Темой моего выступления будет мирное использование атомной энергии. Эта тема более приятна для обсуждения, чем та, о которой говорил д-р Оппенгеймер. Однако они настолько взаимосвязаны, что мы, к сожалению, не можем ожидать особенно плодотворных результатов для человечества от мирного использования атомной энергии, если не будет найдено удовлетворительного решения многочисленных проблем предотвращения разрушительного использования ее военных возможностей.
Если, приняв оптимистическую точку зрения – человечество окажется настолько сознательным, что сможет избегнуть опасностей атомного оружия и страха перед ним, – попытаться заглянуть в будущее, то можно задаться вопросом о возможных путях развития атомной энергии как созидающей силы.
Конечно, как вы понимаете, любые ответы на такой вопрос могут носить только крайне ориентировочный характер. Можно пытаться перечислить направления будущего развития, но невозможно сделать этот перечень даже приблизительно исчерпывающим.
Обсуждение я хотел бы начать с использования ядерных реакций для управляемого получения полезной мощности. Вот уже более трех лет работают использующие цепную реакцию котлы, скорость производства энергии в которых легко контролируется. Если при работе первого котла выделялось не более 200 Вт, то мощность последующих установок возросла в огромное число раз. Котлы, созданные в Хэнфорде для синтеза плутония, производят энергию в количествах, сравнимых с производительностью самых мощных гидроэлектростанций.
Однако в построенных до сих пор котлах энергия выделяется при таких низких температурах, что практически не может быть использована. Энергия хэнфордских установок фактически растрачивается на крайне неконструктивную цель – на нагревание (и то ненамного) воды в реке Колумбия.
Большинство из вас знает, я полагаю, что физической основой цепной реакции служит деление урана. Это явление было открыто незадолго до начала войны Отто Ганом и Штрассманом, работавшими в Берлине, и заключается в том, что при падении нейтрона на ядро урана оно испытывает весьма «насильственный» вид распада. Ядро расщепляется на два осколка, разлетающиеся с очень большими скоростями, и при этом выделяется относительно огромное количество энергии.
Но цепная реакция осуществляется вовсе не благодаря большому количеству выделяющейся энергии, а благодаря тому, что наряду с испусканием продуктов деления происходит испускание нескольких нейтронов. Если предположить, например, что при каждом акте деления испускается 2 нейтрона и что все образующиеся в системе нейтроны вызывают новые акты деления, то получатся условия, ведущие к цепной реакции взрывного характера. Действительно, если в систему описанного типа ввести 1 первичный нейтрон, то он произведет деление, и появятся 2 нейтрона. Каждый из них, в свою очередь, произведет 2 нейтрона и т. д.
Итак, число нейтронов будет удваиваться за каждый шаг, или «поколение». Поэтому их число будет быстро увеличиваться, так что реакция становится крайне интенсивной и выделяется огромное количество тепла. Такое внезапное высвобождение энергии приводит к атомному взрыву. О системе, подобной описанной, говорят, что ее коэффициент размножения равен 2, так как в каждом поколении 1 нейтрон вызывает появление 2 новых нейтронов.
При конструировании бомбы цель заключается в достижении условий, при которых энергия высвобождается как можно быстрее. Для этого требуется, чтобы время жизни поколения было как можно меньше, а число нейтронов в каждом поколении должно возрастать как можно больше. Для уменьшения времени жизни поколения надо использовать быстрые нейтроны. Для максимально возможного увеличения коэффициента размножения надо расположить вещества таким образом, чтобы к новым актам деления приводила максимальная доля нейтронов, т. е. чтобы получить наибольшее возможное число новых нейтронов.
Если же мы хотим получить управляемую цепную реакцию, то коэффициент размножения должен быть очень близок к 1; кроме того, отпадает необходимость в малых длительностях поколения. Действительно, сравнительно большие времена жизни поколения окажутся, пожалуй, более подходящими, так как при этом облегчится управление реакцией. Итак, для управляемой цепной реакции можно использовать медленные нейтроны.
Между бомбой и управляемой цепной реакцией имеется и более существенное различие. Быстрая реакция, используемая в бомбе, происходит на «драгоценном» делящемся веществе типа U, который выделяется из урана в Ок-Ридже, штат Теннесси, или плутония – нового элемента, производимого в Хэнфорде, штат Вашингтон.
Управляемая цепная реакция, напротив, может быть получена на естественном уране. Это вещество было использовано для получения первой цепной реакции по той простой причине, что «драгоценных» делящихся веществ тогда не было и в помине. Это вещество используется также во всех построенных до сих пор промышленных котлах. Естественный уран представляет собой, по существу, смесь U235238, составляющего около 99,3 %, и U235, составляющего около 0,7 %. Именно это ничтожное количество U235 делает цепную реакцию возможной, так как бомбардировка U235 медленными нейтронами не приводит к делению.
Цепную реакцию легко получить, если использовать чистый U235, так как при этом отсутствует паразитное поглощение, связанное с U238. При использовании естественного урана задача существенно усложняется, так как в этом случае положительный избыток нейтронов в каждом поколении настолько мал, что для получения коэффициента размножения, большего единицы, необходимо свести до минимума все неизбежные потери.
Итак, с этой точки зрения присутствие U238 очень нежелательно. Но, с другой стороны, U238 играет очень существенную роль в производстве плутония. Действительно, при реакции происходит преобразование U238 в плутоний. Механизм этого преобразования описывается следующими ядерными процессами:
U238 + n → U239,
U239 → Np239 + е-,
Np239 → Pu239 + e-.
Первая из этих реакций описывает поглощение нейтрона ядром U239, превращающегося при этом в изотоп U239. Как указывается второй реакцией, U239 является нестабильным изотопом урана, распадающимся с испусканием электрона и превращающимся в изотоп нового элемента, нептуния, с зарядом 93 и массой 239.
Превращение урана в нептуний занимает около получаса. Образовавшийся Np239, как видно из третьей реакции, также нестабилен и распадается с испусканием электрона, превращаясь за несколько дней в конечный продукт реакции, Рu239. Если рассмотреть суммарный баланс цепной реакции этого типа, то станет ясно, что U235 будет постепенно расходоваться на поддержание реакции, а U238 будет медленно превращаться в Рu239.
Чтобы котел, использующий цепную реакцию, работал на постоянном уровне, коэффициент размножения должен быть равен 1. Если он больше 1, то интенсивность возрастает; если он меньше 1, то интенсивность падает. Поэтому оператор должен иметь возможность придать коэффициенту размножения любое желаемое значение вблизи 1. Для этого обычно используются так называемые «управляющие стержни». Эти стержни, сделанные из вещества, сильно поглощающего нейтроны, оператор может вводить в котел на точно определенную глубину.
Число нейтронов, поглощаемых стержнями и, значит, удаляемых из участия в реакции, зависит от той глубины, на которую введены стержни в котел. Следовательно, коэффициент размножения также будет зависеть от положения стержня. Он будет максимален, когда стержень выведен наружу, и минимален, когда стержень полностью введен внутрь котла.
Условия обычно подбираются таким образом, чтобы коэффициент размножения был равен 1 при некотором среднем положении стержня, называемом «критическим положением». При дальнейшем выдвижении стержня коэффициент размножения становится больше 1, а при введении стержня – меньше 1.
Если оператору надо увеличить скорость реакции, то стержень выдвигается из котла настолько, чтобы коэффициент размножения стал немного больше 1. Число нейтронов при этом постепенно возрастает. Если оператор хочет уменьшить скорость реакции, то все, что он должен для этого сделать, – это вдвинуть стержни в котел несколько дальше критического положения. Тогда коэффициент размножения становится меньше 1 и скорость реакции постепенно уменьшается. Если мощность должна оставаться на постоянном уровне, то оператор устанавливает стержни в критическое положение.
Из сказанного ясно, что задача управления скоростью реакции в котле принципиально очень проста. Опыт показал, что задача управления действительно может быть очень просто решена и на практике. Искусством сохранения режима работы котла неизменным можно полностью овладеть за несколько часов (независимо от того, для производства какого – большого или малого – количества энергии предназначен котел). Нетрудно также сохранить интенсивность котла на любом заданном постоянном уровне, если стержни будут перемещаться с помощью механических устройств, управляемых автоматически. В этом случае оператору остается только следить за панелью управления.
Главная техническая трудность, мешающая в настоящее время практическому использованию атомной энергии, состоит в следующем. Во всех построенных до сих пор установках, использующих цепную реакцию, выделение энергии происходит при очень низкой температуре. Это, несомненно, в значительной мере объясняется тем, что основная цель, преследовавшаяся при создании котлов во время войны, состояла не в выработке полезной мощности, а в производстве плутония. По этой причине не делалось никаких попыток сконструировать котел из материалов, способных выдержать очень высокие температуры, так как такие попытки, безусловно, задержали бы, и весьма значительно, достижение основной цели.
Важно отметить следующее. Температура, при которой может производиться энергия с помощью цепной реакции, насколько известно, практически ничем не ограничена. Действительно, существуют основания полагать, что при взрыве атомной бомбы могут быть получены температуры выше 1 000 000 градусов (Цельсия). Для установок, предназначенных для работы на постоянном режиме, практическое ограничение накладывается только тугоплавкостью используемых материалов. В этом смысле выбор материалов очень критичен, так как надо учитывать не только их способность выдерживать высокие температуры, но и вредное влияние, которое оказывает внесение посторонних материалов в котел на саму ядерную реакцию. Это вредное влияние обусловлено тем фактом, что большинство веществ в большей или меньшей степени поглощают нейтроны. Поэтому введение любого вещества (например, теплоносителя для отвода тепла от котла или оболочки труб, по которым подается теплоноситель) приводит к потерям нейтронов. Если эти потери настолько велики, что коэффициент размножения станет меньше 1, то реакция остановится.
Возникает вопрос: можно ли высвободить большое количество энергии?
Основным топливом в котлах Хэнфордского типа является U235, составляющий всего 0,7 % по весу в естественном уране. Энергия урана, освобождающаяся при делении, приблизительно в 3 000 000 раз больше энергии того же весового количества угля. Если используется только 0,7 % урана, то практически величина этого отношения будет около 20 000. Эти числа говорят о важности разработки методов полного использования энергии урана.
В ближайшем будущем нахождение технического решения этой проблемы вряд ли станет весьма неотложной задачей, так как пока что существуют довольно большие урановые залежи, разработка которых требует сравнительно низких затрат. Однако если последующее развитие пойдет по пути получения больших количеств энергии с помощью U235, то богатые залежи урана будут быстро выработаны и придется переходить к использованию очень бедных руд, что повлечет за собой возрастание стоимости основного вещества на несколько порядков. Естественно, что в этом случае полное использование энергии, запасенной в уране, станет гораздо более важной проблемой. С другой стороны, энергетическая значимость 1 фунта урана настолько велика, что даже огромное возрастание стоимости этого вещества может не помешать использованию его в качестве источника энергии. Три миллиона тонн угля, эквивалентные по энергетическому содержанию 1 тонне урана, стоят около 8 миллионов долларов. Поэтому в смысле стоимости сырья уран и уголь станут равноценными при цене на уран в 4000 долларов за фунт. До войны стоимость урана составляла около 2 долларов за фунт, так что даже при возрастании примерно в тысячу раз по сравнению с довоенной ценой она еще может остаться экономически выгодной.
Можно думать, что в ближайшие 20–30 лет общая схема производства атомной энергии будет, по-видимому, выглядеть следующим образом. В больших основных установках будет производиться громадное количество энергии, которая для нужд местного потребления будет превращаться в энергию пара или электричества. Помимо непосредственного производства энергии эти большие установки могут также вырабатывать плутоний. Он будет извлекаться и передаваться на малые установки для использования в них в качестве первичного топлива вместо урана. Широкое использование относительно маломощных установок явилось бы достоинством этого плана, так как при этом весьма значительно уменьшились бы трудности распределения.
Общая схема такого типа недавно обсуждалась в докладе Государственного департамента, который интересно прокомментировал д-р Оппенгеймер. Согласно этому докладу, большие основные установки, производящие плутоний, так же как и все источники урана и тория, должны находиться в распоряжении международного агентства, которое будет выделять или продавать «денатурированный» плутоний отдельным потребителям. Авторы доклада считают, что «денатурирование» плутония с тем, чтобы сделать его использование для военных целей весьма непростым и крайне трудоемким делом, вероятно, окажется возможным. Поэтому они выражают надежду на то, что будет возможно осуществлять лишь минимальный международный контроль над потребителями «денатурированного» плутония, не опасаясь тайного использования плутония для создания оружия.
Привлекательной чертой доклада является, на мой взгляд, то, что в нем отрицаются шансы на успех у системы, основанной на запрещениях и только на запрещениях. Я опасаюсь, однако, что оценка, данная в докладе трудностям предотвращения использования «денатурированного» плутония для военных целей, может быть истолкована общественным мнением несколько чересчур оптимистично. Нельзя отрицать тот факт, что возможность применения плутония для агрессивной войны представляет для промышленного использования атомной энергии гораздо большую трудность, чем любые предвидимые технические затруднения. Задача предотвращения такой возможности является по существу политической, а не технической, и я не вижу больших оснований надеяться на ее разрешение, если только в ближайшие годы не изменятся кардинально сами основы взаимоотношений между нациями.
Возвращаясь к техническим проблемам, я хотел бы упомянуть еще об одной особенности атомно-энергетических установок, которая может серьезно помешать широкому их распространению. В процессе деления, являющемся основой получения атомной энергии, выделяется не только энергия, но также и излучение различного типа (в частности, нейтроны и гамма-лучи). Если котел не окружен защитой, то исходящая от него радиация имеет настолько огромную интенсивность, что любое живое существо, оказавшееся около незащищенной работающей установки, очень скоро погибнет. Поэтому безусловной необходимостью является защита котла веществами, способными предотвратить распространение этого смертоносного излучения. В принципе при решении этой задачи не возникает никаких трудностей. Достаточно, например, окружить котел бетонной защитой толщиной в несколько футов, чтобы полностью исключить всякую опасность. Однако не существует способов уменьшения радиации, которые не использовали бы очень тяжелую защиту. Действительно, во многих обсуждавшихся конструкциях котла подавляющая часть общего веса установки падает на защиту. Необходимость экранирования котла тяжелой защитой не позволит осуществить несколько возможных вариантов использования атомной энергии. По-видимому, не удастся, например, сконструировать достаточно легкую энергетическую установку, которую можно было бы использовать в автомобиле или самолете обычных размеров. Самым миниатюрным передвижным агрегатом, на который можно будет установить атомно-энергетическую установку, явится, видимо, большой локомотив.
Подводя итоги проведенного обсуждения, можно определенно утверждать, что постепенное превращение энергии атома в один из основных источников потребляемой энергии технически осуществимо. Если такие ожидания оправдаются, то немаловажным достоинством может оказаться практически ничтожный вес топлива. Эта черта, в частности, может существенно облегчить энергоснабжение труднодоступных районов, расположенных вдали от угольных месторождений. Она может также оказаться весьма ценным качеством для передвижных энергоустановок, например для корабельных двигателей. Недостатком атомной энергии являются некоторые технические ограничения ее применимости. Наиболее серьезное из них состоит, видимо, в том, что невозможно создать легкую энергоустановку. Кроме того, при работе атомных установок появятся специфические трудности, как, например, необходимость иметь дело с высокорадиоактивными веществами, что повлечет за собой необходимость (по крайней мере, в течение некоторого заметного периода времени) пользоваться услугами специально подготовленного персонала. Но главным препятствием на пути развития атомной энергетики будет трудность организации крупномасштабного развития атомной промышленности при соблюдении условий международной безопасности. Здесь возникнут проблемы, решить которые будет гораздо труднее, чем осуществить необходимые технические усовершенствования. Потребуется огромная политическая мудрость, чтобы найти правильный путь между необходимостью рассеять международные опасения, возникающие при сохранении технических деталей в секрете, и между опасностью взвалить на мир, который, видимо, еще не готов отказаться от войны, груз подробностей способа изготовления ужасного нового средства войны. Кроме того, этот путь должен быть найден за относительно небольшое время, по истечении которого «секретные» сведения станут общеизвестными, так как они будут переоткрыты учеными и инженерами других стран.
Может возникнуть вопрос: мудро ли поступили ученые, преподнеся государственным деятелям всего мира эту ужасную задачу? В действительности же иного пути не было. После того как совершено некоторое кардинальное открытие, любые попытки задержать его воплощение были бы столь же тщетны и беспочвенны, как надежды на то, что Земля перестанет вращаться вокруг Солнца.
Использование атомной цепной реакции в мирных целях не исчерпывается производством энергии. Имеются и другие возможности, может быть, уступающие производству энергии по непосредственной экономической выгоде, но в конечном счете могущие оказаться наиболее плодотворным направлением развития. Работающий котел является средством получения радиоактивных веществ, активность которых на несколько порядков больше активности любого из ранее получавшихся источников. Часть этих радиоактивных веществ получается непосредственно в результате процесса деления: осколки, на которые расщепляется атом урана, представляют собой радиоактивные изотопы элементов средней части периодической системы. Эти радиоактивные элементы могут быть выделены химически. Другая часть радиоактивных веществ может быть получена следующим образом. При работе котла непрерывно испускается большое число нейтронов. Любое вещество, внесенное в котел, подвергается интенсивному облучению потоком этих нейтронов. Когда нейтрон попадает в ядро вещества, то происходят различные ядерные реакции, и многие из них приводят к образованию радиоактивных изотопов. Этим способом большинство элементов может быть получено в радиоактивной форме. Времена жизни полученных изотопов колеблются от долей секунды до нескольких тысяч лет. Среди наиболее важных искусственных радиоэлементов следует упомянуть углерод-14, живущий около трех тысяч лет. Радиоактивные вещества могут быть применены для самых различных целей. Испускаемое ими излучение эквивалентно излучению радия и может быть использовано для медицинских целей в гораздо большем масштабе, чем это было возможно с радием. Так, с точки зрения радиотерапии высказывалась надежда на то, что удастся использовать преимущества, которые сулит возможность получения самых различных химических элементов в радиоактивном виде: химические свойства можно будет применить для сосредоточения активного вещества в том органе, который подлежит облучению.
Еще бóльшие надежды возлагаются на возможность использования значительных количеств радиоактивных веществ в качестве индикаторов. Особенно заманчивым в этом смысле является, видимо, использование углерода-14 в качестве индикатора на углерод в исследованиях по органической химии и биохимии. Ожидается, что использование углерода-14 в биологии позволит легко проследить за реакциями с участием углерода в сложных химических процессах жизни. Можно надеяться, что углерод-14 будет достаточно доступен, чтобы оказалось возможным широко развернуть исследования в этом направлении.
И если то влияние, которое окажут на науку эти новые методы, приведет к более эффектным последствиям, чем экономичный и удобный источник энергии или ужасающая разрушительная сила атомной бомбы, то это не будет слишком удивительно.
Вернувшись в Чикаго после окончания войны, Ферми вновь обратился к замыслам 1943 г. – использованию интенсивного нейтронного пучка реактора СР-3, находившегося в старой Аргоннской национальной лаборатории. Присутствие Ферми в Чикаго повлияло на решение Комиссии по атомной энергии США выбрать участок вблизи Чикаго в качестве места для Аргоннской национальной лаборатории. Ферми и Л. Маршалл работали там с 1946 г., а весной 1947 г. к ним присоединился и я; мы регулярно, около трех раз в неделю, ездили на старый Аргоннский участок.
Одной из областей интересов Ферми было использование интерференции нейтронов для изучения структуры жидких и твердых тел. В результате на следующий год Оуэн Чемберлен стал делать диссертацию по дифракции нейтронов на жидких металлах (Phys. Bev., 1950, 77, 305).
В то время Ферми интересовали также измерения магнитных моментов радиоактивных ядер, которые в изобилии могли поставляться реактором. Он принялся за конструирование аппаратуры для исследования молекулярных пучков. Мы работали с ним над этой задачей до тех пор, пока не стало ясно, что только для размещения заказов на изготовление аппаратуры потребуется несколько месяцев. В конце концов его усилия привели к появлению в Аргоннской национальной лаборатории направления по молекулярным пучкам. Но прежде чем это направление стало приносить плоды, Ферми увлекся мезонной физикой.
Более продуктивной областью исследований Ферми в Аргоннской лаборатории было изучение фазовых сдвигов при рассеянии медленных нейтронов; это направление выросло из ранних экспериментов, делавшихся им с Андерсоном и Л. Маршалл (статьи 104 и 105). Кроме того, Ферми хотел получить пучок поляризованных нейтронов и занялся брэгговской дифракцией на магнетите. Однако он не стал продолжать работ с пучками поляризованных нейтронов, видимо, потому, что в Аргоннской лаборатории основные работы по этому направлению велись Д. Юзом и его сотрудниками.
Для всех экспериментов Ферми в Аргоннской лаборатории характерны сравнительная простота использованного оборудования и упор на физические идеи. Этот период времени великолепно продемонстрировал способность Ферми выбирать именно те области исследования, где его усилия были бы наиболее плодотворны.
А. Ваттенберг
Ниже следует дословная запись последней речи Энрико Ферми, с которой он выступил 30 января 1954 г. перед Американским физическим обществом (днем раньше он произнес прощальное президентское послание). Эта речь была произнесена без соблюдения формальностей и без конспекта; она записана с магнитофонной ленты и намеренно оставлена в неприглаженном, необработанном виде. Ферми, всегда очень требовательно относившийся к своим публикациям, безусловно, не одобрил бы такой вольности. Однако эта дословная запись, как ни один официальный документ, поможет хотя бы на мгновение восстановить в памяти само звучание его голоса.
Доклад Ферми входил в цикл «Физика в Колумбийском университете», прочитанный во время ежегодного съезда Общества.
Из журнала «Physics Today», ноябрь 1955 г.