261
Byers-Heinlein and Garcia, 2015.
262
Keil and Batterman, 1984.
263
Уэллс Г. Остров доктора Моро. М.: АСТ, 2007. Прим. ред.
264
Keil, 1992.
265
Keil, 1992.
266
Zaitchik and Solomon, 2008.
267
Springer, 1995.
268
Venville, Gribble and Donovan, 2005.
269
Duncan and Tseng, 2011.
270
Shea, 2015.
271
Dar-Nimrod, Cheung, Ruby and Heine, 2014.
272
Dar-Nimrod and Heine, 2006.
273
Spelke, 2005; Spencer, Steele and Quinn, 1999.
274
Wicker, Keysers, Plailly, Royet, Gallese and Rizzolatti, 2003.
275
Schaller, Miller, Gervais, Yager and Chen, 2010.
276
Curtis, Aunger and Rabie, 2004.
277
Haidt, McCauley and Rozin, 1994.
278
Rozin, Millman and Nemeroff, 1986.
279
Stevenson, Oaten, Case, Repacholi and Wagland, 2010.
280
Widen and Russell, 2013.
281
Fallon, Rozin and Pliner, 1984.
282
Rozin, Fallon and Augustoni-Ziskind, 1985.
283
Dawson, Han, Cox, Black and Simmons, 2007.
284
Heinrich, 1999.
285
Rozin, 1990.
286
Thagard, 1999.
287
Miton, Claidiere and Mercier, 2015.
288
Johnson, 2007.
289
Lederberg, 2000; Thagard, 1999.
290
Au, Sidle and Rollins, 1993; Blacker and LoBue, 2016; Kalish, 1996; Siegal and Share, 1990; Springer, Nguyen and Samaniego, 1996.
291
DeJesus, Shutts and Kinzler, 2015.
292
Solomon and Cassimatis, 1999.
293
Raman and Gelman, 2005.
294
Zuger, 2003.
295
Au, Chan, Chan, Cheung, Ho and Ip, 2008.
296
Zamora, Romo and Au, 2006.
297
Bearon and Koenig, 1990.
298
Legare and Gelman, 2008; Legare and Gelman, 2009.
299
Nguyen and Rosengren, 2004; Raman and Gelman, 2004.
300
Raman and Winer, 2004.
301
Cancer Research UK, 2015.
302
Mayr, 1982.
303
Gregory, 2009; Mayr, 1982.
304
Darwin, 1859.
305
Gould, 1996; Mayr, 2001.
306
Bowler, 1992.
307
Dobzhansky, 1973.
308
Shtulman, 2006; Shtulman and Calabi, 2013; Shtulman and Schulz, 2008.
309
Gregory, 2009; Shtulman and Calabi, 2012.
310
Bishop and Anderson, 1990; Shtulman, 2006; Ware and Gelman, 2014.
311
Roughgarden, 2004.
312
Lack, 1947/1983.
313
Медиана — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. Прим. ред.