Книга: Мир множества миров. Физики в поисках иных вселенных
Назад: Инфляционный поворот
Дальше: Математическая демократия

Глава 19

Огонь в уравнениях

Что вдыхает огонь в уравнения и создает вселенную, чтобы они описывали ее?

Стивен Хокинг


Совет Альфонса

Альфонс Мудрый, правивший Кастилией в XIII веке, глубоко уважал астрономию. На то имелись совершенно прагматические причины: знание точного положения планет на небе было жизненно необходимо для составления точных гороскопов. Для повышения их качества Альфонс заказал новые астрономические таблицы, основанные на теории Птолемея – последнем слове тогдашней космологии. Но когда ему объяснили тонкости птолемеевой системы, он отреагировал весьма скептически: “Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще”.

Король Альфонс мог бы сказать то же самое и о той картине мира, которую я обрисовал в этой книге. Она говорит о существовании бесконечного ансамбля вселенных, каждая из которых пестрит областями с разной физикой элементарных частиц. Области, где могут жить разумные существа, редки и разделены громадными расстояниями. Еще реже встречаются области, совершенно идентичные между собой, но даже их существует бесконечное множество. Какое расточительство пространства, материи и вселенных!

Однако нам не стоит слишком беспокоиться о количестве вселенных. Новая картина мира экономит куда более ценный товар: она значительно снижает число произвольных предположений, которые делаются о Вселенной. Лучшая теория – та, которая объясняет мир, опираясь на минимальные и простейшие предположения.

Ранние космологические модели исходили из того, что Творец тщательно сконструировал и тонко настроил Вселенную. Каждая деталь в физике элементарных частиц, каждая фундаментальная постоянная и все первичные возмущения нужно было выставить строго определенным образом. Представьте только бесчисленные тома спецификаций, которые Творец вручал своим ассистентам для выполнения работы! Новая картина мира предлагает совершенно иной образ Творца. После некоторого раздумья он пришел к набору уравнений фундаментальной теории всей природы. Этим запускается процесс неудержимого творения. Никаких дальнейших инструкций не требуется: теория описывает квантовое зарождение вселенных из ничего, процесс вечной инфляции и создание областей со всеми возможными типами физики элементарных частиц – до бесконечности. Каждый конкретный элемент ансамбля вселенных невероятно сложен, и для его описания понадобилось бы огромное количество информации. Но весь ансамбль в целом можно закодировать относительно простым набором уравнений.

Бог как математик

Как узнать, что наш портрет Творца близок к истине? Пытался ли он оптимизировать использование “ресурсов”, таких как пространство и материя, или больше заботился о сжатости математического описания природы? К сожалению, он не дает интервью, но продукт его работы – Вселенная – не оставляет сомнений на этот счет.

Поверхностного взгляда на Вселенную достаточно, чтобы убедиться, с какой великой расточительностью растрачивались материя и пространство. Бесчисленные галактики разбросаны в пустом космосе на колоссальных расстояниях друг от друга. Галактики делятся на несколько типов, среди которых спиральные и эллиптические, карликовые и гигантские. Но за исключением этого все они очень похожи друг на друга. Творец ясно дает понять, что не стесняется бесконечно повторять свои работы.

Более внимательный анализ открывает нам, что Творец без ума от математики. Пифагор в VI веке до нашей эры, вероятно, впервые предположил, что математические соотношения лежат в основе всех физических явлений. Его догадка была подтверждена веками научных исследований, и теперь мы считаем само собой разумеющимся, что природа подчиняется математическим законам. Но если остановиться и задуматься, то этот факт выглядит крайне странным.

Математика кажется продуктом чистого мышления, очень слабо связанным с опытом. Но почему же тогда она так идеально подходит для описания физической Вселенной? Это именно то, что физик Юджин Вигнер называл “непостижимой эффективностью математики в естественных науках”. Рассмотрим в качестве простого примера эллипс. Он был известен древним грекам как кривая, которая получается при разрезании конуса плоскостью под определенным углом. Архимед и другие греческие математики изучали свойства эллипса просто из интереса к геометрии. Затем, более 2000 лет спустя, Иоганн Кеплер открыл, что планеты в своем движении вокруг Солнца с высокой точностью описывают эллипсы. Но что общего у движений Марса и Венеры с коническими сечениями?

Ближе к нашему времени, в 1960-х годах, мой друг математик Виктор Кац (Victor Kac) исследовал класс замысловатых математических структур, известных как алгебры Каца – Муди. Единственной мотивом для этого был его нюх, который подсказывал: эти структуры пахнут чем-то интересным и могут привести к красивым математическим результатам. Никто не мог предсказать, что через пару десятилетий эти алгебры станут играть ключевую роль в теории струн.

Эти примеры не являются исключениями. Чаще случается именно так, а не наоборот: физики обнаруживают, что математические построения, необходимые им для описания нового класса явления, уже исследованы математиками по причинам, не имеющим ничего общего с обсуждаемыми явлениями. Похоже, что Творцу присуще математическое чувство красоты. Многие физики, полагаясь на эту его черту, используют математическую красоту в качестве путеводной нити в поисках новых теорий. Согласно Полю Дираку, одному из основоположников квантовой механики, “красота уравнений важнее их соответствия эксперименту, потому что расхождения могут быть вызваны второстепенными причинами, которые прояснятся по мере развития теории”.

Математическую красоту определить ничуть не проще, чем в красоту в искусстве. Примером того, что математики считают красивым, может служить формула Эйлера: e + 1 = 0. Один из критериев красоты – это простота, но одной простоты недостаточно. Формула 1 + 1 = 2 проста, но не особо красива, поскольку тривиальна. Напротив, формула Эйлера демонстрирует весьма неожиданную связь между тремя, казалось бы, независимыми числами: числом e, известным как основание натуральных логарифмов, “мнимым” числом i – квадратным корнем из –1 и числом π – отношением длины окружности к ее диаметру. Это свойство можно назвать глубиной. Красивая математика соединяет простоту и глубину.

Если и в самом деле Творец имеет математический склад ума, тогда уравнения окончательной Теории Всего должны быть поразительно простыми и невероятно глубокими. Некоторые считают, что эта окончательная теория есть теория струн, которую мы сейчас открываем. Безусловно, она очень глубока. Простой ее не назовешь, но простота может проявиться, когда теория будет лучше понята.

Назад: Инфляционный поворот
Дальше: Математическая демократия