Глава 5. Движение
Что заставляет объекты двигаться? По каким траекториям они движутся?
Средневековые физики, как и современные, дискутировали по поводу своих теорий, соглашаясь в некоторых пунктах, но расходясь в отношении других. В частности, они полагали, что предметы приводятся в движение переданной им силой, «импульсом», и что предметы движутся, пока импульс не иссякнет, как уже было отмечено в . Однако они не могли прийти к консенсусу, может ли импульс принимать разные формы и как он взаимодействует с другими физическими силами.
Одни физики считали, что импульс рассеивается сам. Другие были убеждены, что он остается в предмете, пока его не истощат внешние силы, например трение и сопротивление воздуха. Кроме того, были различные мнения о том, когда на импульс начинает влиять гравитация: с момента, когда объект начал движение, или только после того, как импульс опустился ниже определенного порога. Согласно одним теориям, перемещаемые предметы должны приобретать импульс носителя, согласно другим — нет. Не было единогласия, может ли импульс вызывать криволинейное движение или только прямолинейное.
Все эти разногласия были неразрешимы, потому что никакого импульса не существует в природе. Дискуссии, рассеивается ли он сам по себе или нет, похожи на рассуждения о том, носят ли гномы шляпы. Никаким экспериментом этот вопрос разрешить не получится, потому что он неправильно поставлен. Первым человеком, понявшим его бесплодность, был Исаак Ньютон. В «Началах» он изложил три закона, которые навсегда изменили понимание движения. Вот они:
1. Движущееся тело продолжает двигаться, пока на него не действует внешняя сила.
2. Сила, действующая на массу, вызывает ускорение.
3. Каждое действие рождает равное по силе противодействие.
Эти законы, без сомнения, вам знакомы. Их изучают на уроках физики и часто иллюстрируют стандартными картинками: шарик бесконечно катится по не имеющей трения поверхности (первый закон); кубик движется под уклон, набирая скорость (второй закон); две тележки после столкновения откатываются в противоположных направлениях (третий закон). Но что означают эти принципы? И почему они сделали представление об импульсе устаревшим? Несмотря на заучивание формулировок и соответствующих формул (F = ma, p = mv), многие из нас в повседневной жизни по-прежнему полагаются на импульс, чтобы объяснять и предсказывать движение. Чтобы понять законы Ньютона, посмотрим, почему они дают картину движения, отличную от той, которая нарисована нашей интуицией.
Подсознательно мы относимся к силе и движению как к неразделимым сущностям: сила подразумевает движение, а движение — силу. Классическая сила толкает или тянет тело. И то и другое приводит его в движение. Но что заставляет его продолжать двигаться? Что поддерживает движение на расстоянии? Интуиция подсказывает, что сила, с которой толкнули или потянули тело, передается ему. На движение явно влияют различные факторы, например гравитация и трение, но они, видимо, не вызывают движение, а лишь противодействуют ему, меняя направление и замедляя. Именно поэтому мы не считаем гравитацию и трение силами. Даже называя их так, мы воспринимаем их скорее как антисилы.
Благодаря теории Ньютона силы перестали быть свойствами объектов и стали взаимодействиями между объектами. Силу можно приложить к телу, но нельзя передать ему. Ньютон показал, что интуитивно связывать силу с движением неправильно. Движение может существовать и в отсутствие силы (например, комета, бесконечно летящая в космическом пространстве), а сила — без движения (например, стол, который поддерживает тарелку, противодействуя силе гравитации). Движение и сила разделимы, потому что силы вызывают не само движение, а изменения направления и скорости движения. Скорость и направление тела фундаментально отличаются от его ускорения и изменения направления. Сила требуется только во втором случае.
Чтобы увидеть разницу между интуитивным и ньютоновским представлениями о силе, вспомните : одной пулей стреляли параллельно земле, а вторую роняли с той же высоты. Большинство людей считает, что вылетевшая из ствола пуля окажется на земле позже, чем падающая, потому что пистолет передает ей некую дополнительную силу, способную некоторое время противодействовать гравитации. В реальности различие в горизонтальной скорости между пулями только сбивает с толку и никак не влияет на гравитацию, которая тянет обе пули к земле с тем же ускорением. Пуля из пистолета просто преодолеет при падении большее расстояние.
Ньютон изменил не только понимание силы, но и понимание движения. Интуитивно кажется, что движение — это что-то отличное от состояния покоя. В первом случае требуется объяснение, а во втором — нет. Кроме того, разные виды движений — подъем и падение, движение по окружности и вокруг своей оси — требуют разных объяснений. А Ньютон доказал, что движение и состояние покоя — это две стороны одной медали, разные ипостаси инерции. Состояние покоя — это всего лишь способ описания тела, движение которого незаметно. Книга на полке неподвижна по отношению к человеку, но движется по отношению к земной оси со скоростью 1674 километра в час и по отношению к Солнцу со скоростью 108 тысяч километров в час. Поэтому если движение требовало бы объяснения, то и состояние покоя тоже. Однако Ньютон доказал, что объяснять нужно не движение, а лишь изменения движения.
Это хорошо иллюстрирует , в котором человек сталкивает пушечное ядро с «вороньего гнезда» на мачте плывущего корабля. Большинство людей думает, что ядро приземлится не на палубе, а в кильватере, так как корабль находится в движении, а ядро — в состоянии покоя. Кажется, что ядро будет падать прямо вниз, а корабль за это время уплывет из-под него. Однако ядро движется вперед с той же скоростью, что и корабль, и при падении сохранит эту скорость.
Если пример с ядром не убеждает, вспомните пример из реальной жизни, который кружит по интернету в виде демотиватора. На картинке в кабину восемнадцатиколесного грузовика врезался собственный груз — гигантский каменный блок, который бросило вперед из-за резкого торможения. Подпись под рисунком гласит: «Инерция. У грузовика есть тормоза. У огромного камня нет».
* * *
Спустя примерно 350 лет после того, как Ньютон похоронил теорию импульса на кладбище научных ошибок, она продолжает жить и здравствовать в умах обычных людей. Через эту призму большинство из нас интерпретируют повседневные движения: скатывающиеся со стола шарики, тележки на американских горках, падающие с самолетов бомбы, вылетающие из пистолетов пули, футбольные мячи и лассо, подбрасываемые в воздух монетки. С помощью теории импульса мы предсказываем траектории предметов, рисуем действующие на них силы и даже прибегаем к этой теории, взаимодействуя с движущимися предметами в реальном времени. Независимо от задачи и контекста, импульс берет верх.
Рассмотрим задачу о траектории движущегося тела. С ее помощью во многих исследованиях проверяли, к чему ближе интуитивные представления о движении — к теории импульса или к реальности. Участникам давали рисунки движущихся предметов, например шарика, катящегося к краю стола, и просили нарисовать, что произойдет дальше. В жизни шарик упадет на пол по параболе, траектория которой будет зависеть от горизонтальной скорости и направленного вниз ускорения, связанного с гравитацией. Однако большинство участников рисуют непараболические траектории, параллельные полу в начале и перпендикулярные в конце. Видимо, по их мнению, шарик приобретает импульс, который в начале падения удерживает его в воздухе (аналогично летящей пуле), но в конце концов уступает силе гравитации.
Рис. 5.1. Предмет, скатывающийся со стола или выпущенный движущимся носителем, упадет на землю по параболе (неразрывные линии), хотя многие люди с этим не согласны (пунктирные линии)
В другом варианте задания участников просили нарисовать траекторию сброшенной с самолета бомбы. В реальности она, как и шарик, будет следовать по параболе, но большинство участников полагают, что падать она будет прямо вниз. Видимо, они думают, что бомба, в отличие от самолета, находится в состоянии покоя, поэтому не придают ей никакой горизонтальной скорости аналогично сброшенному вниз ядру.
Может быть, самое вопиющее доказательство скрытой веры в импульс дают задачи, в которых нужно нарисовать траектории предметов, разгоняющихся криволинейно: шар, который выпустили из искривленной трубы, раскрученный на веревке мяч, брошенное лассо. Все они будут идти по прямой линии — по касательной к кривой в момент отрыва, но многие люди полагают, что движение по кривой продолжится. Видимо, они думают, что для этого не нужны никакие внешние силы (поверхностная сила трубы или сила натяжения веревки).
Рис. 5.2. Предметы, ускоряющиеся по криволинейной траектории, будут двигаться по прямой (неразрывная линия), если перестанет действовать сила, вызывавшая ускорение. Но многие люди думают, что тело сохранит криволинейную траекторию (пунктир), приписывая ему соответствующий импульс
Рисунки участников имеют смысл только в рамках теории импульса, потому что только он может толкать предмет по кривой траектории при отсутствии внешних сил. Более того, они идут вразрез с повседневным опытом. В одном из исследований участников просили, например, нарисовать, как будет литься вода из свернутого шланга и как полетит пуля из изогнутого ствола. В обоих случаях предположение было верным — по прямой. Но когда участников просили нарисовать путь шара из изогнутой трубы, они рисовали искривленные траектории. Напоминание об аналогичных реальных ситуациях не влияло на основанные на импульсе рассуждения, которые по умолчанию включались в новом эксперименте.
В следующей задаче, призванной выявить основанные на импульсе схемы рассуждения, участникам демонстрировали движущиеся предметы и просили отметить стрелками действующие на них силы. Довольно часто участники рисовали импульс непосредственно. На траектории подброшенной монеты многие изображали две постоянные силы: тянущую вниз гравитацию и действующую вверх силу, которую участники называли «силой» или «импульсом» монеты — и то и другое псевдонимы импульса. Когда монета взлетала вверх, эта сила на рисунках была больше, чем сила тяжести. На вершине они сравнивались, а при падении силу тяжести рисовали как большую. Из этого явно следует, что участники были уверены, что подбрасываемой монете передается импульс, который иссякает по мере движения. В точке, где обе силы равны, монета перестает подниматься и начинает опускаться. Интуитивное представление, что движение подразумевает силу, приводит к тому, что люди придумывают несуществующие силы. В реальности на монету во всех точках ее траектории действует только гравитация. Скорость движения вверх уменьшается, потом исчезает, и монета начинает лететь вниз.
В случае неподвижных предметов участники часто игнорируют реально существующую действующую вверх силу поддерживающей поверхности, известную физикам как сила нормальной реакции. В отличие от движения, состояние покоя интуитивно не подразумевает наличия сил, однако без них предмет тянуло бы силой гравитации сквозь поверхность.
Ученые часто просили объяснить рисунки траекторий и сил, действующих на движущиеся предметы. Участники редко упоминали импульс, во всяком случае не называли его так. Они описывали нечто, играющее эту роль, более знакомыми словами: «внутренняя энергия», «внутренняя сила», «сила движения». Подумайте над следующими объяснениями, которые дали студенты-старшекурсники в беседе о физическом движении:
— Импульс, выталкивающий шар из изогнутой трубы, заставляет его идти по дуге. Сила, которую получает шар, в конце концов рассеивается, и он начинает лететь по обычной прямой линии.
— Сила движущегося шара передается покоящемуся. Она переходит от одного к другому.
— Шар, который находится в движении, обладает определенной силой. Движущийся предмет имеет силу импульса, а поскольку никакая другая сила не противодействует, он будет продолжать двигаться, пока ему что-то не помешает.
Эти объяснения созвучны объяснениям средневековых физиков, описанным в . Один из них, Жан Буридан, объяснял движение снаряда следующим образом: «Движущееся тело содержит в себе определенный импульс, определенную силу… действующую в том направлении, куда тело двигали: вверх, вниз, вбок, по кругу. Благодаря импульсу камень летит и после того, как бросивший перестает на него действовать. Но импульс постоянно уменьшается из-за сопротивления воздуха и тяжести камня». Даже Ньютон однажды объяснил движение снаряда с точки зрения импульса. В записной книжке, датируемой 1664 годом, он, тогда еще в студенческом возрасте, писал, что «движение не поддерживается переданной [извне] силой, потому что сила должна быть передана от двигающего движимому». В конце концов Ньютон отказался от представлений о передаче силы, но для него, как и для всех нас, они стали отправной точкой в рассуждениях о движении.
Не стоит думать, что теория импульса — это банальное ошибочное представление без очевидных последствий. Эксперименты показали, что она влияет на взаимодействие человека с реальными трехмерными предметами. Например, участникам давали мячи для гольфа и просили бросить их в цель, быстро проходя мимо нее, как самолет бросает бомбу. Большинство отпускали мяч прямо над целью, игнорируя его горизонтальную скорость, и промахивались. Люди исходили из того, что у мяча нет собственного «импульса» и он упадет прямо вниз. Справлялись с задачей только те, кто выпускал мяч перед целью. Мяч в этом случае падал вперед по параболе, аналогичной траектории ядра, сброшенного с мачты плывущего корабля.
В другом задании участников просили запустить хоккейную шайбу через изогнутую трубу. Многие старались придать шайбе ускорение по непрямой траектории, прежде чем выпустить ее, как будто пытаясь передать ей криволинейный импульс. Они промахивались. Единственный способ успешно выполнить задание — это запустить шайбу по касательной к центру искривленной трубы.
Взаимодействия с физическими предметами не всегда находятся под влиянием импульса. Опытный хоккеист, например, не будет пытаться запустить шайбу по кривой, потому что знает, как она на самом деле движется. Опытные бейсболисты не встают под верхней точкой дуги летящего мяча, ожидая, что он упадет прямо им в рукавицу, а опытные футболисты не бьют по переданному мячу перпендикулярно его направлению, ожидая, что удар «пересилит» имеющуюся скорость мяча. Научиться правильно взаимодействовать с движущимися предметами можно, но наши инстинкты не оптимальны и основаны скорее на импульсе, а не на инерции.
* * *
Рисуя путь шарика, который скатывается со стола и еще некоторое время движется параллельно земле, мы фактически рисуем путь Хитрого койота из мультфильма, который гонится за Дорожным бегуном и падает с обрыва. Странно, что у нас такие ожидания в отношении шарика, учитывая, что мультфильм нас не может обмануть. Мы понимаем, что Койот должен упасть, как только сделает шаг с обрыва, и поэтому нас развлекает, если этого не происходит. Траектории, основанные на импульсе, выглядят правдоподобно только на бумаге. Видя их воочию, мы легко замечаем их неестественность, «мультяшность». Ученые отслеживали мозговую активность у людей, смотрящих мультфильм вроде «Дорожного бегуна», и обнаруживали признаки выявления неестественности движения уже в течение трехсот миллисекунд. Это так быстро, что мозг даже не успевает осознать увиденное.
Рис. 5.3. Нам часто кажется, что снаряд будет двигаться по непараболической траектории, но ошибочность таких прогнозов становится очевидна, если увидеть их своими глазами, как, например, в этом мультфильме
Перцептивные ожидания по отношению к движению оказываются намного точнее, чем концептуальные. Например, если попросить выбрать, по какой из нескольких траекторий пойдет шарик, вылетевший из изогнутой трубы, и показать анимацию, люди правильно отдают предпочтение прямой линии, а не изогнутой. Но если те же траектории предложить в виде статичных рисунков, многие ошибутся, выбрав изогнутый путь вместо прямого. Аналогично, если спросить, какую из нескольких траекторий примет мячик, если его раскачивать как маятник и отпустить в верхней точке (где он не имеет скорости), мы правильно отдаем предпочтение прямой линии, а не изогнутой, но только в случае анимации, а не картинки.
Такое же расхождение наблюдается и у детей. В одном из исследований учеников младших классов просили подумать, как полетит шарик, если сбросить его с воздушного шара, летящего параллельно земле: вперед, назад или прямо вниз. Одна группа детей должна была угадать, а второй показывали, как шар падает по каждой из этих траекторий, и предлагали выбрать правильную. Почти никто в первой группе не сказал, что шарик будет падать вперед, однако во второй группе большинство детей выбрали именно такую траекторию. Расхождение между перцептивными и концептуальными ожиданиями о движении проявляется уже в двухлетнем возрасте. Если малышам показать анимацию шарика, который скатывается со стола вниз по прямой, а не по параболе, они удивляются: смотрят значительно дольше. Однако дети этого возраста ищут упавший со стола мяч прямо под столом, хотя удивились бы, если бы увидели, что он и правда туда падает.
Поскольку двухлетние дети делают прогнозы на основе импульса, эта теория движения складывается на довольно раннем этапе жизни, задолго до того, как человек вообще узнает слова «движение» и «сила». А тот факт, что двухлетние делают подобные предсказания, несмотря на способность узнавать неестественные движения на анимации, подразумевает, что концептуальные ожидания о движении отделяются от перцептивных с самого начала.
Расхождения очень ярко проявились в исследованиях двигательной памяти. В серии экспериментов участникам студенческого возраста показывали, как шар вылетает из искривленной трубы по прямой, а затем просили нарисовать, что они только что видели. В большинстве случаев воспоминания подводили: на рисунках шар летел из трубы по кривой. В другом исследовании участники видели, как в воздух с одинаковой скоростью запускали два шара — большой и маленький. Шары поднимались и опускались синхронно, но участники утверждали, что маленький мяч поднимался быстрее большого, как будто на него меньше влияла гравитация. Эти же работы показали: чем дольше опыт сохраняется в памяти, тем больше появляется таких иллюзий. Со временем концептуальные ожидания всё больше перекрывают перцептивные. Мы можем признавать истинность законов Ньютона, но признание длится не дольше, чем взгляд.
* * *
Теория импульса складывается очень рано и сохраняется, несмотря на способность человека точно воспринимать движение в реальном времени. Можно ли как-то вырваться из ее оков? Придумали ли педагоги способ обучать ньютоновским представлениям о движении? В большинстве случаев при преподавании законов Ньютона используется решение задач, однако это не помогает учащимся изменить устоявшиеся взгляды. Это отчетливо проявилось в исследовании студентов, которые в течение двух лет занимались физикой по четыре с половиной часа в неделю. За это время они решили сотни, если не тысячи упражнений. Чтобы определить, дало ли это какой-то эффект, исследователи провели тест на концептуальное понимание движения, призванный отличить рассуждения, основанные на импульсе и ньютоновских принципах, и сопоставили результаты с числом задач по физике. Результаты не воодушевляли. Студенты, решившие три тысячи задач, обнаруживали основанные на импульсе рассуждения с той же вероятностью, что и студенты, решившие всего триста.
Решение тысяч задач, может быть, не улучшает понимание движения, однако дает явный положительный эффект: улучшает сами навыки решения физических задач. Студент учится узнавать, какие абстрактные формулы применить в конкретной ситуации. От него не требуют раздумывать над смыслом этих формул. Достаточно подставить правильные числа в правильные уравнения, и математика выдаст результат.
Если задачники не помогают улучшить понимание движения, то что же помогает? Многие исследователи, изучавшие преподавание физики, предлагали обучение в микромире — виртуальной среде, где физические законы усваиваются благодаря симуляции взаимодействий и экспериментов. Такой подход имеет сразу несколько привлекательных черт. С его помощью можно проиллюстрировать любые законы физики, не только ньютоновские. Можно имитировать физические взаимодействия, которые не получится показать в классной комнате. Можно измерить любые физические параметры, не ограничиваясь секундомером и линейкой. По своему образовательному потенциалу микромиры далеко превосходят старую скучную реальность.
Возможно, виртуальные миры привлекательны. Но эффективны ли они? В одной работе этот вопрос был рассмотрен на примере популярной компьютерной игры Enigmo, в которой игроку нужно направлять падающие капли из одной части микромира в другую, манипулируя местом, куда они падают. Капли подчиняются ньютоновским принципам, в том числе, вопреки стойкому неверному представлению, следуют по параболической траектории. В исследовании участвовали ученики средней школы. Одна половина шесть часов на протяжении месяца играла в Enigmo, а другая — в стратегию Railroad Tycoon, где никаких физических принципов нет. В конце обе группы прошли получасовое занятие, посвященное законам Ньютона. Концептуальное понимание движения измеряли трижды: до и после компьютерных игр и после занятия.
Рис. 5.4. Компьютерные игры, построенные на законах Ньютона, — например, эта, где надо направлять капельки воды по параболическим траекториям, — мало помогают ученикам узнавать и применять эти принципы за пределами игровой среды
Как и предполагалось, у детей, игравших в Enigmo, результаты ко второму тесту улучшились, но всего на 5%. В то же время занятия физикой повысили результаты на целых 20% и принесли такую же пользу ученикам, игравшим в Railroad Tycoon. Другими словами, тридцать минут занятий оказались в несколько раз эффективнее, чем шестичасовое погружение в микромир, действующий согласно изучаемым принципам. Аналогичные результаты наблюдались и при использовании других микромиров. В лучшем случае они обеспечивали те же результаты, что и стандартное обучение, а в худшем — оказывались пустой тратой времени, давая знания, которые не применялись за пределами игры.
То, что знания, приобретенные в микромирах, не применяются в реальном мире, имеет много плюсов. Дело в том, что популярные компьютерные игры направлены прежде всего на развлечение и редко иллюстрируют законы Ньютона. Возьмите Super Mario Brothers для Nintendo. Марио и его братец Луиджи не сохраняют горизонтальной скорости. Когда они подпрыгивают вертикально вверх, платформа выезжает у них из-под ног, а предметы с движущихся платформ падают прямо вниз. Какие-то объекты подвержены действию гравитации, какие-то — нет. Гравитация вообще работает в игре непоследовательно, позволяя Марио прыгать в два раза выше своего роста, а затем падать в восемь раз быстрее, чем надо, учитывая скорость подъема. Конечно, игроку вряд ли придет в голову, что можно прыгнуть выше собственного роста только потому, что у Марио это получается: это знание отправляется в карантин и используется только в данной игровой вселенной. Ученики, играющие в Enigmo, точно так же отправляют в карантин знания законов Ньютона, которые приобрели в ходе игры.
Возможно, микромиры — неэффективный инструмент обучения, потому что виртуальный опыт слишком оторван от реальности. Многие педагоги уверены, что косвенный опыт — компьютерные игры, документальные фильмы, лекции, учебники — бледнеет по сравнению со знаниями, полученными прямо из жизни. Они считают, что осязаемый, подлинный опыт критически важен для осмысления и долгосрочного удержания знаний. Это мнение, однако, не подтверждается исследованиями. Несколько работ показало, что прямой опыт не лучше косвенного (например, инструктажа) в обучении абстрактным идеям, в частности законам Ньютона. Проблема именно в том, что для усвоения этот опыт нужно вывести на абстрактный уровень.
Мэгги Ренкен, занимавшаяся вопросами обучения, провела исследование, которое прекрасно демонстрирует неэффективность живого опыта. Ее группа сравнивала прямой и косвенный подходы к преподаванию принципа, что предметы падают с одинаковой скоростью независимо от массы. Участников — учеников средних классов — разделили на две группы. Одна группа провела серию экспериментов с шарами и уклонами: ученики меняли массу катящегося вниз шара и наклон, чтобы определить, какие переменные влияют на скорость. Другая группа читала об этих экспериментах — методах, результатах и следствиях, — но сама их не ставила. В результате лишь у второй группы обнаружилось понимание, что предметы падают с той же скоростью независимо от массы. В отличие от объяснений, живое наблюдение за шарами различной массы, движущимися по уклону с той же скоростью, не повлияло на уже имеющееся убеждение, что большие предметы должны падать быстрее, чем маленькие. Прошедшие же обучение ученики помнили и могли применить усвоенный принцип не только в день обучения, но и спустя три месяца.
На первый взгляд эти результаты удивляют. Почему ученики оказались восприимчивее к информации, полученной из вторых рук, а не к собственным наблюдениям? Однако если подумать, так и должно быть. Если бы живой контакт был достаточен для формулировки физических принципов, все осваивали бы их самостоятельно еще до школы, но когнитивные искажения — например, представление, что движение отличается от состояния покоя или что движение подразумевает силу, — заставляют нас не обращать внимания на эти принципы в повседневной жизни, даже если эксперимент поставлен руками. Если вспомнить об истории науки, нелепо думать, что ученики после получасового эксперимента сформулируют законы движения, для открытия которых физикам потребовались сотни лет наблюдений и опытов.
Тем не менее живое взаимодействие с физическими объектами небесполезно и очень способствует усвоению материала при условии правильного обучения. Один из таких методов был разработан ученым Джоном Клементом. Он предлагает не рассчитывать, что контакт с физическими системами подтолкнет учеников к открытию основополагающих принципов, а направить их внимание на эти принципы путем упорядоченных сравнений и аналогий.
Возьмем неочевидную идею, что поверхности — например, стол или прилавок — прилагают направленную вверх силу нормальной реакции на лежащие на них предметы. Большинство из нас не считают, что стол толкает книгу вверх, однако согласятся, что фонтанчик воды толкает вверх руку. Клемент называет последний случай якорем интуиции, то есть правильной интуитивной догадкой, с которой можно сравнить неправильную, которую нужно пересмотреть. Из того, что вода толкает вверх руку, еще не следует, что стол толкает вверх книгу. Концептуальный промежуток слишком велик. Его можно преодолеть благодаря тому, что Клемент называет примерами-мостами: от книги на фонтанчике к книге на толстом куске пенистого материала, затем к книге на гибком куске фанеры и, наконец, к книге на столе. С каждым шагом хочется увидеть направленную вверх силу там, где раньше она не пришла бы в голову. Мосты достигают цели, когда человек понимает, что даже стол прилагает действующую вверх силу к предметам, которые поддерживает.
Рис. 5.5. Чтобы объяснить, что поверхности прилагают направленную вверх силу нормальной реакции к предметам, которые поддерживают, полезно построить мост от этой мысли к интуитивно понятной идее, что струя воды прилагает направленную вверх силу к руке
Мосты можно использовать и в других противоречащих интуиции случаях. Чтобы объяснить, что все поверхности — даже такие гладкие, как керамика и сталь, — создают трение, можно начать с действия-якоря: потереть одним куском строительной шкурки о другой. Затем нужно перейти к случаям-мостам: кускам вельвета и кускам фетра. Чтобы объяснить, что спутники вращаются вокруг планеты, потому что их траектория постоянно изгибается ее гравитацией, можно начать с якоря — ядра, которое вылетело горизонтально земле из пушки на башне и падает по дуге. После этого нужно построить мосты — всё более высокие башни. Ядро будет описывать все более и более длинную дугу и при достаточной высоте и скорости начнет вращаться вокруг Земли, так как дуга станет бесконечной.
Аналогии-мосты были впервые описаны еще Ньютоном в разделе «Математических начал натуральной философии», посвященном мироустройству. Они бывают очень поэтичны и делают противоречащее интуиции интуитивным, а непостижимое — постижимым. Неудивительно, что подход оказался очень эффективен. Клемент сравнил уроки с применением и без применения «мостов» и обнаружил, что аналогии улучшают усвоение противоречащих интуиции физических принципов в два раза. Связывая туманные проявления физических принципов с более прозрачными, мосты позволяют уловить принципы, которые в противном случае остались бы незамеченными.
* * *
Успех аналогий Клемента заставляет задуматься о природе наших исходных убеждений: рассматривать ли их как помеху или как ресурс для освоения научного знания? Клемент придерживается второй точки зрения. В статье, озаглавленной «Не все предубеждения ошибочны», он утверждает, что последствия таких взглядов для преподавания научных дисциплин неоднозначны. Если это ресурс, то исходные убеждения нужно подчеркивать и использовать в качестве мостов к сложным идеям. Если это препятствие, то их надо опровергать и обходить.
В предыдущих главах мы столкнулись с примерами обеих стратегий. В третьей главе «вещественные» представления о тепле обходили, вводя альтернативные рамки осмысления этой темы — эмерджентные процессы. Во второй главе было описано обучение, раскрывающее природу материи путем построения моста от целостного восприятия веса и плотности к научному представлению о них как об удельных величинах.
Можно ли утверждать, что какой-то из этих подходов всегда лучше? Мнения исследователей образования по этому вопросу разделились. Некоторых заботит прежде всего эффективность преподавания в классной комнате, в то время как другие интересуются и более широкими, эпистемологическими проблемами. Например, Андреа ДиСесса уверен, что называть исходные убеждения учеников «ложными» нежелательно. В одной из статей он пишет, что исследователи слишком часто иронизируют над учениками и даже высмеивают и осуждают их представления выражениями вроде «псевдоконцепция», приравнивая их к невежеству и отсталости. Такая практика, по мнению ДиСессы, ошибочна, поскольку многие наивные представления «становятся элементом очень качественных технических навыков. Богатый набор наивных восприятий — это плодотворный бассейн ресурсов. Из этих кирпичиков может сложиться не только теория импульса, но и лучшие сочетания».
Возможно, такой подход мягче по отношению к новичкам, однако он приукрашивает их воззрения. Некоторые предубеждения и вправду ложны. Тяжелые предметы не падают быстрее легких, на летящее тело не действует больше сил, чем на лежащее, предметы не падают с движущегося носителя прямо вниз, а вылетев из изогнутой трубы, не описывают изогнутых траекторий. Эти ложные представления проявляются в разных контекстах, у разных людей, на разных стадиях развития и в разные исторические периоды. Объединяет их «импульс» — мнимая сила, которую якобы может приобрести предмет.
Импульс — это не продукт плохого сочетания в целом правильных представлений, а корень неточных воззрений. Отрицать, что основанные на импульсе убеждения ложны — это значит игнорировать эмпирические исследования этих убеждений. Однако то, что теория импульса ошибочна, еще не значит, что ошибочны все исходные представления. Аналогии-мосты Клемента эффективны потому, что очевидно не являются ложными. Примеры не содержат в себе примеси импульса и, может быть, именно поэтому не поддаются такой интерпретации.
Учитывая разнообразие предубеждений, не стоит дебатировать о том, полезны они или вредны. Некоторые из них точны, другие нет, и отличить одни от других можно только эмпирически, оценивая их влияние на наши рассуждения. Аналогично эффективность конкретных стратегий обучения можно проверить только на практике. Иногда полезнее обойти исходные представления, а иногда — использовать их как мост. Все зависит от того, о каком воззрении идет речь.
Обход исходных представлений и построение мостов не исключают друг друга. У этих стратегий разная цель, но они комплементарны. Мосты помогают интуитивно понять неочевидные научные идеи (например, силу нормальной реакции), но не объясняют их с точки зрения глубоких механизмов (молекулярных связей) и широких рамок (третьего закона Ньютона). В то же время стратегия обхода создает предпосылки для объяснения научных идей, но не делает их интуитивно понятными. Педагоги, таким образом, могут последовать рекомендациям Клемента и использовать обе стратегии на одном уроке. Мир сложен, и чтобы точно его понять, простых подходов мало.