необходимо развить скорость (мы помним, что сумма кинетических энергий — это сумма квадратов скоростей)

Заметим, что до такой скорости еще ни одна ракета не разгонялась. Поэтому более разумное решение — использовать для изменения скорости ракеты притяжение какой-либо планеты, совершив вблизи нее пертурбационный (гравитационный) маневр. Например, направив ракету к Юпитеру со скоростью около 16 км/с, можно таким образом рассчитать ее движение, что, сблизившись с планетой-гигантом, она изменит траекторию и упадет на Солнце. К сожалению, притяжения Марса для этого недостаточно.

3.19. Взлетаем

Пусть F — сила притяжения тела к Земле. Вес — это сила, с которой тело давит на опору. С такой же по величине силой опора давит на тело (третий закон Ньютона). Обозначим эту силу через F1. Вместе с ракетой тело движется вверх с ускорением g, и, следовательно, сумма F2 всех действующих на него сил равна mg (второй закон Ньютона). Положительным направлением мы выбрали направление движения ракеты, т.е. вверх. Поскольку

F2 = F + F1,

получим

F1 = F2F,

где F2 = mg и F = −mg. Отсюда F1 = 2mg. Таким образом, у поверхности Земли вес тела равен 2mg. С удалением от Земли сила притяжения F уменьшается, приближаясь к нулю (закон тяготения Ньютона). В предельном случае при F = 0 и F1 = F2 вес тела будет равен mg. Итак, вес тела убывает от 2mg у поверхности Земли до mg на бесконечности.

3.20. Из пушки на Луну-1

Если при выстреле сообщить аппарату достаточно большую скорость, такую, чтобы, выйдя за пределы земной атмосферы, он двигался со скоростью больше второй космической, то при правильном выборе направления выстрела аппарат будет двигаться по кеплеровской орбите и сможет достигнуть Луны, Марса, Солнца. Но спутником Земли он не станет. Ведь в этом случае, двигаясь по эллипсу вокруг Земли и завершая первый оборот, аппарат должен будет пройти через точку старта, что непременно приведет к его столкновению с Землей или по крайней мере с ее атмосферой.

Поэтому просто из пушки запустить ИСЗ нельзя. Однако идея наземного ускорителя («пушки») для запуска ИСЗ все же не отброшена. Подумайте, при каких условиях она может быть реализована.

3.21. Из пушки на Луну-2

Для достижения скорости V = 11 км/с, необходимой при старте к Луне, двигаясь с ускорением а, нужно пройти путь

Такую глубокую шахту создать невозможно. Вес человека в момент выстрела увеличился бы в 11 раз (см. задачу 3.17 «Взлетаем»). Для человека это предельная перегрузка. Однако приборы спутников могут выдерживать ускорение до 104g. При этом длина пушки сокращается до 1 км, что технически вполне осуществимо.

3.22. Бег в невесомости

Из формулы для центростремительного ускорения (a = v 2/r) найдем значение Тогда для a = g получим Это нормальная скорость бега для тренированного человека. Ориентация станции в данном случае никакого значения не имеет.

3.23. Объехать астероид

Нет, не смогут. Вездеход должен двигаться со скоростью не больше первой космической (VI), иначе он оторвется от поверхности и потеряет опору. Найдем время облета астероида по низкой орбите с этой предельной скоростью:

Учтем, что плотность астероида выражается так:

Тогда

Это очень важная формула. Она показывает, что время оборота по низкой орбите зависит не от размера притягивающего тела, а только от его средней плотности.

Для поиска численных значений удобно помнить, что у низколетящего спутника Земли Т = 1,5 часа, а плотность Земли ρ = 5,5 г/см3. Тогда для планеты плотности ρ получим: Т = 1,5 час если плотность измеряется в граммах на 1 см3.

Зная плотность астероида, определим Значит, вездеход не сможет объехать астероид за 2 часа. За такое время его нельзя облететь даже на ракете с выключенными двигателями. А с включенными? См. задачу 3.25 «Спасти космонавтов».

До сих пор мы предполагали астероид не вращающимся. Но если он вращается вокруг оси (а большинство астероидов вращается, и довольно быстро, с периодами в несколько часов), то, двигаясь в сторону, противоположную вращению, космонавты могли бы объехать астероид за указанное время, не оторвавшись от его поверхности.

3.24. Маятник

Период колебания маятника в вакууме где L — его длина, а — ускорение силы тяжести. Но при прочих равных условиях маятник в сопротивляющейся среде будет колебаться с бо́льшим периодом. Поэтому самыми быстрыми будут часы на Земле, а самыми медленными — лунные часы, помещенные в воздушную среду.

3.25. Спасти космонавтов

Если ракета будет лететь на низкой орбите по инерции, с выключенным двигателем, то двух часов ей не хватит, чтобы облететь астероид (см. задачу 3.23 «Объехать астероид»). Однако есть выход: гравитационной силе притяжения астероида можно «помочь», включив двигатель ракеты. При этом корабль должен быть направлен носом к центру астероида, а двигателем — от него. Давление двигателя увеличит центростремительное ускорение и сократит орбитальный период. Действительно, полное центростремительное ускорение a =V2/R, откуда Тогда орбитальный период на низкой круговой орбите  Чем больше ускорение, тем короче период. Лишь бы хватило топлива.

3.26. Слабая ракета

Из условия задачи не ясно, начальному или текущему весу ракеты равна тяга ее двигателей. Поэтому рассмотрим оба варианта. Сразу после начала работы двигателей масса ракеты, а вместе с ней и ее вес начинают уменьшаться за счет выброса сгоревшего топлива. Поэтому тяга двигателей начнет сначала немного, а затем все больше и больше превышать вес ракеты, и она полетит.

Во втором случае предполагается, что тяга и вес постоянно равны. Но и в этом случае полет возможен, если ракета будет разгоняться горизонтально, пока не приобретет первую космическую скорость. Но если старт происходит на планете с атмосферой, то ракета должна быть очень прочной и термостойкой, чтобы не разрушиться от напора воздуха и не сгореть, как метеор.

3.27. К центру Галактики

Поскольку Солнце обращается вокруг центра Галактики со скоростью около 220 км/с, результирующая скорость корабля будет почти такой же и направленной в ту же сторону, что и у Солнца. Иными словами, орбита космического корабля не будет существенно отличаться от галактической орбиты Солнечной системы, и корабль никогда не попадет в центр Галактики.

3.28. Измеряем плотность планеты

Как показано в задаче 3.21 «Объехать астероид», время оборота на низкой орбите

Отсюда ρ = (3,5 час/Т)2 г/см3. Например, из того факта, что ИСЗ на низкой орбите оборачиваются за 1,5 часа, следует, что средняя плотность Земли

Казалось бы, все просто. Нужно лишь определить орбитальный период. Но как космонавты смогут это сделать? Ведь планета под ними вращается, поэтому ее ориентиры не годятся. Закройте книгу и подумайте.

3.29. БАК и черная дыра

Действительно, черная дыра, имея ничтожное сечение и практически не встречая сопротивления, будет падать к центру Земли почти свободно. А пройдя через него, она еще долго будет совершать затухающие колебания между диаметрально противоположными точками земной поверхности, пока не остановится вблизи центра планеты. За какое же время черная дыра впервые достигнет центра планеты?

Вспомним задачу 3.12 «К антиподам». Период обращения спутника на низкой околоземной орбите составляет

Свободный полет к центру Земли длится от до в зависимости от степени концентрации ее вещества к центру. Следовательно, Т1 = 0,25 Р = 22,5 мин, а Т2 = 0,177 Р = 15,9 мин. Очевидно, для Земли это время составит около 20 минут. Именно столько будет падать черная дыра к ее центру, а отнюдь не мгновенно.

3.30. Земля в иллюминаторе

Если со стороны Луны мы видим практически полностью освещенный Солнцем диск Земли, значит, со стороны Земли в этот момент видна темная сторона Луны, иными словами — Луна близка к фазе новолуния. В декабре 1972 г. новолуние было в ночь с 5 на 6 декабря, а полнолуние наступило 20 декабря. Следовательно, это фото Земли было сделано при отлете от Земли к Луне. Дополнительно об этом свидетельствует внешний вид Земли: хорошо видна Антарктида с областью Южного полюса, т.е. наблюдатель был смещен к югу от экватора. Но так и должно быть, поскольку в декабре Солнце на эклиптике находится глубоко к югу от экватора, а Луна в новолуние расположена на небе рядом с Солнцем. Действительно, склонение Луны 6 декабря 1972 г. было −25,5°.

Нужно заметить, что момент старта к Луне выбирался не из желания получить фото «полной» Земли, а из совсем иных соображений. Через 4 дня после старта участники экспедиции прилунялись. В этот момент в точке прилунения должно было быть раннее утро, чтобы тени были достаточно длинными для удобства ориентации пилотов и поверхность Луны еще не успела бы сильно нагреться и не повредила астронавтов и посадочный модуль. Экспедиция «Аполлон-17» прилунилась в конце дня 11 декабря в восточной части лунного диска, где при фазе Луны в этот момент 0,38 Солнце взошло совсем недавно.

4. В Солнечной системе

4.1. Восьмая или девятая?

В данном случае журналисты не ошиблись: часть орбиты Плутона вследствие ее большого эксцентриситета лежит внутри орбиты Нептуна, поэтому, двигаясь в области перигелия Плутона, «Пионер-10» действительно сначала пересек орбиту девятой планеты и только затем — восьмой. Любопытно, что как раз в те годы и сам Плутон был в этой же области: с 1979 по 1998 г. он был ближе к Солнцу, чем Нептун. Однако о встрече аппарата с планетой не могло быть речи: орбита Плутона слишком сильно наклонена к эклиптике. По этой причине понятие «пересечь орбиту» носит условный характер: имеется в виду, что пересечение траекторий состоялось бы, если бы они лежали в одной плоскости, например, в плоскости эклиптики.

Что касается судьбы «Пионера-10», то многие годы он передавал на Землю данные о магнитосфере Солнца, распределении яркости Млечного Пути, зодиакального света и т.п. Однако 6 августа 2000 г. он перестал отзываться, но в апреле 2001 г. связь была восстановлена. В последний раз сигнал от этого зонда был пойман 23 января 2003 г.; он шел к Земле 11 часов 20 минут. В 12490 г. «Пионер-10» окажется вблизи Летящей звезды Барнарда, на расстоянии 1,8 пк от нас.

4.2. Сезон великих противостояний

Великими называют такие противостояния, в период которых Марс находится в районе перигелия своей орбиты, т.е. ближе всего к Солнцу и к практически круговой орбите Земли. Поскольку ориентация орбит в пространстве меняется чрезвычайно медленно, великие противостояния происходят приблизительно при одном и том же положении на своих орбитах Земли и Марса. С другой стороны, времена года на планете привязаны к ее положению на орбите. Вот почему великие противостояния Марса приходятся на один и тот же сезон года — приблизительно на 1 сентября.

4.3. Птолемей

Вероятно, Птолемей бы изумился и возмущенно сказал: «Где учился этот нерадивый художник? Я уже не спрашиваю, читал ли он мой великий астрономический трактат, но смотрел ли он когда-нибудь на небо? Каждый древнегреческий ребенок и даже каждый раб знает, что Меркурий и Венера всегда видны недалеко от Солнца. А на этом рисунке они удалились Зевс знает куда! Мы, наблюдая небесные светила с неподвижной Земли, никогда не видим Меркурий под углом более 28°, а Венеру — 47° от Солнца. Это их наибольшие элонгации. Но на этой картине они “убежали” от Солнца более чем на четверть окружности! Это неслыханная профанация нашей великой древнегреческой науки!»

И мы согласны с Птолемеем. Две тысячи лет назад астрономия была одним из главных школьных предметов, а ныне с ней знакомы немногие. Но лишь этим немногим ведомо, как устроен наш мир на самом деле.

4.4. Светло ли на Плутоне?

Сначала определим, во сколько раз Солнце освещает поверхность Земли сильнее, чем полная Луна. Вычислив разность их видимых звездных величин (26,7m – 12,7m = 14m), найдем это отношение: 2,51214 ≈ 400 000. У планеты, удаленной от Солнца на R а. е., поток солнечного света ослаблен в R2 раз. Следовательно, Солнце будет освещать эту планету в 400 000/R2 ярче, чем полная Луна освещает Землю. Для Плутона (R = 40 а. е.) это составит 400 000/1600 = 250. Иными словами, поверхность Плутона на его среднем расстоянии от Солнца днем освещена так же ярко, как если бы ночью на земном небосклоне сияло 250 полных Лун. Это весьма яркое освещение, при котором можно не только гулять без фонаря, но и читать мелкий шрифт.

4.5. Когда на Плутоне светлее?

Немного округлив числа, будем считать, что Плутон в разных точках своей орбиты располагается от Солнца на расстояниях от 30 до 50 а. е. Вычислим, на сколько звездных величин видимый блеск Солнца для него будет меньше, чем для Земли:

m = 5×lg (30÷50) = 7,4÷8,5.

Видимая звездная величина Солнца у Земли −26,7m. Значит, на Плутоне она будет в разные периоды года (плутонианского) от −18,2m до −19,3m. С другой стороны, блеск Луны в полнолуние составляет −12,7m. Значит, когда Плутон в афелии, Солнце будет освещать его как 2,512 (18,2 12,7) = 159 полных лун освещает Землю. А когда Плутон в перигелии, поток света от Солнца у его поверхности повышается до 2,512(19,3 12,7) = 437 полных лун. В среднем можно считать, что Солнце освещает Плутон почти в 300 раз ярче, чем Луна в полнолуние освещает Землю. Этого света вполне достаточно, чтобы без фонаря читать книгу и чинить космический скафандр.

4.6. Луна готовит побег?

Подсчитаем: 0,04 м/год × 3 000 000 лет = 120 км. По отношению к нынешнему расстоянию до Луны (384 000 км) это составляет всего лишь 0,03%. На столько же изменится видимый диаметр лунного диска (30′), т.е. всего лишь на 0,5″, что с большим трудом можно будет заметить в телескоп и совершенно невозможно заметить невооруженным глазом.

В чем же ошибся автор? Вероятно, он спутал миллионы с миллиардами. За миллиарды лет Луна, действительно, заметно удалится от Земли. Правда, этот «побег» будет происходить все медленнее и медленнее, поскольку с расстоянием быстро убывает гравитационное приливное влияние Земли на Луну (см.: Сурдин, 1986 и 2002), которое и служит причиной ее удаления. Расчеты показывают, что окончательный побег Луны так и не состоится, приливный эффект не только удаляет Луну, но и замедляет вращение Земли. Когда орбитальный период Луны возрастет примерно вдвое к нынешнему, земные сутки станут такой же длины. Земля будет смотреть на Луну одним своим полушарием (так же, как Луна сейчас смотрит на Землю), приливный эффект исчезнет, и удаление Луны прекратится. Она останется спутницей Земли. Полагаю, автор детской книжки об этом не знал.

4.7. Фазы Луны

Главная ошибка автора в том, что он перепутал смену лунных фаз с затмениями Луны. Фазы и затмения — не одно и то же! В новолуние мы не видим диск Луны не потому, что на него падает земная тень. Как раз наоборот — Луна в этот момент находится дальше всего от земной тени, в противоположном от нее направлении! Мы не видим Луну в новолуние потому, что к Земле повернута ее темная сторона, не освещенная Солнцем. После новолуния в течение двух недель положение Земли и Луны по отношению к Солнцу меняется из-за движения Луны по орбите. Происходит смена лунных фаз — узкий серп, первая четверть, растущая луна — и постепенно к Земле поворачивается освещенное Солнцем лунное полушарие: наступает полнолуние. Именно в этот момент, в фазе полнолуния, изредка происходят лунные затмения, если тень Земли ложится на Луну. Затмение длится недолго — несколько часов, а смена фаз — месяц.

Как можно перепутать два этих явления? Наверное, авторы некоторых детских книг, а также их редакторы, плохо учились в школе. Вот из таких — любознательных, но неграмотных — и вырастают многие уфологи, охотники за НЛО. Кстати, посмотрим в интернете: Станислав Николаевич Зигуненко — инженер, журналист, исследователь аномальных явлений (т.е. уфолог). Прежде чем исследовать аномальные явления, не худо было бы разобраться с нормальными, особенно таким простыми, как фазы Луны.

4.8. Куда падает Луна?

Казалось бы, ответ на этот вопрос настолько очевиден, что и расчеты-то не нужны: Луна — спутник Земли, следовательно, Земля притягивает ее сильнее всех прочих тел Солнечной системы. Однако доверчивость может нас подвести. Не станем верить на слово, а лучше подсчитаем. Сравнивать будем не силы, а ускорения, поскольку масса самой Луны одинаково входит в формулу для притяжения как к Земле, так и к Солнцу. Пусть aЗ и a — ускорения Луны по направлению к Земле и Солнцу, RЗ и R — расстояния Луны от Земли и от Солнца, а M и M — массы Земли и Солнца. Тогда

Найдем их отношение:

Итак, притяжение Луны к Солнцу более чем вдвое превосходит ее притяжение к Земле. Но Луна не покидает окрестности нашей планеты, потому что разность притяжений Луны и Земли к Солнцу меньше их взаимного притяжения друг к другу! Солнце не в состоянии разорвать взаимную гравитационную связь Земли с Луной.

И вновь мы вспоминаем замечательную (по количеству ошибок) книжку С. Зигуненко «Почему Луна на Землю не падает?» (М.: АСТ, 2015). Теперь на этот вопрос мы можем ответить: «Потому что она падает на Солнце!» Действительно, Луна вместе с Землей находится в состоянии свободного падения на Солнце. Притяжение Земли лишь немного «подправляет» движение Луны так, чтобы она далеко не уходила от нашей планеты.

А как вы думаете, уникальное ли это свойство Луны, или же у других планет тоже есть спутники, которые притягиваются к Солнцу сильнее, чем к собственной планете?

4.9. Экспедиции к Луне

С 1968 по 1972 г. к Луне было запущено девять космических кораблей с экипажем из трех астронавтов в каждом; всего 27 астронавтов. Из них шесть «Аполлонов» успешно осуществили высадку астронавтов на поверхность Луны («Аполлон-11, -12, -14, -15, -16, -17»). Остальные совершили облет Луны («Аполлон-13») или ее орбитальное исследование («Аполлон-8 и -10»). Экспедиция «Аполлон-11» осуществила первую посадку на Луну (Н. Армстронг, Э. Олдрин, 1969). Всего на Луну высаживались 12 астронавтов.

4.10. Упасть на Луне

Пониженная по сравнению с земной сила тяжести на Луне действительно делает падение не столь опасным. Однако потеря равновесия при наклонах тела не связана с величиной силы тяжести: равновесие нарушается в тот момент, когда вертикальная линия, опущенная из центра масс тела, перестает пересекать поверхность опоры (т.е. ступню космонавта, если он опирается одной ногой, или площадку между ступнями, если стоит на двух). Поэтому угол максимального наклона зависит лишь от фигуры и позы космонавта, а не от силы тяжести на планете.

Более того, на планетах с пониженной (относительно Земли) силой тяжести даже легче упасть. Дело в том, что наклон своего тела мы привыкли контролировать не только визуально — по положению окружающих предметов, — но и по ощущению мышечного напряжения. Можете проверить это прямо сейчас: встаньте, закройте глаза и, не сгибаясь в пояснице, попробуйте наклониться вперед. Чувствуя напряжение мышц в стопах ног и спине, вы не позволите себе упасть. Но на планете с малой силой тяжести это «мышечное чувство» подводит. Даже вместе со скафандром человек на Луне весит в 2–3 раза меньше, чем на Земле. Поэтому ему сложнее оценить своим мышечным чувством тот критический наклон, за которым следует падение.

4.11. Восход Земли на Луне-1

Грамотный любитель астрономии сразу заметит, что утверждение «на лунном небе Земля не должна перемещаться» ошибочно. Она должна перемещаться и действительно перемещается, поскольку Луна испытывает широтные и долготные либрации, т.е. с точки зрения земного наблюдателя она покачивается. Либрации вызваны тем, что Луна движется по эллиптической орбите (это вызывает либрации по долготе), и ее ось не перпендикулярна орбитальной плоскости (чем вызваны либрации по широте). И те и другие происходят с периодом в месяц, причем их размах весьма велик: около ±8° по долготе и около ±7° по широте.

Кроме этих двух наблюдается также суточная, или параллактическая, либрация, которая имеет небольшую амплитуду, около ±1°, и возникает по причине вращения Земли, перемещающей наблюдателя относительно центра планеты. Но к нашей задаче она отношения не имеет.

Итак, находясь в краевых зонах лунного диска, протянувшихся вдоль видимого с Земли лунного лимба и покрывающих примерно 15% лунной поверхности, мы могли бы наблюдать восходы и заходы Земли, поскольку видимый с Луны размер земного диска составляет 1,8°, что намного меньше диапазона либраций. Разумеется, об этом отлично знал художник, автор сюжета марки, герой-космонавт Алексей Архипович Леонов, который в те годы интенсивно готовился к полету на Луну. Зато редактор марки оказался недостаточно подготовлен в области астрономии, что и привело к забавному филателистическому казусу. Впрочем, как любая ошибка на марках, это лишь усилило интерес филателистов к «запечатанной лунной марке» и повысило ее коммерческую стоимость.

4.12. Восход Земли на Луне-2

Положение земного диска вблизи лунного горизонта сразу же говорит нам о том, что наблюдатель располагался в либрационных секторах Луны, находящихся на границе ее видимого и невидимого с Земли полушарий. Судя по полностью освещенному Солнцем земному диску, съемка проводилась в период новолуния. Между крайними кадрами Земля переместилась чуть больше, чем на свой угловой диаметр (1,8°), т.е. примерно на 2°, что вполне укладывается в амплитуду либраций Луны по долготе (около ±8°) и по широте (около ±7°). Поскольку очертания материков на Земле не видны, а значит, установить ориентацию земной оси невозможно, трудно сказать, в каком именно месте либрационных секторов Луны сделаны эти снимки. (Хотя повышенная облачность в двух местах земного диска намекает нам на то, что это полярные области. А значит, и наш наблюдатель, скорее всего, находится в высоких широтах Луны.)

Казалось бы, все сходится: перед нами эффект либрации. Однако некоторые детали на снимках указывают, что это не так. Во-первых, внешний вид Земли между снимками не изменился, а значит, между крайними кадрами прошли минуты или часы, но не дни или недели, что требуется для заметного эффекта либраций. Во-вторых, изменился вид лунной поверхности, следовательно, наблюдатель перемещается по ней или над ней. В-третьих, на снимках стоит копирайт японского космического агентства. Все вместе это говорит о том, что снимки сделаны с борта японского лунного спутника «Кагуйя» (Kaguya, 2007–2008), который двигался по полярной орбите высотой 100 км. Дата съемки — 11 апреля 2008 г.

4.13. Полярная Луны

Полюс вращения Луны практически совпадает (разница на 1,5°) с полюсом эклиптики, который лежит в Драконе. Там нет ярких звезд. Но «черпак» Ковша Малой Медведицы удален от него на такое же расстояние, как и от конца своей «ручки», где расположена Полярная звезда. Так что, если не требовать высокой точности, то «черпак» Малого Ковша отмечает область северного полюса мира и может быть использован для ориентации на поверхности Луны.

4.14. Приливы

Для начала отметим небольшую неточность. Когда мы говорим о приливах на Земле, то не следует забывать и Солнце: его приливное влияние лишь вдвое слабее лунного. Но главная ошибка автора книги не в этом. Он путает преобразователь энергии с ее источником.

Рассмотрим пример: на реке построили гидроэлектростанцию. Она вырабатывает ток. Что служит его источником? Генератор? Турбина? Плотина? Нет: энергия падающей воды. Плотина — это концентратор энергии воды, которая без нее была бы «размазана» вдоль русла реки. Турбина преобразует потенциальную гравитационную энергию воды в кинетическую энергию ротора генератора, а тот — в энергию электрического тока. Не будь гидростанции, мы бы не смогли извлечь энергию речной воды, но источником этой энергии служит не сама станция, а вода в гравитационном поле Земли.

А теперь вернемся к приливам. Что служит источником энергии приливов? Какое тело теряет энергию, которая передается приливному движению океанской воды? Луна? Нет! Она сама забирает часть этой энергии, медленно удаляясь от нашей планеты за счет взаимодействия с приливными «горбами» Земли (см.: Дарвин, 1965; Сурдин, 1986, 2002). Если бы Земля не вращалась относительно направления на Луну (и Солнце), то не было бы приливного движения океанской воды, не происходили бы приливы и отливы, невозможно было бы использовать их энергию для работы приливных электростанций. Значит, энергия приливов черпается из энергии вращения Земли? Да! Именно поэтому вращение Земли замедляется и продолжительность суток увеличивается.

За последние полвека атомные часы и лазерная локация Луны позволили очень точно измерить действие приливных эффектов. Из-за приливного взаимодействия с Землей радиус лунной орбиты в нашу эпоху возрастает со средней скоростью 38 мм/год, а длительность земных суток под действием тех же приливов возрастала на 23 микросекунды в год. Казалось бы, изменения очень малы. Но умножьте их, например, на миллиард лет, и вы почувствуете, как это много.

Правда, в нашу эпоху движение материков так изменило конфигурацию океанов, что это способствует приливам. Раньше они были слабее. По палеонтологическим данным (дающим число солнечных суток в году), за последние 620 млн лет средняя скорость удаления Луны составила 22 мм/год, а длительность суток возрастала в среднем на 12 мкс/год. Но в далеком прошлом приливы были сильнее, поскольку Луна была ближе к Земле. Впрочем, ее роль, как мы уже поняли, та же, что и у плотины ГЭС: она лишь создает условия для превращения энергии вращения Земли в энергию приливов, но сама не служит источником энергии, а, напротив, частично потребляет ее.

Итак, на вопрос задачи мы ответим: автор не понял физику приливов и запутал юного читателя. К сожалению, в детской литературе это не редкость (см., например, задачи 4.7 «Фазы Луны» и 4.6 «Луна готовит побег?»). Будьте внимательны! Неверные представления могут остаться с вами надолго, а то и навсегда. В этом я регулярно убеждаюсь, общаясь со студентами и даже школьными учителями.

4.15. Земля остановилась

Падение по радиусу-вектору к Солнцу с расстояния R можно представить как движение по предельно сжатому эллипсу с большой полуосью а = R/2. Время падения t равно половине орбитального периода Р на этой орбите. Значение P легко определяется из 3-го закона Кеплера путем сравнения с движением Земли: (P/1 год)2 = (0,5R/R)3. Отсюда P = 1/23/2 года, а t = P/2 = 1/25/2 = 65 суток.

Скорость падения издалека на поверхность небесного тела равна второй космической скорости на этой поверхности

4.16. Метеоритные кратеры на Венере

Это объясняется защитным действием плотной атмосферы Венеры. Метеорное тело легко, почти без потери скорости, пробивает атмосферу планеты, если поверхностная плотность тела не уступает значительно поверхностной плотности атмосферы (т.е. массе атмосферного столба на квадратный сантиметр его поверхности). Для Венеры ее легко оценить, сравнив атмосферы Венеры и Земли. Поскольку ускорения силы тяжести на этих двух планетах почти одинаковы, поверхностные плотности атмосфер пропорциональны их давлениям у поверхности. Давление земной атмосферы 1 бар, т.е. 1 кг/см2, что эквивалентно столбу воды высотой 10 м или камня высотой 3–4 м. На Венере давление почти в 100 раз выше, что эквивалентно 1 км водяного столба или 300–400 м каменного. Эти оценки относятся к перпендикулярному к поверхности полету тела. Если же учесть, что в большинстве случаев метеорное тело входит в атмосферу под углом к поверхности, то полученные значения следует увеличить в 1,5÷2 раза.

Таким образом, без потери своей космической скорости к поверхности Венеры сквозь ее атмосферу может прорваться ледяная глыба (ядро кометы) размером более 1÷2 км или каменная размером 0,5÷1 км. Для метеоритных кратеров на Земле неплохо выполняется соотношение между диаметром кратера и ударника — 20 : 1. Поверхность Венеры и сила тяжести похожи на земные, поэтому и для нее можно принять такое же соотношение. Километровый метеорит образует на Венере кратер диаметром около 20 км. Более крупные кратеры будут возникать на Венере так же легко, как кратеры диаметром 100÷200 м возникают на Земле: для их ударников атмосфера не служит препятствием. А вот кратеров мельче 20 км на Венере должно быть очень мало. Действительно, кратеров диаметром менее 2 км на Венере нет, а диаметром до 25÷30 км — относительно мало.

4.17. Ошибки в системах мира

На рисунке 1 шесть ошибок: 1, 2 — неверное положение Меркурия и Венеры относительно Солнца (они должны располагаться между Солнцем и Землей), 3 — неверное направление освещенной стороны Луны (она должна быть направлена к Солнцу), 4, 5, 6 — Марс, Юпитер и Сатурн неверно размещены на своих эпициклах (их положение должно быть связано с положением Солнца).

На рисунке 2 одна ошибка: неверное направление освещенной стороны Луны (она должна быть направлена к Солнцу).

4.18. Солнце с крыльями

Вероятно, изображение Солнца с крыльями показывает, что во время полных солнечных затмений древние египтяне обнаружили корону Солнца, которая действительно иногда имеет форму широко распахнутых крыльев.

4.19. Земля и Марс

Некоторые динамические параметры — диаметр, масса и, как результат, ускорение свободного падения на поверхности — у Земли значительно ближе к аналогичным параметрам Венеры, чем Марса. Однако период суточного вращения, наклонение оси вращения к плоскости орбиты и, следовательно, явления смены времен года у Земли практически такие же, как у Марса. Этому способствует относительное сходство их атмосфер: высокая прозрачность и близость средних температур. Поэтому современные астрономы, как и В. Гершель, считают, что условия на поверхности Земли ближе всего к условиям на Марсе. Прежде всего это касается возможности существования воды в трех фазах — твердой, жидкой и газообразной. В то время как на поверхности Венеры жизнь исключена, на Марсе она возможна.

4.20. Марс и Земля

Противостояние и наибольшее сближение пришлись на разные дни из-за того, что орбита Марса не круговая, а существенно эллиптическая. После момента противостояния Земля и Марс двигались к точке перигелия орбиты Марса, продолжая при этом некоторое время сближаться.

Земля проходит вблизи точки перигелия марсианской орбиты в конце августа, а вблизи точки афелия — в конце февраля. Если она встречается там с Марсом (т.е. происходят его противостояния), то расстояние Марса от Солнца в эти дни не меняется, а значит, не меняется его расстояние и от Земли, если считать ее орбиту круговой. (Для знатоков высшей математики: в точках максимума и минимума функции ее производная равна нулю.)

Напротив, в точках орбиты, лежащих между афелием и перигелием, расстояние Марса от Солнца, а значит, и от почти круговой орбиты Земли, изменяется с наибольшей скоростью: в конце мая оно уменьшается, а в конце ноября возрастает. Поэтому наибольшее сближение Земли с Марсом в ноябре опережает момент противостояния, а в мае запаздывает относительно него.

4.21. Проект «Марс»

Понятно, что эвакуироваться с поверхности удобно лишь в те моменты, когда базовый корабль проходит над местом посадки, что происходит, как сказано в проекте, с периодичностью PS = 2 час 26 мин.

Пусть H — высота орбиты над поверхностью планеты, а M и R — масса и радиус Марса. Тогда орбитальный период корабля

где — первая космическая скорость (т.е. скорость движения по круговой орбите) на высоте H. Сама планета и находящаяся на ее поверхности экспедиция тоже вращаются с периодом, равным звездным (сидерическим) суткам Марса P0 = 24,623 часа. Если корабль движется в направлении вращения планеты, то частоту его обращения относительно поверхности (1/PS) найдем как разность его орбитальной частоты (1/PH) и частоты вращения планеты (1/P0):

Подставив все известные нам современные значения переменных, в ответе получаем H = 705 км. Как же так? Ведь должно было получиться ровно 1000 км. Неужели в середине XX в. плохо были известны масса и радиус Марса? Нет, они уже были измерены достаточно точно. Так неужели великий инженер В. фон Браун ошибся и допустил ошибку почти в 300 км? Невероятно! Ведь он был очень грамотный инженер и строил прекрасные ракеты. Быть может, он что-то не учел? Проверим. Если высота орбиты 1000 км, то каков будет ее период? PH = 2 час 25 мин. С точностью до секунды он совпадает с указанным фон Брауном! Значит, великий инженер просто вычислил орбитальный период базового корабля, но не учел вращение планеты. На самом деле корабль на высоте 1000 км будет пролетать над экваториальной базой с периодом

А вот вопрос, над которым Вернер фон Браун очевидно размышлял и пришел к правильному выводу: почему базовый корабль должен летать так высоко над Марсом. Будь он ближе к Марсу — чаще бы пролетал над экваториальной базой, и к нему легче было бы подняться на взлетной ступени. Например, МКС летает над Землей на высоте 400 км. Но фон Браун выбрал для своего корабля орбиту высотой 1000 км.

Даю подсказку: сила тяжести на Марсе в 2,6 раза слабее земной. Следовательно, атмосфера… Дальше подумайте сами.

4.22. Марсоход

Расстояние между Землей и Марсом изменяется от 0,5 а. е. в противостоянии до 2,5 а. е. в соединении. К тому же, после получения изображения, оператор должен отправить команду управления, поэтому время задержки реакции марсохода удваивается, доводя эффективное расстояние до 1÷5 а. е. Как известно, солнечный свет (а значит, и радиоволна) проходит расстояние в 1 а. е. за 500 секунд, значит, после появления препятствия на расстоянии 50 м от марсохода управляющая команда с Земли придет к нему через 500÷2500 секунд. Наихудший вариант — это 2500 секунд, следовательно, скорость аппарата при этой конфигурации Марса и Земли не должна превышать 50 м/2500 с = 2 см/с. В эпоху противостояния ее можно повысить до 10 см/с.

4.23. Полет к Сатурну

Используя 3-й закон Кеплера, гласящий, что квадраты периодов обращения планет пропорциональны кубам больших полуосей их орбит, найдем период астероида (P), сравнив его с орбитальным периодом Земли. Большая полуось орбиты астероида равна (1 + 9,5)/2 а. е. Поэтому

откуда P = 12 лет.

Мы видим, что перелет с Земли к Сатурну по самой выгодной траектории (полуэллиптической траектории Гомана—Цандера) должен продолжаться 6 лет. Однако космический зонд «Кассини» (NASA), ставший спутником Сатурна, был запущен с Земли 15 октября 1997 года, а прибыл к Сатурну 30 июня 2004 года, т.е. провел в пути 6 лет и 8,5 месяца. Как ему удалось нарушить законы небесной механики и с какой целью это было сделано? Разберитесь!

4.24. Пепельный свет Титана

Мы видим пепельный свет Луны, потому что сами находимся на источнике освещения, т.е. на Земле (см. задачу «Пепельный свет» в разделе «Прогулка по Земле»). Именно поэтому солнечный свет, отраженный Землей, полностью освещает ту часть темной стороны Луны, которая в данный момент видна с Земли. Фото Титана сделано космическим зондом «Кассини» (NASA) не со стороны Сатурна, поэтому не видно пепельного света.

Мы можем оценить ожидаемую яркость пепельного света Титана (Т) по сравнению с пепельным светом Луны (Л), сравнивая потоки солнечного света (I) у Земли (⊕) и Сатурна (С), видимый со спутника диаметр планеты (D) и альбедо (A) планеты и спутника. Для этого мы используем расстояния планет от Солнца (R) и спутников от планет (r). Итак, отношение яркостей пепельного света (E) составит:

В астрономических справочниках мы легко найдем значения этих величин и вычислим их отношения.

А теперь можно вычислить отношение

Как видим, ожидаемая яркость пепельного света Титана почти в 5 раз меньше лунного. Какие же факторы играют в этом основную роль? Удаленность Сатурна от Солнца почти полностью компенсируется его большим собственным размером. Альбедо Сатурна и Титана больше, чем Земли и Луны, что дает преимущество Титану. Но главную роль в слабости его пепельного света играет относительная удаленность Титана от Сатурна. Тем не менее на фоне космической темноты пепельный свет Титана должен быть виден. Надо лишь поймать удобный ракурс — сфотографировать Титан со стороны Сатурна в фазе, близкой к «новолунию».

4.25. Кольцо Сатурна

Ослабление света на 1m, т.е. примерно в 2,5 раза, говорит о том, что не менее половины проходящих сквозь кольцо фотонов поглощается или рассеивается в нем. А значит, и твердые частицы самого кольца, пересекая его по толщине (из-за небольшого различия в наклонах орбитальных плоскостей), имеют шанс не менее 50% столкнуться с другими частицами. Двух пересечений достаточно, чтобы считать этот шанс близким к 100%. За один орбитальный оборот частица как раз испытывает два пересечения, если не движется точно в центральной плоскости кольца. А если и движется в центральной плоскости, то все равно имеет не меньший шанс столкнуться с теми частицами, которые пересекают эту плоскость.

Орбитальный период (P) частиц в разных областях кольца разный в зависимости от расстояния (R) до центра планеты:

где M — масса Сатурна. Для упрощения вычислений выразим M и R через массу и радиус Земли (⊕), чтобы использовать известный нам орбитальный период на низкой околоземной (гагаринской!) орбите:

Масса Сатурна равна 95,16 M, а радиус наиболее плотной части ярчайшего кольца B — около 100 000 км. Следовательно, орбитальный период частиц в нем равен

Это и есть характерное время между столкновениями частиц. За один орбитальный оборот частица дважды пересекает кольцо по толщине (L). Поэтому характерная скорость взаимного столкновения частиц V ≈ 2L/P. Толщина колец Сатурна оценивается от 10 м до 1 км. Примем L = 100 м, тогда V 200 м / 9,6 час = 6 мм/с. Столь мягкие касания скорее могут привести к слипанию частиц, чем к их разрушению.

5. В гостях у братьев Стругацких

5.1. «Подсолнечник» над Леонидой

Для оценки блеска звездолета используем простейший метод — сравним его с Луной, полагая, что звездолет обращается вокруг Земли. Пусть АЗ и АЛ — альбедо звездолета и Луны, LЛ и DЛ — расстояние до Луны и ее диаметр, LЗ и DЗ — расстояние и средний диаметр звездолета. Тогда при их одинаковом освещении Солнцем отношение потоков света от них у поверхности Земли составит (АЗ/АЛ)(DЗ LЛ /DЛ LЗ )2. Пусть видимая поверхность обоих полностью освещена Солнцем. При этом Луна в фазе полнолуния, а значит, ее звездная величина, как известно, составляет –12,7m. Тогда звездная величина звездолета составит

Подставим значения величин: LЛ = 384 000 км, DЛ = 3475 км, АЛ = 0,12 и LЗ = 2000 км (это расстояние от поверхности планеты, но поскольку звездолет прошел через зенит, то в этот момент таким же было и расстояние от наблюдателя). Осталось определиться со средним диаметром и альбедо звездолета. Пусть DЗ = 1 км и альбедо как у Луны (мы ничего не знаем о материале звездолета, но знаем точно, что от длительного пребывания в космосе любой твердый материал темнеет, как Луна, Меркурий и астероиды). Подставив указанные значения, получим mЗ = –6,4. Действительно, «Подсолнечник» — очень яркое светило, в несколько раз ярче Венеры. Авторы не ошиблись в цифрах. Да и не могли ошибиться, ведь Борис Стругацкий — профессиональный астроном, а его брат Аркадий, переводчик, с детства также увлекался астрономией.

Итак, задача решена — слово «яркая» подтвердилось. Но не торопитесь расставаться с замечательной повестью Стругацких. Прочитайте фразу еще раз: «Среди мигающих звезд неторопливо прошло через зенит яркое белое пятнышко». Астроном не назовет точечный источник света «пятнышком». Следовательно, звездолет имел заметный угловой размер? Проверим: 1,5 км / 2000 км = 0,00075 рад =2,6′. Считается, что нормальное зрение человека имеет угловое разрешение около 1′. Значит, и здесь авторы не ошиблись: звездолет имел заметный угловой размер, чем и отличался от звезд. Впрочем, не только этим.

Авторы подчеркнули, что звезды «мигали» (точнее было бы сказать «мерцали», но не будем придираться к классикам), подразумевая, что звездолет светил ровным светом. Действительно, при прохождении света через атмосферу земного типа и при угловом размере более нескольких секунд дуги объект не мерцает, как звезды, а светит ровно, как планеты на нашем небе. Еще одно очко в зачет авторам.

Наконец, оценим, насколько медленно двигался звездолет по небу. Считая Леониду копией Земли, вычислим скорость звездолета на круговой орбите высотой 2000 км от поверхности:

Следовательно, дугу в 1 радиан (57,3″) он пройдет примерно за 5 минут (= 2000 км / 7 км/с). Действительно — неторопливо.

Если, дорогой друг, вы не ограничитесь приведенным отрывком из повести, а прочитаете ее целиком, то узнаете, что описанное событие происходило в начале ночи. А мог ли звездолет в это время суток быть виден в зените в солнечных лучах? Поскольку Солнце заходит на западе, тень планеты поднимается на востоке и приближается к зениту ближе к полуночи. Поэтому в первые ночные часы спутник в зените действительно освещен Солнцем — в этом авторы правы. И это не случайное совпадение: Стругацкие отлично знают астрономию, о чем говорит заключительная фраза эпизода: «Белое пятнышко потускнело и скрылось — “Подсолнечник” ушел в тень Леониды». Теперь мы знаем, что звездолет двигался по орбите с запада на восток. Авторы об этом умолчали, но мы с вами выяснили это сами.

5.2. Обозреваем окрестности

Сразу ясно, что атмосфера планеты весьма прозрачная, не хуже земной. На Земле, на уровне моря, при наблюдении на 5÷6 км уже вполне заметным становится рассеяние и поглощение света в атмосфере. Правда, в тексте Стругацких сказано о тумане над болотом. Но, видимо, он был низким и не мешал наблюдению.

Угол в 360° — это полная окружность; следовательно, камера смотрела во все стороны, осматривая весь горизонт. Если понимать текст так, что во всех направлениях было видно на 7 км, то это означает, что местность плоская, равнинная, лишенная высоких холмов и растений (болото!).

А теперь самое интересное: если во всех направлениях было видно на одно и то же расстояние (7 км), то это расстояние до истинного горизонта, т.е. до точки, где луч зрения параллелен поверхности планеты и перпендикулярен отвесной линии, т.е. радиусу планеты, проходящему через точку наблюдения (полагаем, что форма планеты — шар). Обратимся к рисунку. Пусть R — радиус планеты, H — высота наблюдателя над ее поверхностью, D — расстояние до горизонта. Если пренебречь атмосферной рефракцией, искривляющей ход световых лучей, то эти три отрезка составляют прямоугольный треугольник. Из теоремы Пифагора (R + H)2 = R2 + D2. Раскроем скобки и сократим подобные члены: 2RH + H2 = D2. Поскольку планета удерживает атмосферу (туман!), ее радиус не менее 1000 км, а значит, RH. Следовательно, в левой части уравнения можно пренебречь членом H2. Окончательно получаем:

2RH = D2.

Эта формула очень полезная. Например, зная радиус планеты и высоту глаз наблюдателя, можно найти расстояние до видимого горизонта: Для Земли (R = 6371 км) и наблюдателя ростом 180 см на берегу моря (высота глаз от поверхности 170 см) получим расстояние до морского горизонта D = 4,65 км. В общем случае

Вернемся к нашей задаче. Для нее формула принимает вид:

При D = 7 км и H = 3 м получим R = 8167 км. Как видим, планета в повести Стругацких оказалась немногим больше Земли.

5.3. Стажеры-1

Зафиксированные приборами пиковые температуры марсианской поверхности таковы: −143 °С полярной ночью на северной полярной шапке и +30 °С летним днем в средних широтах южного полушария. Типичная температура: от −85 °С зимней ночью до −5 °С летним днем. Поэтому температура −83 °С в конце ночи на Марсе — это очень точное попадание авторов повести, опубликованной в 1962 г., до первых полетов автоматических зондов к Красной планете.

5.4. Стажеры-2

Пусть суммарная масса всех обломков и пыли, оставшихся от Эйномии, равна m, а радиус облака r = 350 км. Приливный гравитационный эффект, «слегка растянувший» это облако, состоит в том, что разные его части находятся на разном расстоянии от Солнца и поэтому испытывает разное ускорение под действием его притяжения (см.: Сурдин, 1986 и 2002). Пусть M= 2 · 1030 кг — масса Солнца, а R = 2,15 а. е. — минимальное расстояние астероида от него. Ускорение к Солнцу, вызванное силой его притяжения, равно GM/R2, а его разница в разных частях облака относительно его центра равна

Знак мы опустили, поскольку он не важен.

В тексте сказано, что облако обломков слегка растянуто приливной силой. Значит, приливное ускорение сравнимо с ускорением собственной гравитации облака (Gm/r2), но в несколько раз слабее него. В астрофизике сравнение «в несколько раз» обычно обозначает «в 10 раз», т.е. «на порядок»; примем и мы это предположение. Тогда

откуда

Как видим, по сравнению с исходной, масса астероида уменьшилась в миллион раз. Если собрать оставшееся вещество в один фрагмент плотностью 3 г/см3, то его размер был бы около 2,6 км.

5.5. Рефракция

Атмосферной рефракцией астрономы называют преломление в атмосфере планеты световых лучей, приходящих от объектов наблюдения. У астрономов объекты наблюдения обычно находятся за пределом атмосферы, в далеком космосе, поэтому лучам света приходится преодолевать всю толщу атмосферы: от ее верхней границы, где атмосфера крайне разреженна, до поверхности Земли, где воздух имеет максимальную плотность. Понять, почему луч света изменяет направление, легко, если условно разделить атмосферу на горизонтальные слои равной плотности (кривизной земной поверхности в нашем случае можно пренебречь) и посмотреть, как преломляется луч на границах слоев, двигаясь из менее плотных слоев в более плотные.

В результате атмосферной рефракции направление лучей, достигших наблюдателя, отличается от их первоначального направления. При нормальном распределении температуры и плотности в атмосфере коэффициент преломления n возрастает сверху вниз, поэтому из-за рефракции наблюдаемая высота светила над горизонтом увеличивается. Часто это явление называют «астрономической рефракцией», имея в виду ночные наблюдения с поверхности планеты удаленных объектов, находящихся за пределом атмосферы.

Днем солнечные лучи сильно нагревают землю, поэтому находящийся с ней в контакте нижний слой атмосферы может иметь более низкий коэффициент преломления, чем слой, лежащий над ним. Это вызывает отклонение лучей света, проходящих через приземный слой, не вниз, а вверх и способствует появлению миражей: изображение опускается ниже уровня горизонта. Например, пассажиры автомобиля в жаркий солнечный день часто видят вдали «лужи» на поверхности асфальта, а приблизившись, обнаруживают, что асфальт сух. «Лужи» — это мираж, отражение неба в горячем слое воздуха над асфальтом. Но миражи — явление редкое, требующее специальных условий: горячий асфальт, горячий песок в пустыне, теплая морская поверхность при остывающем вечернем воздухе… А в нормальных условиях наблюдается астрономическая рефракция, поднимающая изображение в сторону зенита.

Степень рефракции зависит от угла падения луча на границу атмосферы. При наблюдении светила в зените угол рефракции, естественно, равен нулю. А у горизонта рефракция достигает максимального значения: для наблюдателя на уровне моря ее угол составляет около 35′ (т.е. 35 угловых минут). Это чуть больше видимого диаметра диска Луны или Солнца. Поэтому, когда мы видим сквозь атмосферу, что диск Луны или Солнца своим нижним краем коснулся горизонта, в действительности — если бы атмосфера не искажала направление лучей света — мы бы уже не увидели их диски, поскольку они скрылись бы под горизонтом.

Разобравшись с рефракцией, вернемся к задаче из повести Стругацких. Река течет медленно, но наблюдатель видит, что она «спускается с востока», что уже настораживает: заметный уклон русла реки виден лишь в горной местности, но там реки стремительные, а не спокойные. Но окончательное недоумение вызывает взгляд на запад: в этом направлении река течет вверх! Поэтому наблюдатель верно заключает, что причиной видимого искривления поверхности реки служит сильная атмосферная рефракция, приподнимающая изображение удаленных объектов. Наблюдатель ощущает себя как бы в центре чаши, края которой приподняты до уровня его головы.

5.6. «Хиус» над полигоном

1) Геодезический азимут (в отличие от астрономического) отсчитывается от точки севера к востоку. Следовательно, «Хиус» был чуть (на 8° 44′) к востоку от направления на север.

2) Если пауза между приказанием и его исполнением была недолгой, то можно считать, что измерение углов было сделано в тот же момент, когда ракета была на высоте 60 км от поверхности. Поскольку масштаб задачи много меньше размера Земли, поверхность планеты можно считать плоской. Если угловая высота над горизонтом равна 60°, а расстояние до поверхности 60 км, то расстояние до планетолета по прямой (гипотенуза) составляет 60/sin (60°) = 69,3 км.

5.7. Путь на Амальтею-1

1) Орбитальный период Амальтеи действительно близок к 12 час, но вокруг своей оси спутник тоже вращается за 12 час, а не 35. Синхронизация осевого вращения и орбитального обращения обусловлена приливным эффектом.

В порядке открытия Амальтея действительно пятый спутник (после четырех галиевых), но отнюдь не ближайший к планете. Правда, в год опубликования повести (1960) Амальтея была ближайшим из известных спутников, так что авторов не в чем упрекнуть.

Горизонт на Амальтее действительно близкий, поскольку спутник мал: если представить его как трехосный эллипсоид, то диаметры составляют 250 × 146 ×128 км. По объему это эквивалентно шару диаметром 167 км. Полагая высоту глаз наблюдателя над поверхностью H = 1,7 м и используя формулу из задачи «Обозреваем окрестности», найдем среднее расстояние до горизонта: С учетом формы спутника оно немного зависит от положения наблюдателя и направления его взгляда, но в любом случае незначительно отличается от 0,5 км.

2) Ближайшим спутником Амальтея оставалась до 1979 г., когда были открыты еще более близкие Метида и Адрастея. Очевидно, повесть была написана раньше.

3) Удивительно, но здесь авторы допустили ошибку. Если оба вращения происходят в одном направлении, то Юпитер должен восходить через (121 − 351)1 = 18,3 часа, если же в разных направлениях, то через (121 + 351)1 = 8,9 часа. Для астронома Бориса Стругацкого это непростительная ошибка.

5.8. Путь на Амальтею-2

Амальтея имеет не сплюснутую, а вытянутую форму. Ее «диаметры» составляют 250 × 146 × 128 км. У сплюснутого сфероида один диаметр короче двух других, а у вытянутого — длиннее двух других. Правда, если подходить к делу скрупулезно, то фигура Амальтеи ближе всего к трехосному эллипсоиду. Что же касается состава спутника, то авторы правы: средняя плотность Амальтеи 0,86 ± 0,1 г/см3 действительно соответствует плотности водяного льда.

5.9. Путь на Амальтею-3

Прав оказался Юрковский. Кольцо Юпитера было открыто намного позже, чем была написана эта повесть Стругацких. Интуиция не подвела писателей!

5.10. Радиомаяк на Венере

За полный период сканирования (3 сек) маяк излучил около 300 импульсов, дважды покрыв ими полусферу неба. Следовательно, площадь, а точнее, телесный угол его луча равен 1/300 полной площади (т.е. телесного угла) небесной сферы. Как известно, площадь сферы равна 4πR2, а ее полный центральный телесный угол составляет 4π стерадиан. Вспоминая, что 1 радиан = 180°/π ≈ 57,3°, находим, что 1 стерадиан = (57,3°)2. Значит, площадь всей небесной сферы составляет S ≈ 4π(57,3°)2 ≈ 4,13 · 104 квадратных градуса. Точное значение площади небесной сферы, округленное до целых, равно 41 253 кв. град. Таким образом, телесный угол радиолуча составляет около 41 253/300 = 138 кв. град., а ширина — около

5.11. Созвездия на Фобосе

Звездный узор, который мы обычно запоминаем в том или ином созвездии, сложен наиболее яркими его звездами и называется астеризмом. Например, Ковш — это астеризм в созвездии Большая Медведица. Рисунок Ковша легко узнаваем, а расположение множества слабых звезд в этом созвездии запомнить и распознать очень трудно. На сером городском ночном небе обычно проявляются лишь самые яркие звезды, поэтому астеризмы многих созвездий легко узнаваемы. Но за городом или, еще лучше, в горах ночное небо значительно темнее, и на нем проступают многочисленные слабые звезды, мешающие нам выделить знакомую фигуру астеризма. Нужна определенная тренировка — и астрономы ею обладают, — чтобы на фоне богатого звездами горного неба узнать знакомые созвездия. В космосе этот эффект еще заметнее.

Фобос — маленький безатмосферный спутник Марса. Находясь на его поверхности, наблюдатель увидит «бездонное черное небо», так густо усыпанное звездами, что с трудом сможет отыскать среди них знакомые очертания астеризмов. Этот же эффект проявится и на любом другом безатмосферном теле.

5.12. Венера

Сведения о Венере в повести Стругацких в целом соответствуют современным данным об этой планете. Некоторое расхождение в размере, объеме, площади поверхности, силе тяжести и средней плотности связано с тем, что в 1950-е гг. планету измеряли по наблюдениям в телескоп по верхней границе облаков, а сегодня у нас есть данные о ее твердом теле, диаметр которого почти на 200 км меньше. Состав атмосферы тоже указан верно: в основном это диоксид углерода (CO2), названный в повести углекислотой.

Главная же и по большому счету единственная ошибка авторов состоит в указании периода вращения планеты вокруг оси (57 час = 2,4 сут), ибо на самом деле планета вращается с периодом в сто раз большим (243 сут). Впрочем, в те годы все астрономы мира разделяли это заблуждение. Впервые вращение Венеры было измерено с помощью радиолокации в 1962 г. А причина ошибки заключалась в том, что с периодом в несколько суток вращается верхний слой атмосферы Венеры, т.е. наблюдаемая с Земли картина облаков. Физический механизм этой суперротации атмосферы Венеры до сих пор не до конца понятен.

5.13. Спутник Венеры

Спутник Венеры — это фантастический прогноз авторов повести. Насколько известно современным астрономам, у Венеры нет естественных спутников, хотя вблизи ее орбиты движется несколько астероидов-троянцев и один квазиспутник. Начиная с XVII в. Джованни Кассини и другие астрономы неоднократно заявляли об открытии спутников Венеры, но каждый раз выяснялось, что это заблуждение. Обычно за спутник принимали звезду, рядом с которой по небу проходила Венера.

5.14. Перевернутая радуга

Радуга показалась героям повести странной, потому что это была не радуга, а гало. Радугу мы наблюдаем, когда Солнце у нас за спиной, а перед нами облако водяных капель. Солнечные лучи попадают к нам, дважды испытав преломление (на входе в каплю и на выходе из нее) и один раз полное внутреннее отражение в капле. Сильнее всех преломляются фиолетовые лучи; поэтому фиолетовый луч оказывается ближе других к входящему лучу, направленному в антисолярную точку (которая на небе отстоит на 180° от направления на Солнце). Угловой радиус фиолетового круга равен 40° 40′. Дальше всего от антисолярной точки располагается красный круг, на расстоянии 42° 30′. Так и получается последовательность цветов в радуге — изнутри наружу весь спектр от фиолетового к красному.

Если же источник света не сзади, а перед нами, то в преломляющей среде образуется гало с обратной последовательностью цветов. Обычно мы видим радужный круг гало, если Солнце или Луна просвечивают через тонкие перисто-слоистые облака, состоящие из ледяных кристаллов. Проходя через них, луч света испытывает два преломления (на входе и на выходе) без внутреннего отражения и попадает к наблюдателю под углом около 22°. Фиолетовый луч преломляется сильнее и поэтому находится дальше других от направления на источник света. Поэтому в гало и возникает последовательность цветов обратная той, что мы видим у радуги. Гало окрашено изнутри наружу от красного к фиолетовому. Вот почему «над тундрой заиграла странная перевернутая радуга».

5.15. Вогнутое зеркало

В первом приближении параболоидное зеркало можно представить как сферическое радиусом R, у которого есть центр кривизны (центр сферы) и фокус на расстоянии R/2 от центра кривизны и от поверхности зеркала. Находясь к центре кривизны, глаз видит только себя, поскольку все лучи падают по нормали к поверхности зеркала. На большем расстоянии глаз видит перевернутое изображение, а на меньшем — прямое. Вы можете проверить это экспериментально, используя вогнутое («увеличивающее») зеркало для бритья и макияжа. Если у вас нет такого зеркала, поэкспериментируйте с положительной линзой: эффект тот же.

Если глаз находится в точке фокуса, он видит прямое изображение, увеличенное примерно вдвое по сравнению с плоским зеркалом. Параболоидное зеркало демонстрирует те же эффекты, что и сферическое, но с некоторыми искажениями, вызванными внеосевыми аберрациями. Быков находился в области фокуса такого зеркала; именно поэтому он «увидел над головой свое донельзя искаженное и увеличенное отражение».

5.16. Испытания «Хиуса»

В конце фрагмента повести мы обнаруживаем утверждение о том, что у Венеры есть естественный спутник — Венита. Это фантастический прогноз авторов, который до сих пор не подтвердился и, судя по всему, уже не подтвердится никогда. В нашу эпоху Венера лишена сколько-нибудь крупных природных спутников.

Однако сейчас нас больше интересует полет «Хиуса». Он двигался с постоянным ускорением a = 9,7 м/с2 и достиг скорости V = 4000 км/с. Это происходило в гравитационном поле Солнца, поэтому мы должны сначала проверить, насколько его влияние могло исказить равномерно ускоренное движение планетолета. У орбиты Земли (R = 1 а. е.) Солнце создает ускорение a= GM/R2 = 6 мм/с2. С приближением к Солнцу оно возрастает, но, поскольку планетолет «устремился к точке встречи с Венерой в обход Солнца», он не слишком приближался к светилу, следовательно, его притяжением в нашей задаче можно пренебречь.

«Хиус» стартовал с нулевой скоростью, поэтому время его разгона составило

Пройдя половину пути, планетолет развернулся и начал торможение. Он выровнял свою скорость с орбитальной скоростью Венеры (35 км/с), которая гораздо меньше максимальной скорости планетолета (4000 км/с), значит, ее можно не учитывать. Следовательно, еще 4,77 сут «Хиус» потратил на торможение. Даже без учета времени, затраченного на разворот, ракета потратила на ускорение и торможение 9,5 суток, а не 8,5 суток, как утверждают авторы повести. Прокомментируем эту неточность словами самих Стругацких из этой же повести: «Работник он был прекрасный, ошибался редко».

Впрочем, мы еще не закончили анализ полета «Хиуса». А какое расстояние он прошел за эти 9,5 суток, двигаясь практически по прямой? При равноускоренном движении пройденное расстояние составляет at2/2. Если t — время разгона, то «Хиус» за время разгона и торможения прошел путь 2at2/2 = at2 = 9,7 м/с2 (4,77 сут)2 = 1,6 · 109 км = 11 а. е. А вот это уже грубая ошибка авторов. Пройдя такое расстояние, «Хиус» давно миновал бы не только орбиту Венеры, но даже пересек бы орбиту Сатурна! При самом неблагоприятном расположении планет (Венера в верхнем соединении) путь от Земли до Венеры занял бы у «Хиуса» всего 3,8 сут.

5.17. Стремительный «Хиус»

Чтобы при ускорении около 9,7 м/с2 скорость изменилась на 1200 км/с, требуется время

Это не очень сильно отличается от тех 40 часов, о которых говорится в повести. Время разгона (55 час) было на 21 час больше, но, вероятно, оно учитывало маневры у Земли. Об этом с полной определенностью говорит фраза: «В соответствии с планом испытательного перелета “Хиус” через двадцать часов после старта принял неподвижное по отношению к Солнцу положение и затем… устремился к точке встречи с Венерой».

А каков был пройденный путь? Он вдвое длиннее пути торможения: 2at2/2 = at2 = 9,7 м/с2 (34,4 час)2 = 149 млн км ≈ 1 а. е. Эти цифры отлично согласуются с полетом от Земли к Венере. И вновь мы не можем не процитировать любимую повесть Стругацких: «Анатолий Борисович Ермаков, командир лучшего в мире планетолета, ошибался редко». Это очень точная характеристика хорошего работника. Не ошибается только тот, кто ничего не делает.

5.18. Температура Венеры

Итак, в повести Стругацких нормальной у поверхности Венеры считается температура от 54 до 100 °C, и лишь в исключительных случаях (извержение вулкана) она может подниматься до 400 °C. Именно на это были рассчитаны силикетовые скафандры космонавта:

Быков выбрался из костюма и еще раз внимательно рассмотрел его.

— А излучения? Предохраняет он от излучений?

— Разумеется. В этом отношении силикет незаменим.

— Как «абсолютный отражатель» фотонного реактора?

Он вытер со лба пот и уселся рядом с Дауге. Тот сказал:

— «Абсолютный отражатель» тверд и хрупок. Как материал для комбинезона он не годен. Силикет достаточно надежен. Например, сегодня утром мы — Краюхин, Володя и я — час просидели в костюмах в «могильнике».

— Что ты говоришь!

— Серьезно. Температура около двухсот градусов, альфа-излучение, гамма-лучи и все такое прочее. И тем не менее великолепно держит. Жарковато, разумеется, немного…

Но авторы недооценили Венеру. Как мы теперь точно знаем, температура у поверхности планеты составляет 462 °C и практически не зависит ни от географической широты, ни от времени суток, хотя немного зависит от высоты местности. Любопытно, что планетоход «Мальчик», доставленный «Хиусом» на Венеру, мог бы легко выдержать такую температуру, однако и он не годился для работы на реальной Венере:

«Мальчик» являлся танком-транспортером высокой проходимости, предназначенным для передвижения по твердым, вязким и сыпучим грунтам и по сильно пересеченной местности, в газообразной и жидкой среде при давлениях до двадцати атмосфер и температурах до тысячи градусов.

Дело в том, что давление атмосферы у поверхности Венеры составляет 92 бара, т.е. 90 атмосфер. Оно бы легко расплющило фантастический планетоход. Впрочем, в годы создания Стругацкими повести о Венере никто из специалистов не представлял себе истинных условий у ее поверхности. Об этом свидетельствует история первых попыток создать спускаемый аппарат. При создании «Венеры-4» (1967) были учтены параметры атмосферы планеты, полученные межпланетной станцией «Венера-3». Спускаемый аппарат был рассчитан на работу при температуре 425 °C и давлении до 10 атмосфер. При создании «Венеры-5» (1969) учитывались параметры атмосферы Венеры, полученные зондом «Венера-4». Спускаемый аппарат должен был выдержать 290 °C и давление до 25 атмосфер. В конструкции АМС «Венера-7» (1970) были учтены данные, полученные предшествующими станциями «Венера-4», «Венера-5» и «Венера-6». Из расчетов, сделанных на основе этих данных, предполагалось, что на поверхности планеты давление может достигать 100 атмосфер, температура — 500 °C и скорость ветра у поверхности — 1,5 м/с. Чтобы выдержать такие условия, корпус спускаемого аппарата изготовили не из алюминиево-магниевого сплава АМГ 6, как у предыдущих «Венер», а из титана, благодаря чему он был способен выдержать давление до 180 атмосфер. Только такой прочный корпус спускаемых аппаратов позволил провести исследования на поверхности Венеры. Но это был уже конец 1970 г., более чем 10 лет спустя после создания повести Стругацких.

5.19. Высокое напряжение

В те годы, когда создавалась повесть «Путь на Амальтею», самыми передовыми приборами для усиления и измерения потоков света, а также для преобразования инфракрасного излучения в видимое были электронно-оптический преобразователь (ЭОП) и фотоэлектронный умножитель (ФЭУ), в которых использовались внешний фотоэффект и ускорение электронов с электрическом поле. Поэтому на приборы подавалось высокое напряжение — около 2,3 киловольта на ФЭУ и порядка 30,40 киловольта на ЭОП. Правда, токи были небольшие, поэтому серьезных травм нанести не могли. Низковольтные оптические датчики (ПЗС), использующие внутренний фотоэффект, были изобретены значительно позже, поэтому Стругацкие знать о них не могли.

5.20. В недрах Юпитера

Шкала высоты атмосферы (она же высота однородной атмосферы) — это расстояние по вертикали (H0), на котором давление изменяется в е = 2,718… раз. Следовательно, если на нулевой отметке высоты давление равно P0, то на глубине H оно равно

В нашем случае P0 = 1 атм и H0 = 30 км. Найдем глубину, на которой достигается критическое давление P = 200 000 атм при неизменной шкале высоты:

Это гораздо меньше, чем 6 700 км, названные штурманом.

Читая повесть дальше, мы узнаем, что «Тахмасиб» опустился еще глубже, чем ожидал штурман:

Перелет заканчивается. Через несколько минут тяжесть станет двойной и над головой будет десять тысяч километров сжатого водорода, а под ногами шестьдесят тысяч километров очень сжатого, жидкого, твердого водорода.

Современные численные расчеты показывают, что на глубине 10 000 км в недрах Юпитера давление составляет не менее 1 млн атм (скорее всего, даже ближе к 1,5 млн. атм), а температура около 4000 K. Кстати, в отношении высокой температуры авторы сделали верное замечание: когда «Тахмасиб» перестал погружаться, его экипаж увидел «розовое сияние» окружающего газа. Именно так светится плотный газ при температуре 4000 K. В отношении плотности вещества на этой глубине авторы также попали в точку: вокруг «Тахмасиба» плавали огромные скалы — захваченные Юпитером астероиды и ядра комет. Как мы знаем, их плотность порядка 1 г/см3, и современные модели Юпитера на глубине 10 000 км дают такую же плотность.

В отношении силы тяжести в верхних слоях Юпитера штурман планетолета не ошибся: в районе облачного слоя Юпитера она действительно составляет 2,5 g. Впрочем, это значение легко вычисляется по массе и радиусу Юпитера, которые весьма точно были измерены еще в XVIII в.

6. Астрономические часы

6.1. 24 часа

Вблизи полюса магнитный компас бесполезен, а такие часы могут показывать направление. Дело в том, что в районе полюса в летнее время Солнце движется невысоко над горизонтом по кругу, почти не поднимаясь и не опускаясь в течение суток. Если часовая стрелка на часах путешественника делает, как и Солнце, один оборот в сутки, то часы могут служить «компасом». Например, если поставить часы в пункте выхода по местному солнечному времени и в пути ориентировать их часовой стрелкой на Солнце, то отметка «24 часа» всегда будет указывать направление на Северный полюс, а отметка «12 часов» — на Южный.

6.2. Время остановилось

Используя решение задачи 6.8 «Догнать время» и выразив длину параллели (l) через длину экватора (L) и географическую широту (φ):

l = L cos φ,

получим выражение для широты:

Отсюда φ = arccos (0,51) = 59,3°. Возможно, самолет летел из Магадана в Санкт-Петербург, выбрав такой странный маршрут (по параллели путь длиннее, чем по дуге большого круга), чтобы в течение 8 часов любоваться восходом Солнца.

6.3. Гарри Поттер

Одно и то же солнечное (и основанное на нем гражданское, т.е. поясное, декретное, зимнее, летнее) время соответствует разному звездному времени, от которого зависит положение звезд над горизонтом. Поэтому если наблюдать звездное небо «каждую среду ровно в полночь», то в течение полугода можно изучить его полностью.

6.4. Наше время

В России мы живем по декретному времени, на 1 час опережающему поясное время. В последние годы вместо термина «часовой пояс» чаще используется понятие «часовая зона» как географическая область, на которой установлено единое время. Границы часовых зон — государственные и административные (т.е. границы областей, краев, штатов), поэтому они, как правило, существенно отличаются от границ часовых поясов. Например, московское время ровно на 3 часа больше всемирного (гринвичского) времени. При этом, учитывая долготу г. Москва (37° 37′ в. д.), Солнце в Москве пересекает небесный меридиан на 37,6°/15° = 2,5 часа раньше, чем в Гринвиче. По московскому времени живет большая часть территории России к западу от Урала. К востоку от Урала располагается еще 8 часовых зон.

6.5. Ломоносов и Венера

Дата 26 мая указана по действовавшему тогда в России юлианскому календарю. А по современному григорианскому календарю это было 6 июня. Прохождения планеты по Солнцу можно наблюдать только на тех гелиоцентрических долготах (почти однозначно связанных с календарными датами), где лежат узлы орбиты планеты, т.е. точки ее пересечения с эклиптикой — орбитой Земли. Для Венеры это начало июня и начало декабря.

6.6. Покрытия звезд Луной

Такие явления называют покрытиями звезд Луной. Максимальной длительности они достигают при центральных покрытиях, когда, с точки зрения наблюдателя, путь светила проходит через центр лунного диска. Скорость перемещения Луны на фоне звездного неба задана длительностью сидерического лунного месяца (27,32 сут). Отсюда средняя угловая скорость Луны на звездном небе равна 360°/27,32 = 13,18°/сут, или 0,55° в час. Поскольку угловой диаметр лунного диска равен примерно 0,5°, звезда скроется за ним не более чем на час. А если покрытие не центральное, то на любое время короче часа.

6.7. Неправильная полночь

В конце первой декады ноября весьма велико уравнение времени, оно превосходит 15 минут (см. в «Справочнике любителя астрономии», 2002, рис. 171 на с. 246, или в книге «Вселенная от А до Я», 2012, статью «Уравнение времени»). Поэтому истинная местная солнечная полночь в Москве 9/10 ноября наступила раньше, в 0 ч 15 мин московского декретного времени. Первое наблюдение отстояло от нее менее чем на 6 ч 45 мин, а второе — более чем на 7 ч 15 мин. (Автор идеи этой задачи — Н. Н. Самусь.)

6.8. Догнать время

Самолет должен лететь на запад со скоростью вращения Земли: V = 40 000 км / 24 часа = 463 м/с. Эта скорость (1,5 скорости звука) вполне доступна для некоторых современных самолетов.

6.9. Надежная широта

Имея секстант — а у моряков он в той или иной форме был всегда, — можно весьма точно измерить географическую широту места наблюдения, например, по высоте Полярной звезды. А вот с долготой дело обстоит значительно хуже. До появления надежных часов, так называемого морского хронометра, определение долготы было очень неточным. Ведь долгота — это угол между Гринвичским меридианом и меридианом наблюдателя. Его измеряют, фиксируя прохождение определенных звезд через небесный меридиан. Если у штурмана есть на борту точные часы, идущие по времени Гринвича, и астрономические таблицы, в которых указано, когда в Гринвиче та или иная звезда проходит через гринвичский меридиан (t0), то штурману остается лишь заметить момент прохождения этой звезды через местный меридиан (t1) и определить разницу моментов прохождения — наблюденного и указанного в таблице для Гринвича (∆t = t0t1). Это и есть долгота (λ) в виде часов, минут и секунд. Из часовой меры ее легко перевести в градусную: λ = 360° · ∆t/24 часа. Разумеется, здесь 24 часа звездного времени, поскольку это длительность одного оборота Земли вокруг оси.

Разумеется, есть и более точные методы определения долготы и широты, чем фиксация моментов пересечения меридиана (он ведь не нарисован на небе!). Например, метод Сомнера, состоящий в измерении зенитного расстояния звезд («Небо и телескоп», 2017, раздел 1.5.1). Но все без исключения подобные методы требуют точной фиксации времени измерения, т.е. наличия на корабле точных часов. В настоящее время определение моментов не представляет трудностей — часы всегда можно проверить по радио. До появления радио морякам приходилось возить с собой часы, специально приспособленные для хранения времени на корабле — морской хронометр, изобретенный английским мастером Гаррисоном в XVII в. До изобретения хронометра время определяли по положению Луны среди звезд или по конфигурации спутников Юпитера. Их заранее рассчитывали астрономы и публиковали в виде таблиц для штурманов. А пока все это не появилось, «лот, широта и осмотрительность» были главными помощниками штурмана и капитана.

6.10. Конец света

На Земле солнечные часы остановиться не могут: солнце непрерывно перемещается по небосводу, а значит, и тень от гномона тоже перемещается по циферблату часов. Правда, можно вообразить ситуацию, когда солнечные часы «практически» остановятся. Например, горизонтальные солнечные часы на экваторе в дни весеннего и осеннего равноденствий. В эти дни солнце движется практически по экватору. Поэтому тень от вертикального гномона не будет менять свой азимут, а лишь будет укорачиваться и удлиняться. А в местный солнечный полдень она вообще исчезнет!

Другая ситуация — это солнечные часы на планете, обращающейся вокруг своей звезды по круговой орбите и синхронно вращающейся вокруг своей оси. Среди экзопланет таких немало, но в Солнечной системе подобных нет. У нас много синхронно вращающихся тел среди спутников планет, но ни одна планета синхронно не обращается вокруг Солнца. Ближе всех к этому состоянию Меркурий, у которого суточное вращение находится в резонансе 3:2 с орбитальным обращением: за время трех оборотов вокруг оси он совершает два оборота вокруг Солнца. Но вот что любопытно: Меркурий движется по заметно вытянутой орбите, поэтому в области перигелия угловая скорость его орбитального движения возрастает и сравнивается с угловой скоростью суточного вращения. В эти периоды Солнце на небосводе Меркурия действительно останавливается! Замирает и тень на циферблате солнечных часов.

Возможно, действие нашего анекдота происходило на Меркурии?

6.11. Перелет к антиподам

Если часы с 12-часовым циферблатом, то стрелки переводить, как правило, вообще не надо, поскольку «на той стороне Земли», т.е. в точках, отстоящих по долготе на 180°, поясное время различается на 12 часов. Это в идеале. Но все же нужно учитывать местные особенности, поскольку границы часовых зон часто проводят по государственным и административным границам, которые могут значительно отличаться от астрономических. К тому же в некоторых странах есть свои «национальные особенности» счета времени. Например, в России это декретное время, опережающее поясное на час. Китай вообще не признает часовых поясов: вся страна живет по пекинскому времени. В некоторых мусульманских странах время отличается от всемирного (UTC) не на целое число часов (N), как предписывает традиция часовых поясов, а на N часов 30 минут и даже на N часов 45 минут!

Но даже если с часовыми поясами все в порядке и вам не нужно переводить стрелки на своих часах с 12-часовым циферблатом, все же нужно помнить, что при таком перелете вы попадаете в другую половину суток. Если самолет вылетел из Восточного полушария, то при достижении Северного полюса следует считать время на 12 часов меньше, а если из западного, то на 12 часов больше.

Замечание относительно 12-часового циферблата сделано потому, что не только на цифровых часах нередко используется 24-часовая индикация, но и на аналоговых часах она тоже встречается (см. задачу 6.1 «24 часа»).

6.12. День равноденствия

Долготой дня считается промежуток времени между моментами появления и исчезновения за горизонтом не центра солнечного диска, а его верхнего края. С учетом углового радиуса Солнца (16′) и атмосферной рефракции у горизонта (35′), приподнимающей изображение Солнца на небе Земли, это делает восход на 5 минут раньше, а заход на 5 минут позже, увеличивая продолжительность дня на 10 минут в день формального равноденствия.

6.13. Начало века

Поскольку в современном летосчислении не было нулевого года, то полные века истекают 31 декабря **00 г., а новый век начинается 1 января **01 г. Соответственно, новое тысячелетие начинается 1 января *001 г. Значит, началом XXI века, а с ним и третьего тысячелетия, следует считать 1 января 2001 г. Тем не менее большинство людей праздновали 1 января 2000 г. как начало нового века и тысячелетия.

7. Завтрак с астрофизиком

7.1. Человек против Солнца

Действительно, полная мощность энерговыделения у Солнца чрезвычайно высока — около 4 · 1026 Вт. Астрономы называют это светимостью Солнца, поскольку бо́льшая часть этой энергии испускается в оптическом диапазоне, т.е. в виде света. А ведь никакая бабушка столько энергии не излучает и в темноте не светится! Однако речь шла об эффективности генерации энергии, поэтому студент решил проверить, какова мощность Солнца в расчете на единицу его массы. Как известно, масса нашего светила около 2 · 1030 кг. Следовательно, Солнце генерирует энергию в количестве 2 · 10−4 Вт/кг.

А человек?

Заглянув в справочник по физиологии человека, студент узнал, что в состоянии абсолютного покоя, например во сне, человеческое тело выделяет тепло в количестве 50÷60 Вт. В состоянии бодрствования, сидя за столом, — около 100 Вт. При быстрой ходьбе — 150÷200 Вт. При интенсивной физической работе — около 300 Вт. А при крайнем напряжении сил (работа кузнеца-молотобойца, схватка боксеров) — около 500÷700 Вт. Бабушка у студента была небольшая, весила около 60 кг и не способна была работать в кузнице или боксировать на ринге. Обычно она работала на кухне за столом или неспешно ходила в магазин за продуктами. Поэтому студент решил, что средняя мощность бабушки составляет около 120 Вт (на языке автомобилистов это 0,16 лошадиной силы). Таким образом, удельное энерговыделение бабушки составляет 2 Вт/кг. То есть в 10 000 раз больше, чем у Солнца! Аспирант оказался прав.

Продолжая свои изыскания, студент выяснил, что с такой же эффективностью, как Солнце, выделяет тепло куча прелых листьев. Решив проверить это, студент вышел на улицу и быстро нашел то, что искал. Был конец сентября, и дворники сметали в кучи мокрые опавшие листья, которые потихоньку гнили на ветру. Засунув руку в кучу листьев, студент почувствовал, что там немного теплее, чем снаружи. Но это были не те миллионы градусов, при которых протекают термоядерные реакции, и кучи листьев не светились, как маленькие солнышки. И тем не менее расчет был верным; просто дворники были недостаточно расторопными. Если бы они собрали из прелых листьев огромную кучу с массой как у Солнца, то она и засветилась бы как Солнце! А если такую же кучу сложить из бабушек…

«Впрочем, — подумал студент, — даже одна моя бабушка — это настоящее маленькое солнышко. От нее в доме всем теплее и светлее на душе».

7.2. Солнце из угля

Очевидно, длительность свечения угольного или нефтяного Солнца составит t = QM/L, где M= 2 · 1030 кг и L = 4 · 1026 Вт — масса и светимость Солнца; Q = 2 · 107 Дж/кг. Тогда t = 3000 лет. Это даже короче письменной истории человечества.

7.3. Солнце сжимается

У этой задачи интересная история. Еще в середине XIX века астрономы поняли, что тепло, выделяющееся при химических реакциях, не может поддерживать солнечную светимость на современном уровне дольше нескольких тысяч лет (см. задачу «Солнце из угля»). Тогда немецкий врач Юлиус Майер (1814–1878), исследования которого привели к открытию закона сохранения энергии, предположил, что Солнце светит за счет тепла, выделяющегося при падении на его поверхность комет и метеоритов. Но притяжение Солнца не может разогнать падающие тела до скорости свыше 618 км/с (вторая космическая скорость на поверхности Солнца). Учитывая, что при торможении в тепло переходит кинетическая энергия тела (mv2/2), легко подсчитать, что для поддержания светимости Солнца на него ежегодно должна падать масса, почти равная массе Луны. При таком темпе аккреции через 30 млн лет масса Солнца возросла бы вдвое по сравнению с нынешней. Как выяснилось позже, именно падение околозвездного вещества обеспечивает высокую светимость самых молодых звезд и некоторых старых «звездных остатков» — белых карликов, нейтронных звезд, черных дыр. Но к Солнцу и подобным ему звездам среднего возраста, пребывающим «в полном расцвете сил», процесс аккреции отношения не имеет. Астрономы XIX в. подтвердили, что не наблюдают падения комет на Солнце в таком количестве.

Обдумывая идею Майера, немецкий естествоиспытатель Герман Гельмгольц (Hermann von Helmholtz, 1821–1894) предположил, что на Солнце не обязательно должно что-то падать снаружи: «падать» на него может… вещество самого Солнца. Посмотрим еще раз на формулу для кинетической энергии (mv2/2): большой приток энергии обеспечивается либо высокой скоростью, либо большой массой. Поддержание высокой температуры звезды может происходить вследствие ее медленного сжатия. Сила тяготения при сжатии звезды совершает над газом работу, и это приводит к его нагреву. По расчетам английского физика Уильяма Томсона, барона Кельвина (William Thomson, 1st Baron Kelvin, 1824–1907), чтобы поддерживать свою светимость на современном уровне, Солнце должно ежегодно сжиматься всего на 90 метров, т.е. примерно на 1/15 000 000 долю своего радиуса. По оценке Томсона, сжимающееся Солнце могло светить не менее ярко, чем сегодня, на протяжении почти 30 млн лет.

Проверим это самостоятельным расчетом. Если ускорение силы свободного падения g = GM/R2, то работа силы тяжести по перемещению массы m на расстояние h составляет

Если сжатие звезды происходит под действием собственной силы тяжести, то m = M и h ≈ R. Тогда

Это приблизительная оценка, но если вы умеете интегрировать, то можно доказать это точно. Гравитационная энергия тела, выделяющаяся при его сжатии от очень большого размера до радиуса R, составляет αGM2/R, где α — коэффициент порядка единицы, зависящий от распределения массы внутри тела.

Если сжатие происходит медленно, квазистатически, то в недрах звезды должно поддерживаться гидростатическое равновесие, а значит, по мере сжатия должны возрастать давление и температура. Несложно показать, что выделяющаяся при сжатии гравитационная энергия будет при этом делиться пополам: одна половина пойдет на нагрев недр звезды, а вторая — на излучение. Для знатоков теоретической механики сошлюсь на теорему о вириале. А для любителей небесной механики и космонавтики — на соотношение энергий у тел, движущихся с первой и второй космическими скоростями.

Приняв α = 1 (к большой ошибке это не приведет), получим характерное время излучения сжимающейся звезды t ≈ GM 2/(2RL), где L — светимость (т.е. мощность излучения) звезды. В честь Кельвина и Гельмгольца астрофизики называют эту величину временем Кельвина—Гельмгольца (tKH). Для Солнца tKH ≈ GM2/(2RL), где L = 4 · 1026 Вт, M= 2 · 1030 кг и R = 7 · 108 м — светимость, масса и радиус Солнца. Подставляя эти значения в формулу, получим tKH = 30 млн лет — в точности как у Кельвина! Это характерное время высвечивания Солнцем его гравитационной энергии связи.

7.4. Солнце гаснет

Если у нас есть чувствительный детектор нейтрино, то мы заметим это сразу по прекращению потока солнечных нейтрино, рождающихся в термоядерных реакциях. Но не раньше чем через 8 мин 20 сек — времени, необходимого нейтрино, чтобы со скоростью близкой к световой долететь до Земли. Плюс время срабатывания самого детектора.

Если же у нас нет детектора нейтрино, то обычные астрономические наблюдения долго не позволят нам заметить выключение ядерного источника энергии Солнца, поскольку поддерживать его светимость будет другой источник — гравитационный (см. задачу «Солнце сжимается»). Размер Солнца при этом начнет уменьшаться. Современный угловой радиус Солнца около 15′ = 900″. Он существенно изменится за время Кельвина—Гельмгольца (см. задачу «Солнце сжимается») равное 30 млн лет. То есть скорость его изменения составляет примерно 900″/30 млн лет = 3 · 10–5 угловой секунды в год. Если мы регулярно будем измерять радиус Солнца с точностью до 3″ (это типичное качество изображений на дневном небе), то сможем заметить его изменение лишь через 100 тысяч лет! Обычно размером солнечного диска интересуются астрономы, прогнозирующие и изучающие солнечные затмения. Они-то первыми и заметят уменьшение Солнца.

Кроме размера будет меняться и светимость Солнца, но медленнее, поскольку с уменьшением площади поверхности будет возрастать ее температура. Характерная скорость этого процесса также определяется временем Кельвина—Гельмгольца (30 млн лет). Наблюдаемые сейчас переменность солнечной светимости лежит в пределах 0,1% и не сказывается на биосфере Земли. Однако расчеты показывают, что изменение светимости на 1% приведет к изменению средней температуры Земли на 1÷2 K, что, вероятно, будет отмечено биосферой. Характерное время этого изменения не короче 300 тысяч лет.

7.5. Солнце испаряет Землю

Чтобы вода с Земли улетучилась в космос, ее надо нагреть до 100 °С, испарить и сообщить ее молекулам вторую космическую скорость. Теплоемкость воды — 4,2 кДж/(кг · K), а теплота ее испарения — 2256 кДж/кг. В глубине океанов вода холодная, так что нагреть ее придется от 0 °С до 100 °С. Полная работа по испарению килограмма воды составит 2676 кДж. А чтобы удалить молекулы в космос, нужно сообщить им 2-ю космическую скорость: V2 = 11,2 км/с. Для удаления с Земли 1 кг чего угодно потребуется η = (1 кг) V22/2 = 6,27 · 107 Дж. Это значение настолько больше теплоты нагревания и испарения воды, что только им и можно ограничиться.

Справочники подсказывают нам, что объем Мирового океана составляет 1340,74 млн км3, общий объем воды на планете — 1390 млн км3, а общая масса воды M = 1,46 · 1021 кг, что в 4000 раз меньше массы самой Земли. Светимость Солнца L = 4 · 1026 Вт. И у нас все готово, чтобы получить результат. Время испарения Мирового океана (или всей земной воды, что практически одно и то же) составит

Иными словами, Солнце высушит Землю менее чем через 4 минуты.

Вычислить время полного разрушения Земли немного сложнее, поскольку по мере испарения ее внешних частей на поверхности оставшейся внутренней части будет меняться 2-я космическая скорость. Но, учитывая, что основная масса планеты лежит вблизи ее поверхности (благодаря росту площади шара как R2), ошибка будет невелика, если мы не станем учитывать этот факт. Тогда время полного испарения Земли будет в 4000 раз больше, чем время испарения воды (просто пропорционально их массам). Оно составит 10,6 суток. Полторы недели — и Земли нет. Вот на что способно наше Солнце. Хорошо, что оно этого не делает.

7.6. Пылинка у Солнца

Поскольку это пылинка, т.е. радиус ее (r) мал, будем считать, что она быстро прогревается на всю глубину и всюду — и внутри, и на поверхности — имеет одинаковую температуру (T). Солнце, имеющее светимость L, создает на расстоянии R, вблизи пылинки, освещенность L/(4πR2). Пылинка абсолютно черная, полностью поглощающая солнечный свет, следовательно, на нее падает поток тепла πr2L/(4πR2). В стационарном состоянии такое же количество тепла должно излучаться с поверхности пылинки, площадь которой 4πr2. Излучение абсолютно черного тела описывается законом Стефана—Больцмана:

ε = σT4,

где ε — поток энергии, уходящий с единицы поверхности тела, а σ = 5,67 · 10–8 Вт м–2 K–4 — постоянная Стефана—Больцмана. Значит, пылинка будет излучать с мощностью 4πr2σT4. Из равенства потоков приходящего и уходящего тепла

получим выражение для температуры:

Обратите внимание, что температура пылинки не зависит от ее размера, пока выполняются принятые выше условия. То есть, она не должна быть слишком маленькая (при размере, сравнимом или меньше длины волны излучения, закон Стефана—Больцмана использовать нельзя) или слишком большая (температура на поверхности не будет везде одинаковой). Как известно, L = 4 · 1026 Вт. Тогда температура составит

Как видим, на орбите Земли у пылинки вполне «комнатная» температура — около 8 °C. На орбите Юпитера (R = 5,2 а. е.) она существенно ниже (123 K = −150 °С), а на орбите Нептуна (R = 30,1 а. е.) пылинка будет совсем холодная (51 K = −222 °С). С другой стороны, на орбите Меркурия (R ≈ 0,39 а. е.) пылинка нагреется до такой степени (450 К = 177 °С), что полностью потеряет летучие вещества (молекулы воды и других легких газов). А вблизи поверхности Солнца (R = R = 4,7 · 10–3 а. е.) пылинка нагреется до 4113 K = 3840 °С, а значит, наверняка испарится.

7.7. Прозрачное Солнце

Если Солнце мгновенно станет прозрачным, то все фотоны из его недр тут же вырвутся наружу. Нетрудно оценить среднюю энергию фотонов, заполняющих Солнце: по своей температуре излучение находится в равновесии с веществом, а температура последнего характеризуется удельной гравитационной энергией, которая близка к квадрату первой космической скорости на поверхности (440 км/с). Поскольку характерная температура 104 K соответствует скорости 10 км/с, то для скорости 400 км/с получим температуру 1,6 · 107 K (не возбраняется и сразу вспомнить центральную температуру Солнца). Для фотонов, по закону Вина, это λ = 3 мм/Т ≈ 2Å (энергия кванта = 5 кэВ — довольно жесткий рентген).

Продолжительность вспышки легко оценить по световому размеру Солнца: R/c = 2÷3 сек. А мощность — по закону Стефана—Больцмана: 4πR2σT4 (где Т = 16 млн K) = 2 · 1040 Вт = 5 · 1013 L. Это будет рентгеновская вспышка невероятной мощности!

7.8. Пятно на Солнце

На второй вопрос ответить легко. Если гигантское пятно полностью состоит из тени, то его температура около 4000 K, а эффективная температура чистой солнечной поверхности около 5800 K. Закон Стефана—Больцмана говорит, что поток солнечного тепла ослабнет в (5800/4000)4 раз, а равновесная температура маленького (или быстро вращающегося) тела понизится в 5800/4000 раз (см. задачу «Пылинка у Солнца»). Если сейчас она составляет около 281 K, то станет 194 K = −79 °С. На самом деле она будет еще ниже, поскольку вся Земля покроется снегом и льдом, отражающими обратно большую часть света. Пожалуй, станет холоднее, чем в лунную ночь в Антарктиде.

На первый вопрос задачи ответить сложнее, поскольку нужно определить, какая часть солнечного излучения попадает в визуальный диапазон спектра при разных температурах поверхности светила. В принципе это можно сделать, если проинтегрировать по частоте излучения произведение двух функций: функции, описывающей солнечный спектр (она близка к функции Планка для спектра абсолютно черного тела), и функции, описывающей чувствительность нашего глаза. Но это сложно. А мы поступим проще: сравним излучение охладившейся до 4000 K поверхности Солнца с излучением лампы накаливания. У обычных лампочек вольфрамовая спираль раскалена до температуры 2700 K, и поэтому основная мощность ее излучения лежит в невидимом инфракрасном диапазоне (закон смещения Вина). Световой КПД такой лампы составляет около 5%. Если спираль лампы раскалить до температуры около 3400 K (что близко к температуре плавления вольфрама), то КПД достигает 15%, но лампа при этом быстро сгорает. У энергосберегающих люминесцентных ламп цветовая температура 4200 K и световая эффективность (если верить рекламе) в 5 раз выше, чем у ламп накаливания, т.е. КПД около 25%. Учитывая это, мы можем с чистой совестью принять для солнечного пятна значение световой эффективности равным 22%. В этом случае поток видимого света от полностью «запятненного» Солнца понизится в

Теперь понятно, почему пятно на фоне солнечной поверхности выглядит таким темным.

Цвет «запятнанного» Солнца немного сдвинется в красную сторону, но не очень сильно. Дело в том, что голубая часть солнечного света рассеивается в земной атмосфере и в прямых солнечных лучах все равно до нас не доходит (зато тени на снегу в солнечный день имеют голубой оттенок). Именно поэтому свет ламп с цветовой температурой 4200 K называют «дневным».

Поскольку «запятненное» Солнце будет посылать намного меньше голубых лучей, дневное небо станет значительно темнее. Но освещение земной поверхности понизится всего в 20 раз. Вспомнив, что полная Луна освещает Землю в 400 000 раз слабее Солнца (см. задачу 4.4 «Светло ли на Плутоне?»), мы увидим, что «запятненное» Солнце будет светить в 20 000 раз ярче Луны, а это не хуже, чем само Солнце освещает землю в облачный осенний день.

7.9. Черный-черный…

Ответ: в — а — б. Черное тело испускает все, что получило извне. Черный ящик (понятие из кибернетики) выдает хотя бы что-то на выходе. Классическая черная дыра не испускает ничего. Квантовая может, но очень мало.

7.10. Почти со скоростью света

Если звездолет летит со скоростью, близкой к скорости света, то эффект Доплера и эффект аберрации света будут хорошо заметны «на глаз». Первый приведет к тому, что звезды по курсу корабля поголубеют и станут ярче, а за кормой — покраснеют и ослабнут. Второй эффект сдвинет все звезды вперед по курсу. Поэтому в направлении полета на небе будет много ярких голубых звезд, а за кормой — несколько слабеньких красных.

7.11. Солнечный ветер-1

Давление солнечного ветра равно удвоенному (из-за отражения) потоку импульса летящих протонов:

mpnv2 = 2 · 1,67 · 10–27 кг · 107 м–3 (4,5 · 105 м/с)2 = 6,8 · 10–9 Н/м2.

А давление света — удвоенному потоку импульса квантов:

То есть давление света в тысячу раз сильнее, чем давление ветра на ту же площадь отражателя.

7.12. Солнечный ветер-2

Будем считать солнечный ветер сферически симметричным с такими же параметрами, как у орбиты Земли (хотя это не совсем так). Тогда удельный поток массы солнечного ветра составит

mpnv = 1,67 · 10–27 кг · 107 м–3 · 4,5 · 105 м/с = 7,5 · 10–15 кг м–2 с–1.

Для солнечного ветра эквивалентный удельный поток массы составляет

То есть в форме излучения Солнце теряет вдвое больше массы, чем в форме корпускулярного потока.

Сложив оба потока (2,4 · 10–14 кг м–2 с–1) и умножив на площадь сферы радиусом 1 а. е., 4π (150 млн км)2 = 2,8 · 1023 м2, получим полный темп потери массы Солнцем: 6,7 · 109 кг/с или 2 · 1017 кг/год. Учитывая полную массу Солнца (2 · 1030 кг), видим, что относительная потеря массы в нашу эпоху составляет 10–13/год.

7.13. Гиганты и карлики

Карлики горяче́е, поскольку для получения одинаковой степени ионизации и возбуждения элементов (которыми и определяется вид спектра) при более высокой плотности необходима более высокая температура. Высокая плотность в атмосфере карликов связана с их большей силой тяжести, дающей меньшую шкалу высот, при которой заметная оптическая толща набирается уже в более плотных областях. В протяженной атмосфере гигантов та же толща набирается еще в очень разреженных, верхних областях атмосферы.

7.14. Нуклеосинтез

По мере выгорания легких элементов в ядре звезды температура и плотность растут со временем, что позволяет формироваться все более сильно связанным ядрам тяжелых элементов. А в ранней Вселенной в результате быстрого расширения температура и плотность уменьшались. Когда температура снизилась настолько, что синтез легких элементов еще мог протекать и при этом ядра дейтерия и гелия уже не разрушались, для синтеза более тяжелых элементов температура и плотность стали уже малы. Произошла так называемая «закалка» — химический состав вещества стабилизировался.

7.15. Синтез гелия

В недрах звезд нет свободных нейтронов, поскольку время их жизни порядка 10 минут. Поэтому в синтезе гелия необходима реакция превращения протона в нейтрон, самая медленная в цепи термоядерных реакций. В ранней Вселенной в первые минуты расширения нейтронов было почти столько же, сколько и протонов, поэтому реакция их объединения в дейтерий и далее в гелий шла очень быстро. Через 5 минут температура и плотность снизились, и реакция прекратилась.

8. Звездные системы

8.1. Скопление одинаковых звезд

Вспомним, что при увеличении потока света в 100 раз блеск небесного объекта, по определению, сокращается на 5 звездных величин. Математически это можно выразить так: группа из N одинаковых звезд на 2,5 lg N звездных величин ярче каждой из них. Действительно, десятичный логарифм 100 равен двум:

lg 100 = lg 102 = 2 lg 10 = 2 · 1 = 2,

поэтому 2,5 lg 100 = 5. Заметьте, что 2,5 — это не сокращенное основание шкалы звездных величин 2,512…, а именно и ровно 2,5.

Теперь наша задача решается легко: полный блеск скопления равен m − 2,5 lg N.

8.2. Скопление разных звезд

Сначала решим задачку попроще: есть две звезды с блеском m1 и m2. Каков их суммарный блеск? Сначала перейдем к потокам света, сложим их, а затем вернемся к звездным величинам. Тогда суммарный блеск (msum) составит

msum = −2,5 lg (2,512 – m1 + 2,512 – m2).

Теперь вспомним задачу «Скопление одинаковых звезд» и найдем суммарный блеск N1 одинаковых звезд с блеском m1 у каждой, обозначив его m (1), и суммарный блеск N2 одинаковых звезд с блеском m2 у каждой, обозначив его m (2):

m (1) = m1 – 2,5 lg N1

m (2) = m2 – 2,5 lg N2.

А теперь используем первую формулу, чтобы найти суммарный блеск скопления:

msum = −2,5 lg (2,512 – m (1) + 2,512 – m(2)).

Подобным методом можно суммировать блеск любого количества однотипных звезд. В высшей математике суммирование большого количества небольших чисел называют интегрированием. Поэтому астрономы вместо слов «полный» или «суммарный» обычно говорят «интегральный блеск звездного скопления».

8.3. Движется звезда

В году 3,156 · 107 секунд, а в столетии 3,156 · 109 секунд. За это время звезда пройдет V · 3,156 · 109 км, или V · 3,156V · 109/150 · 106 = 21V астрономических единиц. По определению парсека, одна астрономическая единица с расстояния в 1 парсек видна под углом в 1″. А 21V а. е. с расстояния R парсеков видны под углом 21″(V/R). Например, если звезда летит со скоростью 50 км/с на расстоянии 100 пк от нас, то за 100 лет она сместится относительно более далеких светил на 10,5″, что без труда можно заметить даже с помощью небольшого телескопа.

8.4. Сверхновая Тихо Браге

Любой электронный планетарий поможет вам восстановить картину той ночи. Если в вашей программе не обозначена Nova Tycho, то ее приблизительные координаты 0h, +62°. В эти дни Тихо жил в Швеции, в местечке с координатами 56° с. ш., 13° в. д.

Как видим, ночное небо в тот период было очень привлекательным для астронома: Луна приближалась к первой четверти и еще не засвечивала небо, к полуночи высоко поднимался яркий (−3m) Юпитер. А новая звезда сияла недалеко от зенита. Не заметить ее было просто невозможно, поскольку располагалась она прямо внутри астеризма «W» Кассиопеи. В конце ночи поднималась Венера, а в лучах утренней зори восходил Меркурий.

Под утро, когда Венера была уже на высоте 20°, Nova опускалась на севере до 30°. Сравнивать их блеск было удобно. До полудня Nova проходила через нижнюю кульминацию на высоте около 28° и к вечеру вновь поднималась над горизонтом к высоте 70°. Трудно было бы ожидать более удобных условий для наблюдения этого замечательного события — взрыва сверхновой звезды в эпоху рождения современной науки. А самое приятное и неожиданное, что в те дни поздней осени над Северной Европой было ясное небо!

8.5. Сверхновая Кеплера

В эти дни было редкое сочетание планет: в южной части Змееносца на расстоянии всего нескольких градусов друг от друга сошлись Юпитер, Сатурн и Марс, притягивая к себе внимание астрономов. И в этом же месте вспыхнула сверхновая! Правда, вся эта компания ярких светил скрывалась на юго-западе под горизонтом вскоре после захода Солнца. Луна в эти дни была близка к полнолунию и уже довольно высоко поднималась на востоке. Оценить блеск сверхновой удавалось именно благодаря ее близости к ярким планетам. Во второй половине дня Сверхновая Кеплера кульминировала на высоте около 18° над горизонтом, что делало ее дневное наблюдение весьма непростым делом.

После этих двух вспышек сверхновых — Тихо и Кеплера — прошло три века, пока в 1885 г. на земном небосклоне люди вновь заметили вспышку сверхновой, но уже в соседней галактике Туманность Андромеды (S Andomedae, 6m). Скорее всего, она осталась бы незамеченной, если бы в те годы астрономы уже активно не пользовались телескопами. Следующую сверхновую невооруженным глазом увидели лишь четыре века спустя — в 1987 г. Она вспыхнула совсем недалеко от нашей Галактики, в Большом Магеллановом Облаке, и в максимуме блеска достигла +2,9m.

8.6. Хаббл на шаре

Расстояние между точками на сфере D = αR, где α — центральный угол, R — радиус сферы. Скорость взаимного удаления точек

Но для любой пары точек dα/dt = 0. Поэтому

Но (1/R)dR/dt для всех точек на шаре одинаково, поэтому в любой фиксированный момент времени V ~ D.

Для модели в виде точек на поверхности надуваемого шара закон Хаббла справедлив.

8.7. Отверстие в небе

Гюйгенс открыл Большую туманность Ориона, известную сегодня всем любителям астрономии. Позднее выяснилось, что до Гюйгенса, возможно первым в Европе, в 1618 г. эту туманность наблюдал в телескоп швейцарский астроном Иоганн Цизат (1586–1657), но не обратил на это должного внимания.

8.8. Путешествие света

Красным смещением называют относительное изменение длины волны линий в спектре удаляющейся галактики: z ≡ Δλ/λ. Оно возникает в результате эффекта Доплера. Если скорость удаления галактики значительно меньше скорости света (v c), то эффект Доплера описывается очень простой формулой: Δλ/λ = v/c. Отсюда v = cz.

Закон Хаббла говорит, что скорость удаления галактики и расстояние до нее (D) связаны линейной зависимостью: v = H0D. Следовательно, D = cz/H0. А время путешествия света от галактики до наблюдателя составит t = D/c = z/H0.

Осталось вычислить значение H-10. Как известно, 1 парсек = 206 265 а. е. = 206 265 · 150 млн км = 3,1 · 1013 км. А 1 Мпк = 106 пк. Дальше совсем просто:

Итак, если красное смещение линий в спектре галактики равно z и при этом не очень велико (скажем, не более 0,2 · 0,3), то свет от нее до наблюдателя путешествовал t = z · 14 млрд лет.

8.9. «Гайя» смотрит на Солнце

Радиус орбиты Юпитера 5,2 а. е., а его масса в 1000 раз меньше солнечной, значит, полный размах колебаний Солнца относительно их общего с Юпитером центра масс составляет 10,4 а. е./1000. Отрезок в 1 а. е. с расстояния в 1 пк виден под углом в 1″ (по определению парсека). Значит, отрезок в (10,4/1000) а. е. под углом в 0,00002″ будет виден с расстояния (10,4/1000)/0,00002 = 520 пк.

8.10. Андромеда и Треугольник

Угловое расстояние на небе между галактиками М31 и М33 составляет 14,8°. Расстояние до М31 оценивается в 778±33 кпк. Расстояние до М33 оценивается со значительно меньшей точностью: от 730 до 940 кпк. Поэтому минимальным расстоянием между ними в пространстве будет такое, при котором мы будем считать их на одинаковом расстоянии от Земли. Пусть это будет расстояние до М31 (778 км), поскольку оно известно лучше. Учитывая невысокую точность измеренных расстояний, угол 14,8° можно считать небольшим по сравнению с радианом (≈ 57,3°) и ограничиться простой пропорцией: минимальное расстояние между галактиками составляет 778 кпк − (14,8/57,3) ≈ 200 кпк.

8.11. Сколько скоплений в Галактике

Диск Галактики — плоская звездная система с характерной толщиной существенно меньше чем 3 кпк. Поэтому наши наблюдения «вырезают» из него не сферу, а круг радиусом 3 кпк, составляющий от полной площади диска (3/18)2 = 1/36 часть. Если плотность числа звездных скоплений в других частях диска примерно такая же, как в окрестности Солнца, то всего в диске 1500 · 36 = 54 000 скоплений.

8.12. Столкновение с Андромедой

Скорость света 300 000 км/с, значит, за год наши две галактики сближаются на (110/300 000) = 3,7 · 10–4 светового года. Соответственно, на путь в 2,5 млн световых лет им понадобится 2,5 · 106/3,7 · 10–4 = 6,8 · 109 лет, т.е. около 7 млрд лет. На самом деле взаимное притяжение галактик ускоряет из сближение и сократит его время до 4 млрд лет. При этом, скорее всего, галактики не столкнутся «в лоб», а лишь пройдут недалеко друг от друга. Но приливное взаимодействие затормозит их движение, и, развернувшись обратно, они окончательно сольются через 6 млрд лет.

8.13. Галактики столкнулись

Представим галактику как плоскую мишень радиусом R, содержащую N звезд. Средняя поверхностная плотность числа звезд в ней составляет NR2. Все звезды будем считать одинаковыми, имеющими радиус r. Поскольку скорость сближения галактик (1000 км/с) существенно больше второй космической скорости на поверхности звезд (типичная, как у Солнца, около 620 км/с), слаб будет эффект гравитационной фокусировки, т.е. сближения траекторий звезд под действием взаимного тяготения можно не учитывать. Поэтому будем считать их траектории прямыми, а фактом столкновения — пролет на взаимном расстоянии менее 2r между их центрами. Следовательно, вероятность для одной звезды, пролетающей сквозь галактику, испытать столкновение составит 4πr2NR2. А для оценки полного числа столкновений нужно умножить эту вероятность на количество звезд в галактике. Получим

Подставим типичные для нашей Галактики значения: N = 1011, R = 10 кпк, r = R. В результате получим вероятность столкновения хотя бы одной пары звезд равной 0,2. С чистой совестью мы можем сказать, что при столкновении галактик в большинстве случаев не происходит ни одного столкновения их звезд.

8.14. Перемены в звездном небе

Утверждение о том, что по сравнению с земным небом картина звездного неба на Марсе или Сатурне будет совсем иной и с детства знакомая всем Большая Медведица вполне может «разойтись» по разным созвездиям, совершенно неверно. Расстояние между планетами в сотни тысяч и даже миллионы раз меньше, чем расстояние до околосолнечных звезд, определяющих картину звездного неба. Поэтому перемещение наблюдателя с одной планеты Солнечной системы на другую никак не скажется на картине звездного неба, доступной невооруженному глазу.

Утверждение о том, что Полярная звезда утратит свою способность показывать на север, в общем случае совершенно справедливо. У каждой планеты своя ориентация оси вращения, следовательно, и свое положение северного полюса мира, т.е. точки на небе, в которую направлен северный конец оси вращения планеты. У Земли этот полюс располагается вблизи Полярной звезды (α Малой Медведицы). У Марса — близ границы созвездий Лебедь и Цефей, не очень далеко от яркой звезды Денеб (α Лебедя). У Сатурна — в северной части созвездия Цефей, недалеко от нашей Полярной звезды, всего лишь в 5 градусах. Так что для путешественников по поверхности Сатурна Полярная звезда вполне могла бы служить указателем севера. Жаль только, что твердой поверхности у Сатурна нет.

Последнее утверждение в приведенном отрывке состоит в том, что «конфигурация созвездий меняется со временем: 100 000 лет назад та же Большая Медведица могла выглядеть несколько иначе». Заметим сразу, что М. Э. Рут путает понятия «созвездие» (площадка на небе) и «астеризм» (фигура из ярких звезд). Разумеется, речь идет об астеризмах. И тут автор пособия права: собственное движение звезд в пространстве (в том числе и движение Солнца) приводит за длительное время к существенному изменению конфигураций звезд. Например, Ковш Большой Медведицы сильно меняет свою форму за 150 000 лет.

9. Простые вопросы по астрономии

1.   На экваторе вблизи точки севера.

2.   Сириус, за ним Вега, а блеск Полярной по сравнению с ними весьма невелик.

3.   Около 6000 звезд (при идеальных условиях наблюдения и стопроцентном зрении).

4.   Два — Фобос и Деймос.

5.   Затмения происходили бы чаще — ежемесячно.

6.   Корабельный календарь отстал на 1 день. Плывя за запад, моряки совершили на 1 суточный оборот меньше, чем неподвижный порт на материке.

7.   Сатурн действительно сплюснут вдоль полярной оси из-за быстрого вращения.

8.   Это Луна убывающая, «старая».

9.   Зимой, в начале января, проходя через перигелий своей орбиты.

10. В начале января, в перигелии своей орбиты.

11. Почти из чистого углекислого газа.

12. Почти из чистого углекислого газа.

13. Смена дня и ночи на Земле будет, поскольку орбитальное движение Земли приводит к кажущемуся обращению Солнца вокруг нее с периодом в 1 год.

14. Восемь: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.

15. Два меркурианских года, т.е. 176 земных суток.

16. Титан, спутник Сатурна.

17. У Меркурия и Венеры.

18. Космическое тело с массой больше, чем у планеты, но меньше, чем у звезды.

19. В космосе атмосфера не портит изображения.

20. 366 суток.

21. Блеск, т.е. поток излучения вблизи наблюдателя.

22. Причиной смены сезонов, происходящей в противофазе в Северном и Южном полушариях Земли, служит наклон земной оси вращения к плоскости ее орбиты, из-за которого Солнце полгода лучше греет одно полушарие Земли, а вторые полгода — другое.

23. Дважды — в дни равноденствий.

24. Требовалась прямая радиосвязь с Землей, а с обратной стороны Луны Земля не видна.

25. 88.

26. Во-первых, в «зимние» месяцы холоднее не везде: в Южном полушарии теплее. Во-вторых, изменение температуры от сезона к сезону в подавляющей степени связано с наклоном земной оси к плоскости орбиты (к эклиптике) и вытекающей из этого различной высоте Солнца над горизонтом и продолжительности дня зимой и летом. Небольшое изменение расстояния от Солнца, вызванное эксцентричностью земной орбиты, лишь чуть-чуть сглаживает сезонные колебания температуры в Северном полушарии и усиливает их в Южном.

27. Ближе всего. В период противостояния, с точки зрения земного наблюдателя, Марс и Солнце располагаются в диаметрально противоположных направлениях на небе, т.е. противостоят друг другу. При этом расстояние от Земли до Марса достигает текущего минимума. А если противостояние «великое», то практически абсолютного минимума. Последнее великое противостояние было в 2003 г. Его даже называли «величайшим», поскольку оно было самым тесным за ближайшие несколько столетий. Следующее великое будет в 2018 г. Вместо слова «противостояние» астрономы нередко используют слово «оппозиция», от лат. oppositio и англ. opposition.

28. Венера ближе к Земле в нижнем соединении.

29. Меркурий виден по вечерам в период его наибольшей восточной элонгации.

30. Попятное движение Марса наблюдается в период его противостояния, поскольку Земля в этот период обгоняет его в орбитальном движении.

31. В соединении, когда диск Марса освещен полностью. Однако в этой конфигурации наблюдать его с Земли практически невозможно — мешает Солнце.

32. В наибольшей восточной элонгации.

33. День равен ночи сегодня и всегда — на экваторе. Но если сегодня день весеннего или осеннего равноденствия, то день равен ночи и во всех прочих местах Земли (кроме полюсов, конечно).

34. Чтобы уменьшить искажающее влияние атмосферы.

35. Соответственно в полнолуние и в новолуние.

36. Одни звездные и ни одних солнечных суток.

37. Вращение Солнца было доказано по движению пятен на солнечном диске (Й. Фабрициус, Г. Галилей).

38. По внешнему виду трудно отличить небольшое круглое пятно без полутени от диска планеты. Но за несколько минут наблюдений солнечное пятно практически не переместится, тогда как планета за это время заметно передвинется на фоне солнечного диска.

39. Древние греки полагали, что утреннюю видимость демонстрирует планета Фосфорос, а вечернюю — планета Гесперис.

40. Температура на поверхности Венеры, измеренная космическими аппаратами, оказалась около 480 °С, что больше критической температуры для воды (Т = 374,4 °С), выше которой она не может существовать в жидкой фазе ни при каком давлении.

41. «Фобос» и «Деймос» в переводе на русский язык означают соответственно «Страх» и «Ужас». Марс в римской мифологии — бог войны. В мифах его сопровождают Фобос и Деймос (по одним мифам — сыновья Марса, по другим — его псы), точно так же, как в реальной жизни война несет с собой страх и ужас.

42. От имен тел Солнечной системы получили свои названия восемь химических элементов: гелий от Гелиоса — Солнца; селен от Селены — Луны; теллур от Теллуса — Земли; уран, нептуний и плутоний — от названий планет Уран, Нептун и Плутон; палладий и церий — от имен крупнейших астероидов, Паллады и Цереры.

43. На спутнике Юпитера Ио много действующих вулканов. На планете Венера есть косвенные признаки вулканической деятельности; самих вулканов пока не видно. На спутнике Нептуна Тритоне и на спутнике Сатурна Энцеладе найдены действующие «сухие вулканы», выбрасывающие водяной и азотный снег, поэтому их еще называют криовулканами или криогейзерами. Следы криовулканизма найдены и на карликовой планете Церера.

44. «Антарес» в переводе с греческого означает «соперник Ареса» (Марса). Эта звезда по своему красному цвету, блеску и близости к эклиптике похожа на Марс, когда тот находится в противостоянии.

45. Кроме Солнца на дневном небе невооруженным глазом видны два ночных светила — Луна и Венера.

46. Период вращения Земли равен звездным суткам — 23 часа 56 мин 04 сек.

47. Поскольку Луна движется недалеко от эклиптики, вблизи полнолуния зимой она находится там же, где Солнце летом, т.е. в северной части эклиптики. Поэтому Луна зимой повторяет дневной путь Солнца в разгар лета, т.е. поднимается высоко над горизонтом.

48. Может, если суточное вращение планеты и ее обращение вокруг Солнца происходят в одном направлении и с близкими периодами. Например, на Меркурии, где продолжительность суточного периода (т.е. звездные сутки) составляет 2/3 орбитального периода (т.е. года), солнечные сутки длятся 2 меркурианских года, а световой день — 1 год. Если бы суточный и орбитальный периоды совпадали, то смена дня и ночи вообще прекратилась бы.

49. Задача кажется очень легкой: искомая точка — Северный полюс. Но не торопитесь: существуют и другие решения. Попробуйте найти их все! А если не удается, посмотрите решение задачи.

50. Во-первых, когда звезда видна у горизонта, ее свет проходит длинный путь в атмосфере (почти в 40 раз больший, чем при наблюдении звезды в зените) и, соответственно, испытывает большое поглощение. Во-вторых, собственное свечение атмосферы по той же причине больше у горизонта, чем вблизи зенита. Поэтому на более ярком фоне у горизонта ослабленный свет звезды кажется еще слабее.

Простые тесты по астрономии

Тесты с 3 вариантами ответа

Тесты с 5 вариантами ответа

1г, 2а, 3г, 4д, 5а, 6г, 7в, 8а, 9б, 10а, 11г, 12в, 13б, 14б, 15г, 16б, 17в, 18д, 19б.

Литература

Гусев Е. Б. Сборник вопросов и качественных задач по астрономии. М.: Просвещение, 2002.

Гусев Е. Б., Сурдин В. Г. Расширяя границы Вселенной: история астрономии в задачах. М.: МЦНМО, 2003.

Дарвин Дж. Приливы и родственные им явления в Солнечной системе. М.: Наука, 1965.

Кононович Э. В., Мороз В. И. Общий курс астрономии. М.: УРСС, 2004–2015.

Куликовский П. Г. Справочник любителя астрономии / под ред. В. Г. Сурдина. М.: Либроком, 2009.

Литцман В. Великаны и карлики в мире чисел. М.: Физматлит, 1959.

Мартынов Д. Я. Курс практической астрофизики. М.: Наука, 1977.

Мартынов Д. Я., Липунов В. М. Сборник задач по астрофизике. М.: Наука, 1986.

Перельман Я. И. Занимательная астрономия. М.; Л.: Гостехиздат, 1949.

Романов А. М. Занимательные вопросы по астрономии и не только. М.: МЦНМО, 2005.

Субботин Г. П. Сборник задач по астрономии: задания, упражнения, тесты. М.: Аквариум, 1997.

Сурдин В. Г. Вселенная от А до Я. М.: Эксмо, 2012.

Сурдин В. Г. Приливные явления во Вселенной. М.: Знание, 1986.

Сурдин В. Г. Пятая сила. М.: МЦНМО, 2002.

Сурдин В. Г. Астрономические олимпиады. Задачи с решениями. М.: МГУ, 1995.

Сурдин В. Г. Астрономические задачи с решениями. М.: Едиториал УРСС, 2002.

Сурдин В. Г. Задачи Старика Хоттабыча // Квант. 1992. №8. С. 43–45.

Флиндт Р. Биология в цифрах. М.: Мир, 1992.

Штернфельд А. А. Парадоксы космонавтики. М.: Наука, 1991.

Использованные иллюстрации

Фото: Aaron J. Groen, ; Constantinos Emmanoulidis, обработка — Miloslav Druckmüller; Adam Block, and Tim Puckett, ; Vincent Jacques; Международное общество наблюдателей переменных звезд, ; T. A. Rector, I. P Dell’Antonio, NOAO/AURA/NSF; APOD; ESA; ESO; JNASA; AXA (Японское космическое агентство).

Рисунки И. Ильинского (задачи 5.6, 5.15, 5.16).

Назад: Простые тесты по астрономии
На главную: Предисловие