Когда я получил от издателя серии «Современные философы» («Living Philosophers») предложение написать статью для настоящего тома, в котором современные исследователи чествуют Альберта Эйнштейна за его колоссальный вклад в область естественных наук и в котором они выражают благодарность всего нашего поколения за проложенный его гением путь, я много размышлял о том, как бы мне лучше выразить, насколько я ему обязан за его вдохновляющие идеи. При этом я живо вспомнил встретившиеся мне на протяжении ряда лет многочисленные случаи, когда я имел удовольствие обсуждать с Эйнштейном гносеологические проблемы, поставленные новейшим развитием атомной физики; и я подумал, что едва ли я мог бы дать что-нибудь лучшее, чем рассказ об этих спорах, которые – хотя они и не привели к полному согласию – были для меня чрезвычайно ценными и стимулирующими. В то же время я надеюсь, что такой рассказ может дать более широким кругам представление о том, насколько полезен был открытый обмен мыслями для прогресса в области, где новые результаты время от времени требовали от нас пересмотра наших воззрений.
Главным предметом нашего спора с самого начала был вопрос о том, какую позицию следует занять по отношению к тем отклонениям от привычных принципов описания природы, которые характерны для новейшего развития физики. Я имею в виду тот путь, на который вступила физика в первом году нашего века в результате открытия Планком универсального кванта действия. Это открытие выявило в законах природы черту атомистичности, которая выходит далеко за пределы старого учения об ограниченной делимости материи; действительно, это открытие показало нам, что классические теории физики являются идеализациями, которые допускают однозначное применение только в тех предельных случаях, когда все величины размерности действия велики по сравнению с квантом действия. На обсуждении стоял вопрос, следует ли рассматривать отказ от причинного описания атомных процессов, фактически содержащийся в попытках овладеть новым положением вещей, как временное пренебрежение идеалами, которые в конечном счете снова вернут свои права, или же дело идет о необратимом шаге на пути к настоящей гармонии между анализом и синтезом физических явлений. Для того чтобы дать как можно более ясное представление о том фоне, на котором протекали наши споры, и об аргументах, выдвигавшихся в пользу той или другой из противоположных точек зрения, я считаю необходимым напомнить с достаточной подробностью главные черты того развития теории, в которое сам Эйнштейн внес такой решающий вклад.
Как известно, Больцман впервые установил наличие внутренней связи между законами термодинамики и статистическими закономерностями, которые проявляются в механических системах с большим числом степеней свободы. Идея о существовании этой связи была руководящей идеей Планка в его остроумном исследовании проблемы теплового излучения – исследовании, приведшем его к фундаментальному открытию. Рассуждения Планка были в основном статистического характера; Планк весьма осторожно избегал окончательных выводов о том, в какой мере существование кванта действия означает отход от основных законов механики и электродинамики. Сущность же великого вклада Эйнштейна в квантовую теорию (1905) как раз и состояла в признании того, что такие физические явления, как фотоэффект, могут непосредственно зависеть от индивидуальных квантовых эффектов. В те же годы, когда Эйнштейн, развивая свою теорию относительности, создавал тем самым новую основу физики, он одновременно исследовал своим дерзким умом новые черты атомизма, уводившие далеко за рамки классической физики.
Таким путем безошибочная интуиция Эйнштейна привела его шаг за шагом к выводу, что всякий излучательный процесс состоит из испускания или поглощения индивидуальных световых квантов или «фотонов» с энергией и количеством движения
E = hν и, P = hσ, (1)
причем h есть постоянная Планка, тогда как v есть число колебаний в единицу времени, а σ – число волн на единицу длины. Представление о фотоне, при всей его плодотворности, выдвинуло совершенно непредусмотренную дилемму, поскольку всякая простая корпускулярная картина излучения явно несовместима с явлениями интерференции, которые представляют важную особенность процессов излучения и могут быть описаны только при помощи волновой картины. Острота дилеммы подчеркивается тем фактом, что интерференционные явления – это единственное средство для определения тех самых понятий частоты и длины волны, которые входят в соотношения для энергии и количества движения фотона.
При таком положении вещей не могло быть и речи о попытке причинного анализа явлений излучения; дело могло идти только о том, чтобы путем комбинированного применения противоположных картин вычислять вероятности отдельных актов излучения. Здесь очень важно полностью отдавать себе отчет в том, что при таких обстоятельствах привлечение законов вероятностей преследует существенно другие цели, чем обычное применение статистических соображений в качестве практического способа объяснения свойств механических систем с весьма сложной структурой. В самом деле, в квантовой физике дело не в такого рода сложности, а в непригодности классической системы представлений для передачи своеобразных черт неделимости или «индивидуальности», характеризующих элементарные процессы.
Непригодность теорий классической физики для объяснения атомных процессов все яснее выявлялась по мере нашего ознакомления со строением атомов. Прежде всего, открытие Резерфордом атомного ядра (1911) одним ударом вскрыло непригодность классических представлений механики и электродинамики для объяснения свойственной атому стабильности. И здесь теория квантов снова дала ключ к выяснению положения вещей; в частности, появилась возможность объяснить как стабильность атомов, так и эмпирические законы, которым подчиняются спектры элементов. В основе этого объяснения лежит предположение о том, что всякая реакция атома, ведущая к изменению его энергии, включает в себя полный переход атома от одного так называемого стационарного квантового состояния к другому и что, в частности, спектры испускаются ступенчатым процессом, причем каждый переход сопровождается испусканием монохроматического кванта света, энергия которого в точности равна энергии эйнштейновского фотона.
Эти представления, вскоре подтвержденные опытами Франка и Герца (1914) над возбуждением спектров при ударе электронов об атомы, заключают в себе дальнейший отказ от причинного способа описания; ибо толкование спектральных законов явно предполагает, что атом в возбужденном состоянии имеет, вообще говоря, возможность перейти с испусканием фотонов в одно из своих состояний с меньшей энергией. Действительно, самое представление о стационарных состояниях несовместимо с каким-либо предписанием относительно выбора между такими переходами и допускает только применение понятия об относительных вероятностях отдельных процессов перехода. При оценке таких вероятностей единственной основой служил так называемый принцип соответствия, возникший из стремления найти наиболее тесную связь между статистическим описанием атомных процессов и следствиями, которые следовало бы ожидать на основании классической теории. Последняя должна быть непосредственно применима только в предельном случае, когда рассматриваемые на всех этапах анализа явлений величины размерности действия велики по сравнению с универсальным квантом действия.
В то время еще не намечалось никакой общей непротиворечивой квантовой теории; тогдашняя точка зрения на эти вопросы может быть, однако, иллюстрирована следующим отрывком из доклада, сделанного автором в 1913 г.:
«Я надеюсь, что говорил достаточно ясно для того, чтобы вы поняли, насколько сильно приведенные рассуждения отклоняются от той замечательно последовательной системы понятий, которую по праву называют классической электродинамической теорией. С другой стороны, именно тем, что я так сильно подчеркивал это противоречие, я пытался дать вам почувствовать, что со временем все-таки можно будет привести новые понятия в какую-то систему».
Важный шаг вперед в развитии квантовой теории был сделан самим Эйнштейном в его знаменитой статье 1917 г. о равновесном излучении [3]. В ней он показал, что закон Планка о тепловом излучении допускает простой вывод на основе предположений, совпадающих с основными идеями квантовой теории строения атомов. С этой целью Эйнштейн формулировал общие статистические правила для излучательных переходов между стационарными состояниями. При этом он считал, что процессы испускания и поглощения будут иметь место не только для атомов, подвергаемых действию излучения (причем вероятность их в единицу времени будет пропорциональна интенсивности падающего света), но что даже при отсутствии внешних возмущений могут иметь место спонтанные процессы излучения, число которых в единицу времени соответствует некоторой априорной вероятности. По поводу последнего пункта Эйнштейн весьма выразительно подчеркнул фундаментальный характер статистического описания тем, что указал на аналогию между предположением о существовании спонтанных излучательных переходов и хорошо известными законами, управляющими превращениями радиоактивных веществ.
В связи со своим тщательным анализом вытекающих из термодинамики требований в отношении задач излучения Эйнштейн еще больше заострил дилемму, указав, что если его рассуждения справедливы, то всякий процесс излучения должен иметь определенное направление. Последнее нужно понимать в том смысле, что не только атом, поглощающий квант света, получает от фотона количество движения, направление которого соответствует направлению распространения фотона, но что и излучающий атом получает импульс в противоположном направлении, причем это имеет место, несмотря на то, что по волновой картине не может быть и речи о предпочтительном направлении в акте излучения. Отношение самого Эйнштейна к таким поразительным выводам выражено в нескольких фразах в конце упомянутой выше его статьи:
«Эти свойства элементарных процессов заставляют считать почти неизбежным построение собственно квантовой теории излучения. Слабость теории состоит, с одной стороны, в том, что она не приближает нас к объединению с волновой теорией, и, с другой стороны, в том, что она предоставляет „случаю“ время и направление элементарных процессов; тем не менее я питаю полное доверие к надежности того пути, на который мы вступили».
Когда в 1920 г. при моем посещении Берлина я в первый раз встретился с Эйнштейном – что было для меня великим событием, – эти фундаментальные вопросы и были темой наших разговоров. Обсуждения, к которым я потом часто мысленно возвращался, добавили к моему восхищению Эйнштейном еще и глубокое впечатление от его непредвзятой научной позиции. Его пристрастие к таким красочным выражениям, как «призрачные поля, управляющие фотонами» («Gespensterfelder, die Photonen leiten»), не означало, конечно, что он склонен к мистицизму, но свидетельствовало о глубоком юморе, скрытом в его проницательных замечаниях. И все-таки между нами оставалось некоторое расхождение в отношении нашей точки зрения и наших видов на будущее. При его мастерстве согласовывать, казалось бы, противоречащие друг другу факты, не отказываясь от непрерывности и причинности, Эйнштейн, быть может, меньше, чем кто-либо другой, был склонен отбросить эти идеалы, – меньше, чем кто-либо, кому такой отказ представлялся единственной возможностью согласовывать многообразный материал из области атомных явлений, накапливавшийся день ото дня при исследовании этой новой отрасли знаний.
В последующие годы, в течение которых атомные проблемы привлекали к себе внимание быстро растущего круга физиков, кажущиеся противоречия внутри квантовой теории ощущались все острее. Очень показательна дискуссия, возникшая в 1922 г. в связи с открытием эффекта Штерна и Герлаха. С одной стороны, этот эффект давал убедительное подтверждение представлению о стационарных состояниях и, в частности, для построенной Зоммерфельдом квантовой теории эффекта Зеемана; с другой же стороны, как ясно показали Эйнштейн и Эренфест, наличие такого эффекта ставило непреодолимые трудности перед всякой попыткой наглядно представить себе поведение атома в магнитном поле. Подобные же парадоксы возникли в результате открытия Комптоном (1924) изменения длины волны, сопровождающего рассеяние рентгеновых лучей электронами. Как известно, этот опыт дал самое непосредственное доказательство справедливости точки зрения Эйнштейна на перенос энергии и количества движения при процессах излучения. Однако в то же время было очевидно, что никакая простая картина явления как столкновения частиц не может дать исчерпывающего его описания. Под впечатлением таких трудностей временно возникли даже сомнения в сохранении энергии и количества движения в индивидуальных процессах излучения. Такие сомнения, однако, вскоре исчезли перед лицом уточненных опытов, выяснивших наличие однозначного соотношения между отклонением фотонов и соответствующей отдачей электрона.
Путь к выяснению положения вещей был проложен только развитием более объемлющей теории квантов. Первым шагом к этой цели было предуказание де Бройлем (в 1925 г.) того факта, что двойственность волна – частица не ограничивается свойствами излучения, но в равной мере неизбежна и при описании поведения материальных частиц. Эта мысль была вскоре убедительно подтверждена опытами над явлениями интерференции электронов. Эйнштейн сразу же радостно приветствовал эту мысль, так как им уже была установлена глубоко лежащая аналогия между свойствами теплового излучения и свойствами газов в так называемом вырожденном состоянии. Новая линия была с огромным успехом продолжена Шредингером (1926), который, в частности, показал, как стационарные состояния атомной системы могут быть представлены при помощи собственных решений волнового уравнения. Путь к установлению вида волнового уравнения был ему указан формальной аналогией между механическими и оптическими проблемами, на которую впервые обратил внимание Гамильтон. Парадоксальные черты теории квантов, однако, нисколько не смягчились; они, пожалуй, даже обострились еще больше в силу кажущегося противоречия между требованиями свойственного волновому описанию общего принципа наложения и присущими атомным процессам чертами индивидуальности.
В это же время Гейзенберг (1925) заложил основы рациональной квантовой механики, которая получила быстрое развитие благодаря важным вкладам Борна и Иордана, а также Дирака. Теория вводит формальный аппарат, в котором кинематические и динамические переменные классической механики заменяются абстрактными символами, подчиняющимися некоммутативной алгебре. Несмотря на отказ от понятия траектории частицы, основные уравнения механики в их гамильтоновой канонической форме были сохранены без изменений, а постоянная Планка вошла лишь в перестановочные соотношения
справедливые для каждой пары сопряженных переменных q и р. Вводя для абстрактных символов представление в форме матриц с элементами, относящимися к переходам между стационарными состояниями, оказалось возможным впервые дать принципу соответствия количественную формулировку. Напомним здесь, что важный предварительный шаг в этом направлении был сделан (в частности, Крамерсом) при построении квантовой теории дисперсии; в основе этой теории лежат эйнштейновские общие правила для вероятностей процессов поглощения и испускания.
Как было вскоре показано Шредингером, эта матричная форма квантовой механики приводит к результатам, совпадающим с теми, какие можно получить с помощью методов волновой теории, которые часто оказываются более удобными в математическом отношении. В последующие годы были постепенно разработаны общие методы такого описания атомных процессов, которое, по существу, является статистическим; эти методы объединили логически непротиворечивым образом характерную для квантовой теории черту неделимости атомных процессов с требованиями, вытекающими из принципа наложения.
Из многочисленных достижений этого времени упомянем прежде всего, что аппарат квантовой механики позволил дать формулировку принципу, которому подчиняются состояния систем с несколькими электронами; этот принцип был установлен Паули на основании анализа атомных спектров еще до построения квантовой механики. Количественный охват большого эмпирического материала не оставлял больше сомнений в плодотворности и пригодности аппарата квантовой механики; однако абстрактный характер этого аппарата вызывал широко распространенное чувство неудовлетворенности. В самом деле, прояснить положение вещей можно было здесь только путем более глубокого исследования проблемы наблюдений в атомной физике.
Эта фаза развития была, как известно, начата в 1927 г. Гейзенбергом, указавшим на то, что данные о состоянии атомной системы всегда страдают своеобразной «неопределенностью». Так, всякое измерение положения электрона при помощи прибора, работающего на высокочастотном излучении (например, микроскопа), связано, согласно основным уравнениям (1), с обменом импульсом между электроном и измерительным прибором, причем этот обмен будет тем больше, чем точнее стремятся измерить положение. Сравнивая такие рассуждения с требованиями, вытекающими из формального аппарата квантовой механики, Гейзенберг обратил внимание на тот факт, что перестановочное соотношение (2) накладывает на точность, с которой могут быть фиксированы две сопряженные переменные q и p, взаимное ограничение, выражающееся зависимостью
ΔqΔp ≈ h, (3)
причем Δq и Δp представляют неопределенности в измеряемых значениях этих переменных. Это соотношение неопределенностей указывает на тесную связь между принятым в квантовой механике статистическим способом описания и фактическими измерительными возможностями. Как показал Гейзенберг, оно имеет благодаря атому величайшее значение для объяснения парадоксов, к которым приводят попытки анализа квантовых эффектов при помощи обычных физических представлений.
На международном конгрессе физиков в Комо, посвященном памяти Вольты и созванном в сентябре 1927 г., новейшие успехи атомной физики были предметом обстоятельных дискуссий. В своем докладе я развил тогда точку зрения, которую кратко можно охарактеризовать словом «дополнительность»; эта точка зрения позволяет, с одной стороны, охватить характерную для квантовых процессов черту неделимости и, с другой стороны, разъяснить существующие в этой области особенности постановки задачи о наблюдении. Для этого решающим является признание следующего основного положения: как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные (evidence) должны описываться при помощи классических понятий.
Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщить другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики.
Из этого основного положения, обсуждение которого стало главной темой излагаемой здесь дискуссии, можно сделать следующий вывод. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят явления. В самом деле, неделимость типичных квантовых эффектов проявляется в том, что всякая попытка подразделить явления требует изменения экспериментальной установки и тем самым влечет за собой новые возможности принципиально неконтролируемого взаимодействия между объектами и измерительными приборами. Вследствие этого данные, полученные при разных условиях опыта, не могут быть охвачены одной-единственной картиной; эти данные должны скорее рассматриваться как дополнительные в том смысле, что только совокупность разных явлений может дать более полное представление о свойствах объекта.
При этих обстоятельствах приписывание атомным объектам обычных физических атрибутов существенным образом связано с неоднозначностью; непосредственно это обнаруживается в дилемме, касающейся корпускулярных и волновых свойств электронов и фотонов, где мы имеем дело с как бы противоречащими друг другу картинами, из которых каждая представляет существенную сторону того, что дает нам опыт. Все кажущиеся парадоксы могут быть устранены путем исследования тех (несовместимых) условий опыта, при которых наблюдаются дополнительные явления. Поучительным примером этого может служить эффект Комптона, непротиворечивое описание которого вначале представляло такие большие трудности. В этом примере разъяснение состоит в том, что всякая установка, пригодная для изучения обмена энергией и количеством движения между электронами и фотонами, необходимо должна оставлять в пространственно-временной локализации процесса допуски, достаточные для того, чтобы придать определенность понятиям волнового числа и частоты [эти величины входят в уравнение (1)]. И обратно, всякая попытка более точного определения места столкновения между фотоном и электроном сделала бы невозможным подведение более точного баланса энергии и количества движения; невозможность эта обусловлена неизбежным взаимодействием с неподвижными масштабами и часами, определяющими пространственно-временную систему отсчета.
Как подчеркнуто в докладе, надлежащим средством для дополнительного описания как раз и служит формальный аппарат квантовой механики. Этот формальный аппарат представляет собою чисто символическую схему, позволяющую делать предсказания результатов опытов, производимых в определенных условиях, которые должны характеризоваться при помощи классических понятий. Эта схема связана с классической теорией принципом соответствия. Следует напомнить, что и в соотношении неопределенности мы имеем дело с таким следствием формального аппарата, которое не может быть недвусмысленно выражено словами, приспособленными для описания классической картины физического явления. Так, после фразы: «Мы не можем одновременно узнать положение и количество движения атомного объекта» – немедленно возникает вопрос о физической реальности двух таких атрибутов объекта; а на этот вопрос можно ответить, только исследуя условия для недвусмысленного применения пространственно-временных понятий, с одной стороны, и динамических законов сохранения – с другой. Объединение этих понятий в цельную картину причинной цепи явлений составляет сущность классической механики. Что касается закономерностей, находящихся вне досягаемости такого классического описания, то место для них освобождается именно благодаря тому, что изучение дополнительных явлений требует взаимно исключающих экспериментальных установок.
Возникшая в атомной физике необходимость заново рассмотреть те основания, на которые должно опираться непротиворечивое применение элементарных физических идей, напоминает в некотором смысле ситуацию, с которой столкнулся в свое время Эйнштейн. Эта ситуация побудила Эйнштейна пересмотреть основания, на которые опираются все применения пространственно-временных понятий, и благодаря тому, что в процессе пересмотра было подчеркнуто фундаментальное значение проблемы наблюдения, в результате чего наше физическое мировоззрение приобрело замечательную стройность и единство. Несмотря на всю новизну и необычность способа рассмотрения, теория относительности сохраняет причинное описание, применяемое внутри каждой данной системы отсчета; в квантовой же механике мы вынуждены отказаться и от этого, отказаться из-за неконтролируемого взаимодействия между объектами и измерительными приборами. Этот факт, однако, отнюдь не указывает на ограниченность или неполноту квантово-механического описания, и приведенная в моем докладе в Комо аргументация как раз имела целью показать, что точка зрения «дополнительности» может рассматриваться как разумное обобщение идеала причинности.
Во время общей дискуссии в Комо нам вcем недоставало Эйнштейна. Но вскорhе после этого, в октябре 1927 г., я имел возможность встретиться с ним в Брюсcеле на 5-м Физическом конгрессе Института Сольвей, посвященном теме «Электроны и фотоны». На Сольвейских съездах Эйнштейн всегда был одной из самых заметных фигур, и многие из нас пришли на это заседание в надежде узнать, какова будет реакция Эйнштейна на новейший этап развития теории – этап, который, по нашему мнению, принес удовлетворительное разъяснение проблем, впервые выдвинутых с такой проницательностью самим Эйнштейном. Во время дискуссий тема была освещена докладами со многих сторон; в частности, были доложены и соображения, изложенные на предыдущих страницах. Эйнштейн же выразил свою глубокую тревогу по поводу того, что в квантовой механике так далеко отошли от причинного описания в пространстве и времени.
Рис. 5
Чтобы пояснить свою точку зрения, Эйнштейн привел на одном из заседаний простой пример частицы (электрона или фотона), проникающей через отверстие или узкую щель в экране, за которым на некотором расстоянии поставлена фотографическая пластинка (рис. 5). Благодаря тому что связанная с движением частицы волна претерпевает дифракцию (на рисунке эта волна изображена тонкими линиями), при этих условиях нельзя с уверенностью предсказать, в какой точке электрон попадет на фотографическую пластинку: можно только вычислить вероятность обнаружить электрон на опыте в некоторой заданной части пластинки. С таким описанием процесса связано одно кажущееся затруднение, которое сильно смущало Эйнштейна. Это затруднение состоит в следующем: если на опыте электрон был зарегистрирован в точке А пластинки, то тем самым совершенно исключается возможность наблюдать какое-либо действие этого электрона в другой точке В, хотя законы обычного распространения волн не допускают какой-либо корреляции между двумя такими событиями.
Точка зрения Эйнштейна развязала в более тесном кругу горячие споры. Самое живое и стимулирующее участие принимал в этих спорах и Эренфест, уже много лет связанный с нами обоими тесной дружбой. Разумеется, все мы поняли, что в приведенном выше примере положение не представляет аналогии статистическому рассмотрению сложных механических систем. Положение это скорее напоминало то, которое явилось предпосылкой для выводов, сделанных ранее самим Эйнштейном об определенной направленности индивидуальных излучательных эффектов, выводов, стоящих в столь резком противоречии с простой волновой картиной. Центральным вопросом, вокруг которого шел спор, был вопрос о том, исчерпывает ли квантово-механическое описание то, что можно действительно наблюдать, или же, как настаивал Эйнштейн, анализ можно вести дальше; и нельзя ли в последнем случае достигнуть более полного описания явлений путем учета детального баланса энергии и количества движения в элементарных процессах.
Для пояснения хода мыслей Эйнштейна в его рассуждениях укажем здесь на некоторые простые особенности баланса количества движения и энергии в связи с определением положения частицы в пространстве и времени. Для этого мы рассмотрим простой случай частицы, проникающей через отверстие в диафрагме, причем отверстие или всегда открыто (рис. 6а), или же может открываться и закрываться при помощи затвора (рис. 6б). Параллельные равно отстоящие линии на левой стороне рисунка изображают последовательность плоских волн, соответствующую состоянию движения частицы, которая до прохода через диафрагму имеет количество движения Р, связанное с волновым числом σ вторым уравнением (1). Благодаря дифракции волн при проходе через отверстие, состояние движения частицы справа. от диафрагмы изображается последовательностью сферических волн с определенным углом раствора, в случае рис. 2б последовательность эта ограничена также и в радиальном направлении. Следовательно, описание этого состояния содержит неопределенность Δ р в составляющей количества движения частицы, параллельной плоскости диафрагмы; в случае диафрагмы с затвором имеется также неопределенность Δ Е в кинетической энергии частицы.
Рис. 6
Так как неопределенность Δ q в положении частицы на плоскости диафрагмы измеряется радиусом отверстия а и так как , то, применяя (1), мы получим как раз в согласии с соотношением неопределенностей (3). Этот результат можно было бы получить и непосредственно, если учесть пространственную ограниченность волнового поля в том месте, где находится отверстие. Вследствие этого обстоятельства составляющая волнового числа, параллельная плоскости диафрагмы, определена лишь внутри промежутка шириной . Подобно этому, ширина разброса частот гармонических составляющих в ограниченной последовательности волн на рис. 2б равна, очевидно, , причем Δ t означает промежуток времени, в течение которого затвор оставляет отверстие открытым; тем самым Δ t представляет неопределенность в моменте прохождения частицы сквозь диафрагму. Отсюда по формуле (1) мы получим
опять-таки в согласии с уравнением (3) для обеих сопряженных переменных Е и t.
С точки зрения законов сохранения происхождение таких неопределенностей (входящих в описание состояния частицы после прохождения ее сквозь диафрагму) можно отнести за счет возможности обмена количеством движения и энергией с диафрагмой или же с затвором. В системе отсчета, которая рассматривается на рис. 2а и 2б, скоростью диафрагмы можно пренебречь; тогда нужно будет принимать во внимание один только обмен количеством движения между частицей и диафрагмой. Но затвор, который держит отверстие открытым в течение времени Δ t, движется со значительной скоростью . Поэтому с переносом количества движения Δ р будет связан и обмен энергией с частицей, равный
т. е. точно такого же порядка величины, как и неопределенность в энергии Δ Е, получаемая из (4), так что закон сохранения количества движения и энергии будет соблюдаться.
Задача, поставленная Эйнштейном, состояла в том, чтобы выяснить, до какой степени контроль над переносом количества движения и энергии (переносом, связанным с определением положения частицы) может быть использован для более детального описания состояния частицы после ее прохождения через дырку. При этом мы должны иметь в виду следующее. До сих пор диафрагма и затвор считались точно связанными с пространственно-временной системой отсчета, так что положение и движение их в этой системе считались точно известными. Такое предположение означает существенную неопределенность в энергии и количестве движения этих тел, которая, впрочем, может и не влиять заметным образом на скорости, если только диафрагма и затвор достаточно тяжелы. Однако, как только мы захотим узнать количество движения и энергию этих частей измерительного прибора с такой точностью, которая была бы достаточной для контролирования обмена количеством движения и энергией с исследуемой частицей, дело изменится. Мы потеряем тогда – в согласии с общими соотношениями неопределенностей – возможность точного определения положения диафрагмы и затвора в пространстве и времени. Поэтому мы должны проследить, до какой степени это обстоятельство повлияет на предполагаемое использование всей установки, и как раз этот кардинальный пункт и выявляет, как мы увидим, дополнительный характер явлений.
Возвращаясь на минуту к случаю простой установки, изображенной на рис. 5, заметим, что мы еще не уточняли, для чего она должна служить. В самом деле, невозможность более точно предсказать место попадания частицы на фотографическую пластинку логически вытекает из аппарата квантовой механики только в том случае, если предположить, что диафрагма и пластинка имеют точно определенные положения в пространстве. Если же допустить достаточно большую неточность в знании положения диафрагмы, то в принципе должно быть возможно проконтролировать передачу количества движения на диафрагму и тем самым сделать более точные предсказания относительно направления пути электрона от дырки до точки встречи с пластинкой. С точки зрения квантово-механического описания мы имеем здесь дело с системой двух тел, состоящей из диафрагмы и частицы. Непосредственное применение законов сохранения к системе именно такого рода встречается при изучении эффекта Комптона; например, наблюдение отдачи электрона при помощи камеры Вильсона дает нам возможность предсказать, в каком направлении будет наблюдаться рассеянный фотон.
В ходе дискуссий важность такого рода рассуждений была освещена на очень интересном примере установки, в которой между экраном со щелью и фотографической пластинкой поставлен второй экран с двумя параллельными щелями, как показано на рис. 7. Если параллельный пучок электронов (или фотонов) падает слева на первую диафрагму, то при обычных условиях опыта мы будем наблюдать на фотопластинке интерференционную картину, изображенную штриховкой на правой стороне рисунка (вид фотопластинки спереди). При интенсивном облучении эта картина складывается путем накопления многочисленных единичных процессов, причем каждый из них дает по одному маленькому пятну на фотографической пластине. Распределение этих пятен следует простому закону, который выводится из волнового анализа. Такое же распределение должно получаться и из статистики по большому числу опытов, произведенных с облучением столь слабым, что при каждой отдельной экспозиции до пластинки дойдет только один электрон (или фотон), который и проявится в одной-единственной точке, как это показано звездочкой на рисунке. В этом случае следует ожидать, что импульс, сообщенный первой диафрагме, будет различным в зависимости от того, пройдет ли электрон сквозь верхнюю или сквозь нижнюю щель второй диафрагмы- (см. пунктирные стрелки на рис. 7). Опираясь на это, Эйнштейн указал, что контроль над переданным импульсом позволил бы произвести более подробный анализ процесса и, в частности, дал бы возможность решить, через которую из двух щелей прошел электрон перед тем, как попасть на пластинку.
Рис. 7
Более тщательное рассмотрение показало, однако, что предложенный контроль над передачей количества движения невозможен без неточности в знании положения диафрагмы, неточности, исключающей возникновение интерференционных явлений. Действительно, если ω означает малый угол между предполагаемыми путями частицы через верхнюю и через нижнюю щели, то разность между переданными импульсами в обоих случаях будет, согласно (1), равна hσω и всякий контроль над количеством движения диафрагмы с точностью, достаточной для измерения этой разности, повлечет за собой неточность в определении положения диафрагмы по крайней мере порядка , согласно соотношению неопределенностей. Если диафрагма с двумя щелями поставлена посередине между первой диафрагмой и фотопластинкой, как на рис. 3, то видно, что число полос на единицу длины как раз равно σω; а так как неопределенность в положении первой диафрагмы вызывает такую же неопределенность в положении полос, то, следовательно, никакой интерференции произойти не может. Такой же результат получается, как легко можно показать, для любого другого положения второй диафрагмы между первой диафрагмой и пластинкой; то же самое получилось бы, если бы для контроля (с вышеуказанной целью) над передачей импульса употреблялась не первая диафрагма, а вторая, или же фотопластинка.
Этот пункт логически очень важен, так как только то обстоятельство, что мы стоим перед выбором или следить за траекторией частицы, или же наблюдать интерференцию, позволяет нам избежать парадоксального вывода о том, что поведение электрона или фотона должно зависеть от наличия в экране щели, сквозь которую он заведомо не проходил. Мы имеем здесь типичный пример того, как дополнительные явления протекают при взаимно исключающих друг друга экспериментальных условиях; при анализе квантовых эффектов мы стоим перед невозможностью провести резкую границу между поведением атомных объектов самих по себе и их взаимодействием с измерительными приборами, которые определяют самые условия возникновения явлений.
Наши разговоры о той позиции, которую следует занять перед лицом новой ситуации в области анализа и синтеза опытов, естественно, коснулись многих вопросов философского порядка; но при всем различии в нашем подходе и в наших мнениях споры воодушевлялись духом юмора. Со своей стороны Эйнштейн насмешливо спрашивал нас, неужели мы действительно верим, что божественные силы прибегают к игре в кости («…ob der liebe Gott würfelt»), а я на это отвечал, что уже мыслители древности указывали на необходимость величайшей осторожности в присвоении провидению атрибутов, выраженных в понятиях повседневной жизни. Я вспоминаю также, как в самый разгар спора Эренфест, со свойственной ему милой манерой поддразнивать своих друзей, шутливо указал на очевидную аналогию между позицией Эйнштейна и той позицией, которую занимают противники теории относительности. Но тотчас же Эренфест добавил, что он не обретет душевного покоя до тех пор, пока не будет достигнуто согласие с Эйнштейном.
Рис. 8
Сомнения Эйнштейна и его критика дали нам всем чрезвычайно ценный толчок к тому, чтобы вновь рассмотреть различные аспекты той ситуации, с которой мы сталкиваемся при описании атомных явлений. Я был рад воспользоваться этим поводом, чтобы еще отчетливее выяснить роль измерительных приборов; и для того, чтобы возможно яснее и нагляднее показать взаимно исключающий характер условий опытов, при которых возникают дополнительные явления, я попробовал тогда набросать различные приборы в псевдореалистическом стиле, примеры которого показаны на приведенных здесь рисунках. Для изучения такого явления интерференции, как на рис. 6, естественно использовать экспериментальную установку, изображенную на рис. 7. Здесь неподвижные части прибора (диафрагмы и подставка для пластинки) закреплены шурупами на общей доске. В такой установке наше знание относительных положений диафрагм и пластинки обеспечивается жестким креплением их; но благодаря ему здесь, очевидно, невозможно контролировать перенос количества движения от частицы к различным частям прибора. Единственная при такой установке возможность убедиться, что частица прошла через одну определенную щель во втором экране, состоит в том, чтобы закрыть другую щель затвором, как показано на рис. 8. Но если щель закрыта, то, конечно, не может возникнуть и интерференция, и мы будем наблюдать на пластинке сплошное распределение, как и в случае одной неподвижной диафрагмы на рис. 5.
При изучении явлений, для описания которых необходимо знание детального баланса количества движения, очевидно, нужно допустить, чтобы некоторые части всего прибора могли свободно двигаться (независимо друг от друга). На рис. 6 изображен такой прибор, в котором экран со щелью подвешен на твердом ярме при помощи слабых пружинок. Ярмо привинчено к той же доске, на которой укреплены и остальные неподвижные части установки. С помощью шкалы на экране и стрелки на стойках ярма можно изучать движение экрана в той мере, в какой это нужно для оценки количества движения, перенесенного на экран. Это позволяет судить о том отклонении, которое испытывает частица при прохождении через щель. Но так как всякий отсчет по шкале, каким бы образом он ни был произведен, влечет за собой неконтролируемое изменение количества движения экрана, то в согласии с принципом неопределенности всегда будет существовать обратное взаимоотношение между точностью нашего знания положения щели и точностью контроля количества движения.
Рис. 9
В таком же полусерьезном стиле рис. 6 показывает экспериментальную установку, пригодную для изучения явлений, которые – в противоположность только что рассмотренным – требуют также и координации во времени. Установка состоит из прибора, в котором затвор жестко соединен с солидными часами, обладающими сильной пружиной; часы закреплены на той же доске, где стоит и экран. Кроме часов и экрана, на той же доске должны быть закреплены и другие части аналогичного назначения, приводимые в действие либо тем же часовым механизмом, либо другими синхронными с ним часами. Рисунок должен подчеркнуть тот факт, что часы представляют собой машину, работа которой может быть полностью описана средствами обычной механики, причем ни отсчет положения стрелок, ни взаимодействие между атомной частицей и отдельными частями этой машины не оказывают на ее работу никакого влияния. Поскольку прибор такого типа может осуществлять открывание дырки в определенный момент, он мог бы, например, служить для точного измерения времени, которое требуется электрону или фотону, чтобы дойти от диафрагмы до какого-нибудь другого места; но очевидно, что он не дает возможности измерять передачу энергии на затвор и тем самым выводить заключения об энергии частицы, пролетевшей через диафрагму. Совершенно ясно, что если нас интересуют такого рода заключения, то мы должны будем пользоваться установкой, в которой механизм затвора уже не может служить точными часами; в этой установке определение момента, в который дырка была открыта, содержит неточность, связанную с неточностью в измерении энергии общей формулой (4).
Рис. 10
Рассмотрение таких более или менее осуществимых установок и их более или менее фиктивного употребления оказалось чрезвычайно поучительным благодаря тому, что оно направило внимание на самые существенные черты рассматриваемых проблем. При этом главным пунктом является проведение различия между изучаемыми объектами и измерительными приборами, которые служат для того, чтобы можно было на языке классической физики фиксировать условия, в каких наблюдаются явления.
Упомянем здесь, что опыты, в которых предполагается измеримым перенос количества движения и энергии от атомных частиц к тяжелым телам вроде диафрагм и затворов, едва ли выполнимы практически. Однако это обстоятельство не умаляет их значения как иллюстрации тех общих положений, о которых шла речь выше. Решающим является здесь то, что в такого рода опытах тела, участвующие в обмене количеством движения и энергией с частицами, входят наряду с ними в состав системы, к которой следует применять формальный аппарат квантовой механики. Что касается спецификации условий, необходимых для однозначного применения этого формального аппарата, то здесь важно то, что эти условия должны характеризовать всю установку в целом. В самом деле, присоединение какой-либо новой части прибора, например зеркала, поставленного на пути частицы, вызвало бы новые интерференционные явления, каковые могут существенно повлиять на предсказания возможных результатов, которые в конце концов регистрируются.
Отказ от наглядного представления атомных явлений обусловлен невозможностью подразделить их и тем самым проследить их более детально. Масштабы этого отказа прекрасно иллюстрируются следующим примером, на который Эйнштейн обратил наше внимание с самого начала и к которому он часто возвращался. Пусть на пути фотона помещено полупрозрачное зеркало, предоставляющее ему для направления его дальнейшего распространения две возможности. Тогда фотон может быть зарегистрирован на одной и только на одной из двух фотографических пластинок, находящихся на большом расстоянии друг от друга на упомянутых направлениях; если же мы заменим пластинки зеркалами, то мы сможем наблюдать явления, показывающие, что обе отраженные волны интерферируют. При всякой попытке наглядно представить себе поведение фотона мы, стало быть, встретились бы со следующим затруднением: с одной стороны, мы должны были бы сказать, что фотон всегда выбирает один из двух путей, с другой стороны, он ведет себя так, как если бы он пошел по обоим путям сразу.
Такого рода аргументы как раз и напоминают о невозможности подразделять квантовые явления; они вскрывают также неоднозначность, присущую наделению атомных объектов обыкновенными физическими качествами. В особенности нужно себе уяснить следующее. Если не считать описания пространственного размещения частей прибора и их действия во времени, то всякое однозначное применение пространственно-временных представлений к описанию атомных явлений сводится к регистрации наблюдений, относящихся к следам на фотопластинке или к аналогичным практически необратимым усилительным эффектам, как, например, образование капельки воды вокруг иона в камере Вильсона. Правда, свойства материалов, из которых построены измерительные приборы и которые обеспечивают работу регистрирующих устройств, сами обусловлены в конечном счете существованием кванта действия. Но это обстоятельство не является существенным для проблемы адекватности и полноты квантово-механического описания в том ее аспекте, которым мы здесь занимались.
Эти проблемы подверглись всестороннему и поучительному обсуждению на Сольвейском конгрессе, на том же заседании, на котором Эйнштейн выдвинул свои общие возражения. По этому поводу возник также интересный спор о том, как следует говорить о появлении таких явлений, о которых можно дать предсказания лишь статистического характера. Спор вертелся вокруг вопроса, следует ли применять к осуществлению отдельного эффекта (из числа возможных) терминологию, предложенную Дираком, согласно которой мы имеем дело с выбором со стороны «природы», или же мы должны говорить, как это предложил Гейзенберг, о выборе со стороны «наблюдателя», построившего измерительные приборы и сделавшего отсчет результатов. Любая такая терминология представляется, однако, сомнительной; в самом деле, с одной стороны, едва ли допустимо приписывать природе волю в обычном смысле, а с другой стороны, наблюдатель никак не может повлиять на события, которые протекают при созданных им условиях. По моему мнению, у нас нет никакого другого выхода, как признать, что в этой области физики мы имеем дело с элементарными (неделимыми) явлениями и что все, что мы можем сделать при помощи различных измерительных приборов, сводится к выбору между различными дополнительными типами явлений, которые мы хотим исследовать.
Затронутые здесь проблемы теории познания разобраны подробнее в моей статье в юбилейном номере журнала «Naturwissenschaften», выпущенном по поводу 70-летия со дня рождения Планка в 1929 г. Эта статья содержит также сравнение между тем уроком, который был извлечен из открытия универсального кванта действия, и теми выводами из существования конечной скорости света, которые были сделаны Эйнштейном, чья новаторская работа так сильно прояснила основные принципы естествознания. Благодаря особому упору на зависимость всех явлений от системы отсчета теория относительности указала совершенно новые пути для установления общих физических законов в беспримерно широкой области. В теории квантов, говорилось в статье, логическое уяснение неизвестных ранее фундаментальных закономерностей, управляющих атомными процессами, приводит к признанию того, что нельзя провести резкое разграничение между независимым поведением объектов и их взаимодействием с измерительными приборами, определяющими систему отсчета.
В этом отношении квантовая механика ставит нас перед новой ситуацией в области физики. Я указал, однако, что во многих других областях человеческого знания и человеческой деятельности мы встречаемся в отношении анализа и синтеза опыта с ситуацией, которая представляет близкую аналогию с описанной выше. Как известно, многие из затруднений, встречающихся в психологии, возникают из-за того, что при анализе различных аспектов психической жизни граница между объектом и субъектом проводится в различных местах. В самом деле, такие слова, как «мысли» и «чувства», одинаково необходимые для описания объема и богатства сознательной жизни, употребляются в дополнительном смысле, подобно тому как в атомной физике употребляются пространственно-временная координация, с одной стороны, и динамические законы сохранения – с другой. Точная формулировка таких аналогий связана, конечно, с терминологическими трудностями, и точка зрения автора, пожалуй, всего яснее выражается в имеющемся в статье указании на взаимно исключающее соотношение, которое всегда существует между практическим применением слова и попыткой его точного определения. Рассуждения эти возникли отчасти в надежде повлиять на позицию Эйнштейна, но главная их цель состояла в том, чтобы обратить внимание на возможность рассмотрения общих проблем теории познания в свете того урока и тех знаний, которые дало нам изучение новых, но по существу простых физических закономерностей.
При следующей встрече с Эйнштейном на Сольвейской конференции 1930 г. наши дискуссии приняли совсем драматический характер. Мы видели, что если назначение измерительных приборов состоит в том, чтобы определять пространственно-временные рамки явлений, то контроль над обменом количеством движения и энергией между объектами и приборами исключается. В качестве возражения против этой точки зрения Эйнштейн выдвинул довод, что такой контроль якобы возможен, если принимать во внимание требования теории относительности. В частности, общая зависимость между энергией и массой, выраженная знаменитой формулой Эйнштейна
E = mc2, (5)
якобы позволяет измерить полную энергию системы при помощи простого взвешивания и, таким образом, в принципе контролировать энергию, перенесенную на систему за время ее взаимодействия с атомным объектом.
В качестве подходящей для этого установки Эйнштейн предложил прибор, схема которого набросана на рис. 11.
Рис. 11
Рис. 12
Он состоит из ящика с отверстием в одной из стенок, причем отверстие можно открывать или закрывать затвором, приводимым в движение при помощи часового механизма, помещенного внутри ящика. Пусть вначале ящик содержит излучение, а часы отрегулированы так, что в определенный момент их механизм открывает затвор на очень короткое время. Таким устройством можно было бы достигнуть того, что в момент времени, который будет известен с любой желаемой точностью, через отверстие пройдет один-единственный фотон. Но, кроме того, взвешивая ящик до и после этого события, казалось бы, можно измерить энергию фотона с любой желаемой точностью – в прямом противоречии с квантово-механическим соотношением неопределенности для энергии и времени.
Это возражение означало серьезный вызов и заставило заново продумать всю проблему. Результатом дискуссии, выяснению которого деятельно содействовал и сам Эйнштейн, был, однако, тот вывод, что возражение несостоятельно. При ближайшем рассмотрении выяснилась необходимость тщательнее исследовать следствия, вытекающие из отождествления инертной и тяготеющей массы, предполагаемого в применениях уравнения (5). В частности, необходимо было принять во внимание зависимость между ходом часов и их положением в поле тяготения – зависимость, хорошо известную из красного смещения линий в спектре солнца и следующую из принципа Эйнштейна об эквивалентности действий силы тяжести и явлений, наблюдаемых в ускоренных системах отсчета.
Наша дискуссия сконцентрировалась на возможностях применения прибора, составной частью которого является установка, предложенная Эйнштейном. Такой прибор изображен на рис. 8 в том же псевдореалистическом стиле, как и некоторые из рисунков, приведенных раньше. Ящик, изображенный в разрезе, чтобы видно было его внутреннее устройство, подвешен на пружинных весах; положение ящика можно при помощи стрелки отсчитывать на шкале, укрепленной на подставке весов. Тогда взвешивание ящика можно произвести с любой заданной точностью ∆t, устанавливая весы в нулевом положении при помощи соответствующих гирь. Но дело в том, что всякое определение этого положения с заданной точностью ∆q влечет за собой неопределенность ∆р в значении количества движения ящика, причем ∆р связано с ∆q уравнением (3).
Эта неопределенность, очевидно, должна опять-таки быть меньше, чем полное количество движения, которое может быть передано полем тяготения телу с массой ∆t, в течение всего времени занятого процессом взвешивания; отсюда следует
где g есть ускорение силы тяжести. Чем точнее выполнен отсчет q по указателю, тем продолжительнее должно быть время взвешивания Т, если нужно получить заданную точность ∆m при взвешивании ящика с содержимым.
С другой стороны, по общей теории относительности часы, передвинутые в направлении силы тяготения на величину ∆q, изменят свой ход таким образом, что их показание на протяжении промежутка времени Т отклонится на величину ∆Т, заданную уравнением
Поэтому, сравнивая (6) и (7), мы видим, что после взвешивания наши знания показаний часов содержат неопределенность
Вместе с (5) эта формула приводит к соотношению
∆Т∆Т > h
в согласии с принципом неопределенности. Вследствие этого употребление прибора как средства для точного измерения энергии фотона помешает нам установить точный момент его вылета.
Эта дискуссия, так ярко показавшая силу и последовательность релятивистских аргументов, подчеркнула еще раз необходимость различать, при изучении атомных объектов, между собственно измерительными приборами, служащими для определения системы отсчета, и теми частями прибора, которые нужно рассматривать как объекты исследования и при описании коих нельзя пренебрегать квантовыми эффектами. Несмотря на столь убедительное подтверждение логичности и широты квантово-механического способа описания, Эйнштейн тем не менее выразил мне в последующем разговоре свое чувство неудовлетворенности тем, что, как ему кажется, нам недостает таких твердо установленных принципов для описания природы, с которыми все могли бы согласиться. Исходя из своей точки зрения, я мог только ответить, что, задавшись целью навести порядок в совершенно новой области знаний, мы едва ли можем полагаться на какие-либо старые принципы, хотя бы и очень общие. Единственным обязательным требованием является отсутствие логических противоречий, но как раз в этом отношении математический аппарат квантовой механики удовлетворяет самым жестким условиям.
Сольвейский конгресс 1930 г. был последним случаем, когда в наших дискуссиях с Эйнштейном мы могли воспользоваться присутствием Эренфеста, подзадоривавшего нас к спору и вместе с тем выступавшего в качестве посредника. Но незадолго до своей трагической смерти в 1933 г. он говорил мне, что Эйнштейн далеко не удовлетворен и что он со свойственной ему проницательностью подметил новые аспекты ситуации, укрепляющие его критическую позицию. Действительно, Эйнштейн, исследуя возможности применения взвешивающей установки, придумал другую процедуру, которая обостряла парадоксы настолько, что их логическое разрешение на первый взгляд не представлялось возможным (процедуру эту Эйнштейн придумал, впрочем, имея в виду другие применения, оказавшиеся невыполнимыми). Так, Эйнштейн указал на то, что после предварительного взвешивания ящика с часами и последующего вылета фотона всегда еще останется выбор: или повторить процесс взвешивания, или же открыть ящик и сравнить показания часов с лабораторной шкалой времени. Таким образом, на этой стадии опыта мы еще можем выбрать, хотим ли мы сделать заключение об энергии фотона или же о моменте времени, когда фотон покинул ящик. Не оказывая какого-либо влияния на фотон между его вылетом из ящика и его последующим взаимодействием с надлежащими измерительными приборами, мы можем сделать точные предсказания или о моменте его прибытия, или же о количестве энергии, освобожденной благодаря его поглощению. Но так как, согласно квантовой механике, задание состояния изолированной частицы не может содержать одновременно вполне определенное соответствие со шкалой времени и точное фиксирование энергии, то может показаться, что аппарат квантовой механики не дает средств для надлежащего описания действительности.
И на этот раз проницательный ум Эйнштейна выявил особый аспект того положения вещей, с каким мы встречаемся в квантовой теории, – аспект, ярко показывающий, насколько далеко мы отошли от привычных объяснений явлений природы. Тем не менее я не мог согласиться с тенденцией его замечаний, как они мне были переданы Эренфестом. По моему мнению, если мы имеем логически непротиворечивый математический аппарат физической теории, то единственный способ доказать его несостоятельность заключается в том, чтобы показать, что его следствия расходятся с опытом или что его предсказания не исчерпывают того, что может наблюдаться на опыте. Аргументация же Эйнштейна не приводит ни к тому, ни к другому. В самом деле, мы должны уяснить себе, что в рассматриваемой задаче мы имеем дело не с одной определенной экспериментальной установкой, но фактически с двумя взаимно исключающими друг друга установками.
В одной из них весы вместе с другими приборами, например спектрометром, служат для изучения переноса энергии фотоном; во второй установке затвор, регулированный по лабораторным часам, а также другие аналогичные приспособления, синхронизированные с этими часами, служат для того, чтобы измерять время, нужное фотону, чтобы пройти данный отрезок пути. В обоих случаях следует ожидать (как это принимал и Эйнштейн), что наблюдаемые эффекты будут вполне соответствовать предсказаниям теории.
Эта задача вновь подчеркивает необходимость рассматривать всю экспериментальную установку, точная спецификация которой существенна для возможности однозначного применения аппарата квантовой механики. Попутно можно к этому добавить, что парадоксы такого же рода, как рассмотренные Эйнштейном, возникают и в таких простых установках, как показанная на рис. 5. Ведь после предварительного измерения количества движения экрана нам еще предоставлен в принципе выбор, хотим ли мы после прохода электрона или фотона сквозь щель повторить измерение количества движения или же мы хотим определить положение экрана. В зависимости от того, что мы выберем, мы сможем делать предсказания относительно тех или иных последующих наблюдений. Заметим здесь еще, что для эффектов, которые можно наблюдать при помощи некоторой определенной экспериментальной установки, очевидно, будет безразлично, установлены ли планы построения приборов или манипулирования с ними заранее или же мы предпочитаем отложить окончательное составление этих планов до более позднего момента, когда частица уже будет на пути от одного прибора к другому.
В квантово-механическом описании наша свобода конструировать экспериментальную установку и манипулировать с нею находит свое надлежащее выражение в возможности выбирать классические параметры, вводимые в рассмотрение при всяком последовательном применении формального аппарата. Действительно, в этом отношении квантовая механика обнаруживает соответствие с положением вещей в классической физике, причем это соответствие настолько полно, насколько этого можно ожидать, если иметь в виду неделимость квантовых явлений. Выдвинутые Эйнштейном возражения и сомнения сыграли особенно полезную роль в выяснении именно этого обстоятельства, и тем самым они и на этот раз послужили желанным толчком к исследованию самого существа дела.
Следующий Сольвейский конгресс (1933 г.) был посвящен проблемам строения и свойств атомных ядер. В этой области как раз в то время были достигнуты большие успехи как благодаря экспериментальным открытиям, так и благодаря новым плодотворным применениям квантовой механики. В связи с этим едва ли нужно напоминать, что новые данные, полученные благодаря изучению искусственного превращения ядер, дали самое прямое подтверждение фундаментальному закону Эйнштейна об эквивалентности массы и энергии; этому закону суждено было оказаться все более и более важным руководящим началом в ядерных исследованиях. Упомянем здесь также, что интуитивная догадка Эйнштейна о тесной зависимости между законом радиоактивных превращений и вероятностными правилами, которым подчинены индивидуальные излучательные эффекты, была подтверждена квантово-механическим объяснением спонтанного распада ядра. Действительно, мы имеем здесь типичный пример статистического способа описания, и дополнительное отношение между сохранением энергии и количества движения, с одной стороны, и локализацией во времени и в пространстве – с другой, резко выступает наружу в известном парадоксе о проникновении частицы сквозь потенциальные барьеры.
Сам Эйнштейн не присутствовал на этом конгрессе, который происходил в эпоху, омраченную трагическим развитием событий в политическом мире; этим событиям суждено было так сильно повлиять и на личную судьбу Эйнштейна и сделать ношу, взятую им на себя на службе человечеству, еще тяжелее. За несколько месяцев перед тем я все же встретил Эйнштейна; это было при моем посещении Принстона, где он тогда был гостем в только что основанном Институте усовершенствования (Institute for Advanced Study), постоянным членом которого он вскоре стал. При этом посещении я имел случай еще раз поговорить с ним о вопросах атомной физики, примыкающих к теории познания, но различия в нашем подходе и в нашем способе выражения мыслей все еще препятствовали взаимному пониманию. До сих пор в описанных здесь дискуссиях принимали участие сравнительно немногие; но вскоре критическая позиция Эйнштейна (к которой присоединился ряд других физиков), занятая им по отношению к воззрениям, принятым в квантовой механике, стала известна более широким кругам благодаря статье, опубликованной в 1935 г. Эйнштейном, Подольским и Розеном под заглавием «Можно ли считать, что квантово-механическое описание физической реальности является полным?».
Аргументация этой работы зиждется на критерии, который авторы формулируют следующим образом: «Если мы можем, без какого бы то ни было возмущения системы, предсказать с достоверностью (т. е. с вероятностью, равной единице) значение некоторой физической величины, то существует элемент физической реальности, соответствующий этой физической величине». Авторы применяют даваемое аппаратом квантовой механики представление состояния системы к тому случаю, когда система состоит из двух частей, взаимодействовавших в течение короткого промежутка времени. Путем изящного анализа следствий, вытекающих из такого предположения, авторы показывают следующее. Существуют такие величины, что их значения не могут быть одновременно фиксированы в представлении одной из подсистем, но тем не менее могут быть предсказаны после измерения над другой подсистемой. На основании своего критерия авторы приходят тогда к заключению, что «квантовая механика не дает полного описания физической реальности», и выражают свое убеждение в том, что должно быть возможным более соответствующее действительности описание явлений. Благодаря своей ясности и, казалось бы, безупречной аргументации работа Эйнштейна, Подольского и Розена вызвала волнение среди физиков и сыграла большую роль в дискуссии об общефилософских вопросах физики. Несомненно, спор идет об очень тонких вопросах, и он очень подходит для того, чтобы обратить внимание, насколько в квантовой механике мы стоим далеко за пределами применимости наглядных картин. Однако можно убедиться, что мы имеем здесь дело с проблемами точно такого же рода, какие выдвигал Эйнштейн на прежних дискуссиях. В статье, опубликованной несколько месяцев спустя, я попытался показать, что с точки зрения дополнительности кажущиеся противоречия совершенно устраняются. Ход рассуждений был в основном тот же, как и на предыдущих страницах; но стремление напомнить тогдашние споры пусть послужит извинением тому, что я приведу здесь некоторые отрывки из моей статьи.
После изложения выводов, к которым пришли Эйнштейн, Подольский и Розен на основании своего критерия, я писал:
«Однако такого рода аргументация едва ли годится для того, чтобы подорвать надежность квантово-механического описания, основанного на стройной математической теории, которая автоматически охватывает все случаи измерения, подобные указанному. Кажущееся противоречие на самом деле вскрывает только существенную непригодность обычной точки зрения натуральной философии для описания физических явлений того типа, с которым мы имеем дело в квантовой механике. В самом деле, конечность взаимодействия между объектом и измерительным прибором, обусловленная самим существованием кванта действия, влечет за собой – вследствие невозможности контролировать обратное действие объекта на измерительный прибор (а эта невозможность будет непременно иметь место, если только прибор удовлетворяет своему назначению) – необходимость окончательного отказа от классического идеала причинности и радикальный пересмотр наших взглядов на проблему физической реальности. Как мы увидим ниже, всякий критерий реальности, подобный предложенному упомянутыми авторами, будет – какой бы осторожной ни казалась его формулировка – содержать существенную неоднозначность, если мы станем его применять к действительным проблемам, которые нас здесь интересуют».
По отношению к частной проблеме, рассмотренной Эйнштейном, Подольским и Розеном, я показал затем, что, применяя аппарат квантовой механики к представлению состояния системы из двух взаимодействующих друг с другом атомных объектов, мы приходим к выводам, которые вполне соответствуют тем простым аргументам, какие были приведены выше в связи с дискуссией об экспериментальных установках, пригодных для изучения дополнительных явлений. Известно, что всякая пара q и p канонически сопряженных переменных (координат и импульсов) подчинена правилу некоммутативного умножения, выраженному формулой (2), так что переменные этой пары могут быть фиксированы лишь со взаимной неопределенностью, даваемой формулой (3). Тем не менее разность q1 − q2между пространственными координатами двух составных частей системы будет коммутировать с суммой p1 + p2соответствующих компонент количества движения; это прямо следует из коммутативности q1с р2и q2с p2. Поэтому в сложной системе можно точно фиксировать как q1 − q2, так и р1 + р2, и, следовательно, для такого состояния системы можно предсказывать значения q1или р1, если q2или соответственно р2 определены прямыми измерениями.
Рассуждения нашей статьи резюмированы в следующем ее отрывке:
«С нашей точки зрения, мы видим теперь, что формулировка вышеупомянутого критерия физической реальности, предложенного Эйнштейном, Подольским и Розеном, содержит двусмысленность в выражении „без какого бы то ни было возмущения системы“. Разумеется, в случае, подобном только что рассмотренному, нет речи а том, чтобы в течение последнего критического этапа процесса измерения изучаемая система подвергалась какому-либо механическому возмущению. Но и на этом этапе речь идет, по существу, о возмущении в смысле влияния на самые условия, определяющие возможные типы предсказаний будущего поведения системы. Так как эти условия составляют существенный элемент описания всякого явления, к которому можно применять термин „физическая реальность“, то мы видим, что аргументация упомянутых авторов не оправдывает их заключения о том, что квантово-механическое описание существенно неполно. Напротив того, как вытекает из наших предыдущих рассуждений, описание может быть охарактеризовано как разумное использование всех возможностей однозначного толкования измерений, совместимого с характерным для квантовых явлений конечным и не поддающимся учету взаимодействием между объектом и измерительными приборами. В самом деле, только взаимное исключение всяких двух экспериментальных манипуляций, которые позволили бы дать однозначное определение двух взаимно дополнительных физических величин, – только это взаимное исключение и освобождает место для новых физических законов, совместное существование которых могло бы, на первый взгляд, показаться противоречащим основным принципам построения науки. Именно эту совершенно новую ситуацию в отношении описания физических явлений мы и пытались характеризовать термином „дополнительность“».
Перечитывая теперь эти строки, я глубоко сознаю неудовлетворительность и неуклюжесть выражения моих мыслей и чувствую, что эти недостатки изложения должны были сильно затруднить понимание хода моих рассуждений. Моя аргументация имела целью выявить неоднозначность, присущую всякой попытке приписать определенные физические атрибуты объектам в тех случаях, когда имеем дело с явлениями, не допускающими резкого разграничения между поведением объектов самих по себе и их взаимодействием с измерительными приборами. Я надеюсь, однако, что настоящее изложение имевших место в прошлом дискуссий с Эйнштейном, столь сильно способствовавших нашему ознакомлению с положением вещей в атомной физике, сможет дать более ясное представление о том, насколько необходим, в целях восстановления логического порядка в этой области знаний, радикальный пересмотр основных принципов объяснения физических явлений.
Тогдашние воззрения самого Эйнштейна изложены им в статье «Физика и реальность», появившейся в 1936 г. в журнале Франклиновского института. Эйнштейн начинает с чрезвычайно ясного изложения постепенного развития фундаментальных принципов в теориях классической физики и их отношения к проблеме физической реальности. Эйнштейн стоит здесь на той точке зрения, что аппарат квантовой механики должен рассматриваться лишь как средство для описания среднего поведения большого числа атомных систем. Свое отношение к убеждению, согласно которому этот аппарат дает возможность исчерпывающего описания элементарных (индивидуальных) явлений, Эйнштейн выражает в следующих словах: «Такое убеждение, без сомнения, логически возможно и не приводит к противоречиям; однако оно так противно моему научному чутью, что я не могу отказаться от поисков более совершенной системы понятий».
Но, даже если не считать такую точку зрения экстравагантной, нужно все же помнить, что она означает отрицание всей изложенной выше аргументации, целью которой было показать, что в квантовой механике мы имеем дело не с произвольным отказом от детального анализа атомных явлений, но с признанием того, что такой анализ принципиально исключается. Свойственная квантовым эффектам неделимость ставит нас в отношении понимания результатов опыта, проведенного в точно определенных условиях, перед новой ситуацией, не предусмотренной классической физикой и не совместимой с обычными представлениями, приспособленными для того, чтобы разбираться в опытах обычного типа. Именно в этом отношении пришлось пересмотреть в результате развития квантовой теории основания для применения простейших понятий, и этот пересмотр составил дальнейший шаг в том развитии теории, которое началось с создания теории относительности и которое так характерно для современной науки.
В последующие годы теми сторонами ситуации в атомной физике, которые примыкают к философским вопросам, начали интересоваться все более широкие круги; философские вопросы дискутировались, в частности, на Втором международном конгрессе единства науки в июле 1936 г. в Копенгагене. В докладе, сделанном мною по этому поводу, я пытался прежде всего подчеркнуть аналогию в теоретико-познавательном отношении между ограничениями, налагаемыми на причинный способ описания в атомной физике, и тем положением, с которым мы встречаемся в других областях. Одной из главных целей таких сравнений было привлечь внимание к тому, что во многих областях знания, представляющих общий интерес, возникают те же по существу проблемы, как и в квантовой механике; тем самым я стремился связать с более привычными понятиями тот на первый взгляд странный способ выражения, какой физики вынуждены были разработать, чтобы справиться со своими трудностями.
Наряду с психологией, где ярко проявляются свойства дополнительности, о чем я уже говорил, примеры таких соотношений можно найти и в биологии, в частности при сравнении между механистическим и виталистическим воззрениями. Последний вопрос и его связь с проблемой наблюдения были несколько лет тому назад предметом речи, произнесенной мною на Втором международном конгрессе по светотерапии в 1932 г. в Копенгагене. В этой речи, между прочим, было указано, что даже психофизический параллелизм в форме, данной Лейбницем и Спинозой, раздвинул свои рамки благодаря развитию атомной физики, которая вынуждает нас в проблеме явлений занять позицию, напоминающую мудрый завет древних: в поисках гармонии в жизни никогда не забывать, что в драме бытия мы являемся одновременно и актерами и зрителями.
Высказывания такого рода могли, конечно, вызвать у многих впечатление некоего мистицизма, чуждого духу науки; поэтому я попытался в 1936 г. на упомянутом выше съезде устранить такого рода недоразумения и разъяснить, что речь идет единственно о том, чтобы попытаться выяснить для каждой области знаний условия для анализа и синтеза данных, получаемых из опыта. И все-таки я боюсь, что в этом отношении мне не слишком посчастливилось и едва ли удалось убедить моих слушателей: ведь для них тот факт, что расхождение во мнениях наблюдается даже среди физиков, уже сам по себе естественно заставляет сомневаться в необходимости столь далеко идущего отказа от привычных требований, предъявляемых к объяснению явлений природы. И, в частности, во время дискуссии с Эйнштейном, возобновившейся в Принстоне в 1937 г. (которая, впрочем, свелась к полушутливому спору о том, чью сторону принял бы Спиноза, если бы он переживал вместе с нами современное развитие физики), я особенно почувствовал необходимость крайней осторожности во всех вопросах терминологии и диалектики.
Эти аспекты положения дел подробно обсуждались на съезде, организованном в 1938 г. в Варшаве Международным институтом интеллектуального сотрудничества при Лиге Наций. Предыдущие годы принесли большие успехи в области квантовой физики благодаря ряду фундаментальных открытий, относящихся к строению и свойствам атомных ядер, а также благодаря значительному развитию математического формального аппарата в направлении учета требований теории относительности. В этом отношении гениальная квантовая теория электрона, созданная Дираком, дала поразительный пример силы и плодотворности общего квантово-механического способа описания. В самом деле, в явлениях рождения и аннигиляции электронно-позитронных пар мы имеем дело с новыми фундаментальными чертами атомной природы материи, которые тесно связаны с неклассическими сторонами квантовой статистики, нашедшими свое выражение в принципе Паули; эти новые черты потребовали еще большего отказа от объяснения явлений на основе наглядных модельных представлений.
Тем временем дискуссия о проблемах теории познания в атомной физике привлекала к себе внимание больше, чем когда-либо, и при комментировании взглядов Эйнштейна относительно неполноты квантово-механического способа описания мне пришлось более подробно и непосредственно затронуть вопросы терминологии. При этом я особенно предостерегал против часто встречающихся в физической литературе оборотов вроде: «возмущение явлений наблюдением» или «придание атомным объектам физических атрибутов при помощи измерений». Такие выражения, правда, могли бы служить напоминанием о кажущихся парадоксах квантовой теории, но в то же время они способны создать путаницу, потому что слова «явления» и «наблюдения» так же, как слова «атрибуты» и «измерения», употребляются здесь в таком смысле, который едва ли совместим с разговорным языком и с практическим их определением.
В качестве более целесообразного способа выражения я советовал употреблять слово «явление» исключительно в связи с наблюдениями, произведенными в точно определенных условиях, включающих указания о всем опыте в целом. При такой терминологии проблема наблюдения освобождается от всякой неоднозначности, потому что ведь в действительных экспериментах все наблюдения выражаются в виде совершенно однозначных утверждений того же типа, как, например, регистрация точки попадания электрона на фотографическую пластинку. Кроме того, такой способ выражения особенно хорошо подчеркивает то обстоятельство, что правильное физическое толкование символического аппарата квантовой механики может дать только предсказания однозначного или статистического характера, относящиеся к неделимым явлениям, возникающим в классически определяемых физических условиях.
Несмотря на все различия между физическими проблемами, породившими теорию относительности и теорию квантов, если сравнивать релятивистский и дополнительный способы описания в их чисто логическом аспекте, то бросается в глаза замечательное сходство в отношении отказа от придания абсолютного смысла обычным физическим атрибутам объектов. Также и пренебрежение атомной структурой самих измерительных приборов при описании реальных опытов одинаково характерно для теории относительности и для теории квантов. Малость кванта действия по сравнению с действиями, с которыми мы имеем дело в обычных опытах, включая установку и обслуживание физических приборов, столь же важна в атомной физике, как чудовищное число атомов, составляющих вселенную, важно для общей теории относительности, требующей, как известно, чтобы размеры угломерных приборов были малы по сравнению с радиусом кривизны пространства.
В моем варшавском докладе я следующим образом комментировал употребление в теории относительности и теории квантов математического аппарата, лишенного непосредственной наглядности;
«Даже математические аппараты обеих теорий, дающие, каждый в соответствующих рамках, надлежащие средства для охвата всего мыслимого опыта, обнаруживают глубокое сходство. Поразительная простота обобщения классических физических теорий, получаемого в одном случае при помощи многомерной геометрии и в другом случае при помощи некоммутативной алгебры, по существу основана в обоих случаях на введении условного символа. Абстрактный характер рассматриваемых формальных аппаратов одинаково типичен для теории относительности и для квантовой механики: в этом отношении это вопрос традиции, считать ли первую теорию завершением классической физики или же первым решительным шагом в глубоко идущем пересмотре системы наших понятий как средства для сопоставления наблюдений – шагом, к которому нас вынуждает современное развитие физики».
Конечно, верно то, что в атомной физике мы стоим перед рядом нерешенных фундаментальных проблем, в частности перед вопросом о зависимости между элементарной единицей электрического заряда и универсальным квантом действия. Однако эти проблемы связаны с рассмотренными здесь вопросами теории познания не теснее, чем законность релятивистского способа описания связана с еще не решенными задачами космологии. Как в теории относительности, так и в теории квантов мы имеем дело с новыми аспектами научного анализа и синтеза; в связи с этим стоит отметить, что даже во времена великой эпохи критической философии прошлого столетия дело шло только о том, в какой мере возможно априорное обоснование для координации нашего опыта в пространстве и во времени и для его причинной взаимосвязи, но никогда не возникал вопрос о рациональных обобщениях таких категорий человеческого мышления или о присущих им ограничениях.
Хотя за последние годы я несколько раз имел случай встретиться с Эйнштейном, но дальнейшие разговоры (которые всегда давали мне новую зарядку) до сих пор еще не привели нас к общей точке зрения на проблемы теории познания в атомной физике. Наши противоположные взгляды, может быть, наиболее четко выражены в одном из последних выпусков журнала «Диалектика», содержащем общую дискуссию по этим проблемам. Но так как я отдаю себе отчет во многих препятствиях, стоящих на пути взаимопонимания по вопросу, в котором позиция каждого сильно зависит от подхода и от других условий, то я приветствовал настоящий повод для подробного обзора того развития, которое, как мне кажется, привело к преодолению серьезного кризиса в физической науке. Урок, который мы из этого извлекли, решительно продвинул нас по пути никогда не кончающейся борьбы за гармонию между содержанием и формой; урок этот показал нам еще раз, что никакое содержание нельзя уловить без привлечения соответствующей формы и что всякая форма, как бы ни была она полезна в прошлом, может оказаться слишком узкой для того, чтобы охватить новые результаты.
В таком положении, как описанное, когда оказалось, что взаимопонимания трудно достигнуть не только между философами и физиками, но даже и между физиками различных школ, корень затруднений, несомненно, может иногда лежать в предпочтении определенной терминологии, соответствующей тому или иному подходу. В Копенгагенском институте, куда в те годы съезжался для дискуссий целый ряд молодых физиков из разных стран, мы имели обыкновение в трудных случаях утешаться шутками, среди которых особенно любимой была старая пословица о двух родах истины. К одному роду истин относятся такие простые и ясные утверждения, что противоположные им, очевидно, неверны. Другой род, так называемые «глубокие истины», представляют, наоборот, такие утверждения, что противоположные им тоже содержат глубокую истину. Развитие в новой области обычно идет этапами, причем хаос постепенно превращается в порядок; но, пожалуй, как раз на промежуточном этапе, где преобладают «глубокие истины», работа особенно полна напряженного интереса и побуждает фантазию к поискам твердой опоры. В этом стремлении к равновесию между серьезным и веселым мы имеем в личности Эйнштейна блестящий образец; и, выражая свое убеждение в том, что благодаря особенно плодотворному сотрудничеству целого поколения физиков мы приближаемся к той цели, где логический порядок позволит нам в большей мере избегать «глубоких истин», я надеюсь, что это убеждение будет воспринято в эйнштейновском духе и в то же время послужит извинением за отдельные высказанные на предыдущих страницах критические суждения.
Споры с Эйнштейном, составляющие предмет этой статьи, растянулись на много лет, в течение которых были достигнуты большие успехи в области атомной физики. Все наши личные встречи, долгие или короткие, неизменно производили на меня глубокое и длительное впечатление; и пока я писал этот очерк, я как бы спорил с Эйнштейном все время, даже и тогда, когда я разбирал вопросы, казалось бы, далекие от тех именно проблем, которые обсуждались при наших встречах. Что касается передачи разговоров, то здесь я, конечно, полагаюсь только на свою память; я должен также считаться с возможностью того, что многие черты развития теории квантов, в котором Эйнштейн сыграл такую большую роль, ему самому представляются в другом свете. Но я твердо надеюсь, что мне удалось дать ясное представление о том, как много для меня значила возможность личного контакта с Эйнштейном, вдохновляющее влияние которого чувствовалось всеми, кто с ним встречался.
1949