Книга: Мир множества миров. Физики в поисках иных вселенных
Назад: Тише едешь – дальше будешь
Дальше: Часть вторая. Вечная инфляция

Секрет быстрого успеха

На то, чтобы новая теория стала общепризнанной, обычно требуются годы, если не десятилетия. Физики могут восхищаться красотой идеи, но признают ее лишь тогда, когда предсказания теории подтверждаются экспериментами или астрономическими наблюдениями. Это вдвойне верно в отношении космологии, где наблюдателям всегда было тяжело угнаться за воображением теоретиков, и теория Большого взрыва иллюстрирует это не хуже других. Статьи Александра Фридмана при жизни оставались незамеченными, а работа Георгия Гамова едва ли не игнорировалась на протяжении более чем десятилетия. Какой контраст со встречей, оказанной теории инфляции!

Почти 40 работ по новой теории было опубликовано в течение года после выхода первой статьи Гута. Еще через год их число выросло до 200 и оставалось на уровне около 200 статей в год в течение всего следующего десятилетия. Казалось, будто люди бросили все, чем они занимались, и принялись работать над инфляционной теорией.

С чем связан такой молниеносный успех? Отчасти его можно объяснить социологическими причинами. Физики, занимающиеся элементарными частицами, только что завершили разработку теорий сильного и электрослабого взаимодействий. И эта небольшая армия неожиданно обнаружила, что ей нечем заняться. Все новые идеи в физике частиц были связаны с чрезвычайно высокими энергиями. Не было никакой надежды проверить эти теории на существующих ускорителях, и прогресс застопорился. Единственным ускорителем, который мог разогнать частицы до требуемых энергий, оказался Большой взрыв, и физики элементарных частиц все чаще присматривались к космологии как к испытательному полигону для новых идей. В начале 1980-х годов начался массовый переход из физики элементарных частиц в космологию. Перешедшие были новичками в этой сфере и искали интересные задачи для примения своих сил.

Именно на этом фоне Гут предложил свою идею инфляции и дал физикам в точности то, что они искали. Особенно помогла незавершенность его теории. Когда вы полностью решаете важную проблему, работа может вызывать восхищение, но индустрию на ней не построишь. Инфляция, напротив, была лишь наброском теории с многочисленными пробелами, которые предстояло заполнить. Она предлагала множество задач для работы и самим ученым, и их аспирантам.

Однако помимо социологии продолжительная популярность инфляции связана с привлекательностью и силой самой этой идеи. В каком-то смысле инфляция похожа на дарвиновскую теорию эволюции. Обе теории предлагали объяснение того, что прежде считалось необъяснимым. Сфера научного исследования, тем самым, значительно расширялась. В обоих случаях объяснение было чрезвычайно привлекательным, а убедительных альтернатив никто не предложил.

Другая параллель с Дарвином состоит в том, что в то время, когда Гут предложил идею инфляции, она уже носилась в воздухе. Главное достижение Гута состояло в ясном понимании того, чем хороша инфляция, и тем самым в создании мотивации для решения проблемы изящного выхода и других трудностей инфляционного сценария.

Вселенная как бесплатный обед

До сих пор мы предполагали, что начальной точкой инфляции была маленькая замкнутая Вселенная со скалярным полем в состоянии ложного вакуума на вершине энергетического холма. Но эти предположения не являются обязательными. Вместо этого мы можем начать с небольшого кусочка ложного вакуума в бесконечной вселенной. Такое начало тоже приводит к инфляции, но несколько неожиданным способом.

Вспомните, ложный вакуум имеет огромное натяжение, которое вызывает его отталкивающую гравитацию. Если он заполняет все пространство, то натяжение повсюду одинаково и нет никаких физических проявлений, кроме гравитационных. Но если он окружен истинным вакуумом, натяжение внутри не уравновешивается никакой внешней силой и заставляет кусочек ложного вакуума сжиматься. Можно подумать, что натяжению противостоит отталкивающая гравитация, но на самом деле это не так.

Анализ, основанный на общей теории относительности Эйнштейна, показывает, что гравитационное отталкивание является чисто внутренним. Так что, если вы принесете кусочек ложного вакуума, чтобы продемонстрировать на лекции, предметы не будут отталкиваться от него, как на рисунке 1.1. Вместо этого они станут притягиваться. Снаружи от ложного вакуума сила гравитации проявляется как обычное тяготение. Результат зависит от размеров кусочка.

Если он меньше некоторой критической величины, побеждает натяжение, и кусочек съеживается, как растянутая резинка. Затем, после нескольких колебаний, он распадается на элементарные частицы. Если размер больше критического, побеждает отталкивающая гравитация, и тогда ложный вакуум начинает раздуваться. В ходе этого процесса он искривляет пространство наподобие воздушного шарика. Этот эффект проиллюстрирован на рисунке 6.7 для случая сферической области ложного вакуума. Показано только два пространственных измерения, так что сферическая граница области представлена окружностью. Натяжение влечет границу внутрь, к центру сферы, и это приводит к уменьшению объема ложного вакуума. Но это сокращение совершенно ничтожно по сравнению с экспоненциальным расширением внутренней части.



Рис. 6.7. Раздувающийся шар ложного вакуума (темный), соединенный с внешним пространством “кротовой норой” и видимый извне как черная дыра.





Расширяющийся шар соединен с внешним пространством узкой “кротовой норой”. Снаружи она видна как черная дыра, и внешний наблюдатель никогда не сможет подтвердить или опровергнуть, что внутри этой черной дыры скрывается огромная раздувающаяся вселенная. Аналогично, наблюдатель, который появится внутри раздувающейся вселенной-пузыря, увидит только крошечную часть всего пространства и никогда не узнает, что его вселенная имеет границу, за которой имеется другая большая вселенная.

Поскольку судьба сферы из ложного вакуума так радикально зависит от того, превышает ли ее радиус критическое значение, важно знать, чему же оно равно. Ответ зависит от плотности энергии вакуума: чем больше плотность энергии, тем меньше критический радиус. Для электрослабого вакуума он составляет около 1 миллиметра, а для вакуума Великого объединения – в 10 триллионов раз меньше. Это все, что нужно для создания Вселенной! Воистину, совершенно бесплатный обед. Ну или почти бесплатный…

Назад: Тише едешь – дальше будешь
Дальше: Часть вторая. Вечная инфляция