Книга: Делай космос!
Назад: 4.3. MRO: вода на Марсе
Дальше: 4.5. Schiaparelli: посадка на Марс для начинающих

4.4. ExoMars TGO: разгадать вторую загадку Марса

Никто не знает, есть/была ли жизнь на Марсе. Это первая загадка. Примерно пятнадцать лет назад второй загадкой стала вода на Марсе. Сейчас ее уже многократно разгадали – воду нашли, картографировали, изучили с поверхности. Но нашли загадку не менее важную – марсианский метан.





Метан – это простое органическое соединение с одним атомом углерода и четырьмя – водорода. Метан играет большую роль в жизни человечества на Земле, так как это основной компонент природного газа. Все углеводороды называют органическими веществами, но далеко не всё относится к живым организмам. Однако сейчас считается, что до 90 % земного метана, в том числе запасенного в недрах, имеет биологическое происхождение. В то же время, в космосе его тоже немало. Метан регистрировали на кометах, в атмосфере Юпитера метан занимает массу равную трем планетам Земля, а на спутнике Сатурна Титане текут метановые реки в ледяных берегах.





ExoMars Trace Gas Orbiter





В 2003 году астрономы сообщили сенсационную новость – на Марсе найден метан. Более того, он был не равномерно «размазан» по всей атмосфере, а явно тяготел к определенным участкам планеты. Концентрация его была довольно ничтожна: от 250 до 10 частей на миллиард по разным оценкам. Общий объем выброса метана весной 2003 года примерно соответствовал 42 тысячам тонн газа, для сравнения: это примерно треть не самого крупного танкера-газовоза. То есть объемы скромные, и «Газпром» такие запасы заинтересовать не смогли, зато очень взволновали научный мир.







Метановые выбросы зарегистрировали одновременно американские и российские астрономы, а через год эти данные были подтверждены с марсианской орбиты спутником Mars Express, то есть ошибки быть не могло. Ученым потребовалось найти ответ: откуда он взялся. Объяснить всё марсианской жизнью – слишком заманчиво, но не достаточно аргументировано. Метан может быть результатом геофизической активности марсианских недр, а может вырабатываться в некоторых реакциях окисления железа… Однозначно можно было сказать, что этот метан по геологическим меркам выделился недавно, так как под солнечным ультрафиолетом органические соединения в атмосфере Марса распадаются за несколько сотен лет.







Пока ученые думали, откуда метан появился на Марсе, он пропал. То есть практически совсем. То ли рассеялся в атмосфере до ничтожного значения, то ли исчез по другой причине, оставив концентрации, которые едва регистрировались доступными на тот день приборами: телескопами с Земли и спектрометрами станции Mars Express.





Ученые приняли вызов, и к 2012 году снарядили марсоход Curiosity, оборудовав его чутким газоанализатором, способным определять метан атмосфере. Правда, послали его не туда, где наблюдались выбросы метана, так как главными в проекте были геологи, а у них нашлись свои цели в кратере Гейла.





Успешно высадившись и освоившись на Марсе, Curiosity провел первые исследования и признал, что метана на планете нет. Точнее нет в той концентрации, которая была доступна приборам аппарата. Астрономы с Земли практически подтвердили его результаты: метана и правда было совсем мало, на пределе разрешающей способности земных спектрометров.





Пока исследователи размышляли о марсианском «метане Шредингера», прошел еще год и Curiosity прислал новые данные – таинственный газ снова появился в кратере Гейла… А потом снова пропал.





Пока американские ученые пытались высмотреть метан с телескопов с Земли и гонялись за ним на марсоходе, европейские и российские планетологи решили взяться за дело по-своему. Получив колоссальный опыт совместной эксплуатации космический аппаратов Mars Express и Venus Express и значительно доработав исследовательские приборы, они решили искать марсианский метан с орбиты. Как уже упоминалось, Mars Express регистрировал метан, но его разрешающая способность по распределению атмосферных газов оставляла желать лучшего. Набравшись опыта, россияне и европейцы решили подготовить аппарат, который сможет искать метан с точностью не менее чем в тысячу раз превышающую возможности Mars Express. Так родилась идея космического аппарата ExoMars Trace Gas Orbiter (TGO).







Точнее, идея у европейцев появилась давно, но она переживала нелегкую судьбу, пока Европейское космическое агентство не подписало в 2013 году договор с Роскосмосом.







Сотрудничество по «ЭкзоМарсу» строится по принципам уже отработанным на «Экспрессах»: Россия обязалась предоставить две ракеты «Протон-М» для запуска спутника TGO в 2016-м и марсохода Paster в 2020-м году. На аппарате TGO были установлены российские научные приборы вместе с европейскими.





Первым рейсом отправился спутник Trace Gas Orbiter. Он сбросил тестовый спускаемый модуль Schiaparelli, а затем полтора года выходил на рабочую орбиту и уже весной 2018 года занялся разгадыванием «метановой головоломки». Заодно он сможет определить низкие концентрации других газов в атмосфере Марса, если они там есть. Например, если местные вулканы не совсем еще окаменели, и хотя бы немного сочатся вулканическими газами, TGO должен найти эти газы и определить их источники.





Вообще, если первое десятилетие XXI века было посвящено изучению геологии Марса как с орбиты, так и с поверхности, то сейчас уже идет «атмосферный» этап. В 2014 году к Марсу прибыли американский аппарат MAVEN и индийский Mars Orbiter Mission.





Аппарат NASA «заточен» под изучение атмосферы и магнитосферы Марса, но он занимается верхними слоями и их взаимодействием с космическим ветром. То есть MAVEN должен ответить на вопрос «как Марс теряет свою атмосферу», в то время как ExoMars TGO будет искать возможные источники ее пополнения из недр планеты.





Индийские ученые тоже заинтересовались метановым вопросом и даже снарядили отдельный прибор для его поиска, но его качество оставляет желать лучшего. Индийцы здраво оценили свои возможности в межпланетных исследованиях и подчеркнули более демонстрационное значение своего аппарата.







ExoMars TGO – это трехметровый четырехтонный космический аппарат, который несет на борту 600 килограммовую «летающую тарелку» Schiaparelli и четыре основных научных прибора.





Schiaparelli потребовался европейцам, чтобы научиться садиться на Марс. Ранее у них был неудачный опыт посадки в 2003 году – небольшой аппарат Beagle-2 ушел в атмосферу и не подал больше признаков жизни. Как оказалось, Beagle-2 все-таки сумел мягко сесть, но прекратил работу, так и не выйдя на связь. Теперь же ESA попыталось повторить опыт на более высоком уровне: вооружив аппарат датчиками, которые будут собирать массу информации во время снижения и посадки.







Следующий этап проекта ExoMars – посадку марсохода, берет на себя Роскосмос. В далеком будущем, возможно, Европа замахнется на новую амбициозную задачу – доставку грунта с Марса.





На Schiaparelli разместили и климатическую исследовательскую станцию, но она должна была проработать всего неделю – пока не сядут аккумуляторы. Долговременных источников питания для аппарата не предусмотрено. Еще одна любопытная деталь Schiaparelli – лазерный уголковый отражатель. Спутник ExoMars TGO не оборудован лазером, поэтому уголковый отражатель Schiaparelli точно так же оставили на будущее.





Для Schiaparelli выбрали место посадки на равнине Меридиана. На ней уже работает марсоход Opportunity, и эта посадка стала самым тесным сближением на Марсе двух посадочных аппаратов. Несмотря на «близость», реально их будут разделять сотни километров, поэтому «Оппи» не сможет изучить место неудачной посадки «Скиппи».





Два главных научных прибора ExoMars TGO: европейский NOMAD и российский ACS являются блоками нескольких спектрометров и частично дополняют друг друга, но захватывают разные диапазоны волн инфракрасного света. Именно на них возлагается главная задача миссии – картография газов атмосферы Марса.







Оба они пользуются одним методом – наблюдают атмосферу на просвет. То есть анализируют свет солнца, погружающегося в атмосферу Марса на линии горизонта. Этот метод и высокое спектральное разрешение приборов позволяет не просто определять газы в атмосфере, но даже отличать их изотопный состав. А это ключевой показатель, который в теории позволит отличить биогенный газ от геологических выбросов. Разница только – в атомном весе углерода.





На Земле жизнь предпочитает выделять метан с легким изотопом С-12, потому что его легче связывать с водородом в результате биохимических процессов. Геологические процессы не так избирательны, и в них С-12 и С-13 формируют метан примерно в равных пропорциях. Помимо метана на биологическую активность может указывать аммиак, который точно так же выделяется живыми организмами в результате жизнедеятельности. Пока аммиака на Марсе не находили, но если он хоть немного содержится в атмосфере, то TGO его найдет. Разумеется, ученые знают только земную жизнь и, фактически, ее признаки ищут на Марсе, но за неимением альтернатив приходится «искать там, где светлее». В свое оправдание они говорят, что законы физики и химии на наших планетах работают одинаково, геологическое строение похожее, а когда-то и условия были схожи, поэтому нет оснований полагать, что эволюция вещества из неживого в живое проходила как-то иначе.







К слову сказать, до конца не ясно, как на Земле-то проходил процесс зарождения жизни, и это, кстати, важный аргумент в пользу исследования Марса. Казалось бы, зачем тратить сотни миллионов долларов, чтобы найти того, кто напустил газу на другой планете? А вот для того – чтобы понять, как мы на нашей-то планете оказались.





Сейчас уже мало кто из ученых всерьез полагает, что мы можем оказаться марсианами-переселенцами, в виде бактерий добравшиеся на метеоритах с Марса на Землю. Скорее возможен обратный вариант – найдя на Марсе местную жизнь придется доказать, что она действительно местная, а не залетела с Земли. Но все-таки, Марс является такой относительно независимой лабораторией, где вдалеке от Земли мог проводиться повторный природный эксперимент по созданию живой материи, способной к осознанию себя и окружающего мира, запуску космических аппаратов и написанию постов.





Кроме оптических спектрометров TGO несет на борту еще камеру CaSSIS, которая может снимать поверхность с разрешением до 5 метров, и проводить стереосъемку местности. Предыдущий аппарат ESA Mars Express уже много лет ведет свои наблюдения за поверхностью. Разрешение его камер – до 20 метров, то есть снимки TGO будут охватывать более узкие полосы местности, зато детали поверхности видны будут лучше. Снимки этой камеры будут использованы, в том числе для выбора места посадки будущего марсохода Paster, который должен стартовать в 2020-м году.





Четвертый прибор TGO снова российский – нейтронный детектор FREND. Его задача – картографирование содержания воды в грунте Марса на глубине до одного метра.





Подобный прибор того же Отдела ядерной планетологии Института космических исследований РАН у Марса уже летает, но разрешение его карт очень низкое – фактически равное высоте полета спутника.







HEND – летает на американском аппарате Mars Odyssey с 2001 года. Грубо говоря, он ловит все нейтроны, которые вылетают с поверхности, независимо от угла отражения. Поэтому очень сложно определить, откуда какой нейтрон прилетел, да и карты распределения воды, которые помог составить HEND, слишком мелкого масштаба.





На орбите Луны, на спутнике NASA LRO, протестировано следующее поколение прибора – LEND. Он уже имеет так называемый «коллиматор» – маску, которая отсекает часть нейтронов, позволяя принимать их только с узкого участка местности. Этот коллиматор уже наделал шуму в лунной геологии, найдя воду там, где ее быть не должно. Так что, наверняка найдется что-то интересное и на Марсе, осталось только подождать несколько лет, пока наберется необходимый объем данных.





Назад: 4.3. MRO: вода на Марсе
Дальше: 4.5. Schiaparelli: посадка на Марс для начинающих