Как компьютер может научиться делать что-то новое? По сути, программа – это просто устойчивая последовательность инструкций в виде компьютерного кода. Вообще говоря, термин «компьютерный код» представляется довольно удачным, учитывая, что инструкции программы действительно прописаны шифром. На компьютерах с процессором Z80, например, код 87 означает прибавление одного числа к другому, а 76 – окончание работы программы. На компьютере с процессором 6800 код 8B выполняет функцию прибавления, а DD – функцию закрытия программы.
Важная вещь, связанная с кодом, заключается не в том, что он зашифрован, а в том, что это обычные данные – последовательность чисел. Это очень впечатляющая идея. Если мы хотим поменять программу, нужно просто загрузить новые коды в качестве данных. Еще больше впечатляет тот факт, что программа может поменять собственные данные, а значит, поменять сама себя. В этом и заключается суть обучения машины: компьютер может поменять собственные данные и собственный код, чтобы улучшить свои характеристики.
Не столь важно знать, как именно алгоритмы обучения решают, что именно поменять в коде. Некоторые изменения вызваны эволюцией, мутациями и скрещиванием кодов, такими же, как генные мутации и скрещивания в человеческой репродукции. Другие обусловлены самим мозгом, обновляющим связи между искусственными нейронами так же, как наш мозг укрепляет подобные связи в процессе нашего обучения.
В любом случае компьютер оставляет те изменения, которые улучшают его работу, и избавляется от других, которые этого не делают. Это происходит медленно, но компьютеры развиваются.
У нас уже есть один хороший пример создания интеллекта – homo sapiens. Наш интеллект – вещь в большой степени приобретенная. Мы были рождены без языка. Мы не умели читать и писать. У нас не было никаких знаний об арифметике, астрономии или истории Древнего мира. Но мы выучились всему этому и не только.
Обучение станет, вероятно, одной из важнейших характеристик думающих компьютеров. Это затрагивает феномен «бутылочного горлышка», проблему освоения компьютером всех знаний, которые человечество приобрело на протяжении нескольких тысяч лет. Программирование всех этих знаний вручную, факт за фактом – очень долгий и сложный процесс. Но нам и не нужно этого делать, компьютеры могут освоить все это самостоятельно.
Теперь нам окончательно ясно, что компьютеры превосходят людей в обучаемости. Они способны написать программу, которая может улучшить их собственный код, а также поделиться им с другими компьютерами. Так просто! Одновременно это гораздо эффективнее человеческого процесса обучения.
В следующий раз, когда вы попытаетесь научить ребенка вычислять максимум математической функции или склонять немецкий глагол, представьте, насколько проще это можно было бы сделать, если бы он был компьютером. Вы просто дали бы ему нужный код.
Компьютерное обучение стало причиной многих недавних технологических прорывов, связанных с ИИ. Оно позволило AlphaGo от Google победить лучших игроков в го на планете. В нем заключается секрет успеха переводчика Google. Оно породило множество программ, которые теперь лучше нас умеют диагностировать рак кожи или играть в покер.
Распространенное мнение относительно обучения машин заключается в том, что компьютеры могут делать только то, для чего они запрограммированы. И на элементарном уровне это действительно так. Компьютеры целиком и полностью детерминированы.
Они следуют инструкциям, прописанным в их коде. Они не могут от них отклоняться. Однако на более глубоком уровне компьютеры способны делать вещи, для которых не запрограммированы. Они могут осваивать новые программы. Даже могут быть креативными. Как и мы, они учатся новому, основываясь на собственном опыте.
AlphaGo не была запрограммирована для того, чтобы обыгрывать в эту древнюю китайскую игру чемпионов мира. Она научилась это делать благодаря тому, что постоянно практиковалась. Она сыграла партий в го больше, чем человек способен сыграть за всю жизнь. И в процессе игры программа понемногу становилась креативной. Она использовала ходы, которых от нее не ожидали даже самые искусные мастера, открывала новые возможности для игры в го.
И пример AlphaGo – не исключение. Компьютеры теперь превосходят людей во многих играх, таких как короткие нарды, покер, скребл или шахматы. Если кто-то говорит мне, что компьютеры могут делать только то, для чего они запрограммированы, я обычно перечисляю десяток игр, в которых компьютеры уже стали чемпионами мира. Почти во всех подобных случаях программы были написаны средними игроками, а превосходство программы над людьми достигалось за счет ее обучаемости.
Для того чтобы понять, почему homo sapiens необратимо будут вытеснены, нужно осознать, как много преимуществ имеет компьютер по сравнению с человеком, а цифровой мир по сравнению с аналоговым. Колёрнинг – одно из таких преимуществ, но есть и другие.
Во-первых, компьютеры обладают куда большей запоминающей способностью, чем люди. Все, что мы помним, хранится внутри нашего черепа. Мы, несомненно, должны быть благодарны за тот размер черепа, который имеем. Еще совсем недавно деторождение было одной из главных причин женских смертей. Ширина родового канала все еще не позволяет нам иметь большие головы. У компьютера такой проблемы нет. Его память можно расширять бесконечно.
Во-вторых, компьютеры могут работать гораздо быстрее людей. Мозг работает со скоростью чуть меньше ста герц, а нейронам требуется около одной сотой секунды, чтобы передать сигнал. Наш мозг обладает одновременно химическими и электрическими свойствами, что только замедляет его работу. Для перемещения химических веществ и для осуществления реакций между ними нужно время. Компьютеры же ограничены только законами физики. Скорость их работы выросла с 5 МГц в 1981 году (то есть возможность выполнения пяти инструкций каждую миллионную долю секунды) до сегодняшних 5 ГГц (возможность выполнения пяти инструкций каждую миллиардную долю секунды). Однако скорость – не главный критерий оценки. Сама по себе она несильно выросла за последнее время. Компьютеры теперь работают быстрее, потому что могут совершать большее количество действий одновременно. Так же, как и человеческий мозг, компьютер способен выполнять несколько задач сразу. Как бы то ни было, преимущество в скорости, которое дает кремний по сравнению с биологией, остается.
В-третьих, человек, в отличие от компьютеров, имеет ограниченный источник питания. Наш мозг использует около 20 из 100 Вт, производимых взрослым человеческим телом. Эволюционное преимущество, которое дает нам ум, оправдывает вложение в мозг такого большого количества энергии из наших ограниченных запасов. Однако дело в том, что никакой дополнительной энергии для повышения мыслительных способностей у нас не остается. Среднестатистический ноутбук же может использовать до 60 Вт. В случае если потребуется бо́льшая мощность (или объем вычислений), можно просто использовать облачные сервисы. Семь миллиардов человеческих мозгов потребляют совместно около 14 ГВт. Для сравнения: компьютеры по всему миру уже используют в десять раз больше энергии. В частности, работа компьютеров сегодня составляет десять процентов от общего использования электричества, то есть более 200 ГВт. В дальнейшем эта цифра будет только расти.
Четвертое преимущество компьютеров заключается в том, что человеку нужен сон и отдых. Компьютеры же могут работать двадцать четыре на семь и не уставать. Как было отмечено ранее, AlphaGo стала так хорошо играть в го именно потому, что могла сыграть в эту игру больше раз, чем любой человек. Разумеется, сон для человека может быть полезен не только в качестве отдыха и восстановления сил. Он помогает освежить память, затрагивает проблемы на уровне подсознания. Кто знает, вдруг компьютерам это тоже будет полезно? Мы можем запрограммировать их так, чтобы они время от времени спали в течение дня.
Пятое преимущество компьютеров состоит в том, что они, в отличие от людей, не забывчивы. Подумайте, как часто мы тратим время на поиск потерянных вещей или забываем дни рождения. Это качество, конечно, может быть полезным: оно помогает нам не уделять внимания незначительным деталям. Однако запрограммировать компьютер на это также не составит никакого труда.
Шестое преимущество – человеческие эмоции, которые могут мешать процессу мышления. Компьютеры не испытывают эмоций и, следовательно, не могут быть сбиты ими с толку. С другой стороны, эмоции играют важную роль в нашей жизни и часто оказывают положительное влияние на процесс принятия решений. Вероятно, они имели значение в ходе эволюции. В будущем у нас появится возможность наделять компьютер эмоциями. Подробнее эта тема раскрывается в третьей главе вместе с другими важными темами, такими, например, как совесть.
В качестве седьмого преимущества можно назвать факт, обнаруженный нами ранее: люди ограничены в средствах и способах передачи знаний. Компьютеры же могут обмениваться кодами друг с другом без всяких ограничений. Если один компьютер научился переводить с китайского на английский, этот навык можно передать всем остальным компьютерам. Если один компьютер научился диагностировать меланому, этой способностью можно наделить все остальные машины. Компьютер – идеальное воплощение колёрнинга.
Восьмое преимущество заключается в том, что люди, на самом деле, довольно плохо умеют принимать решения. Мы достаточно развили этот навык, чтобы выжить, но несильно продвинулись дальше. Например, мы плохо высчитываем точные значения вероятностей. Если бы мы были в этом сильнее, то никогда бы не стали покупать лотерейные билеты. Компьютеры, однако, можно запрограммировать так, чтобы они добились в этом бо́льших успехов. Область поведенческой экономики изучает наши субоптимальные решения. К примеру, ситуации, в которых мы стремимся минимизировать расходы, вместо того чтобы увеличивать прибыль. Экономисты называют этот феномен «неприятие потерь». Существует много подобных примеров субоптимального поведения. Многие из нас боятся летать, хотя дорога на машине до аэропорта на деле куда опаснее. Мы знаем, что должны сбросить пару килограммов, но выбираем аппетитный пончик с джемом.
Разумеется, все не так однозначно. Компьютеры не во всем нас превосходят. В сравнении человек имеет пару серьезных преимуществ. Наш мозг все еще сложнее, чем самый мощный суперкомпьютер. Мы быстро учимся, невероятно креативны, обладаем эмоциональным интеллектом и способны к эмпатии. Однако есть повод для сомнений в том, что этими преимуществами мы будем обладать еще долго. Уже сейчас есть некоторые доказательства креативности компьютера, его способности испытывать эмоции и быть эмпатичным. В перспективе шансы homo sapiens победить в противостоянии с машинами не очень велики.