Книга: Физика и астрофизика: краткая история науки в нашей жизни
Назад: Часть I. Когда б вы знали, из какого сора…
Дальше: Четыре силы природы

Как устроен атом и вообще весь мир

Итак, атомы химических элементов – это детали мирового конструктора. Но эти детали, в свою очередь, устроены из более мелких деталек. И этих деталек всего три.

Гуманитариям, напрочь забывшим школьный курс, трудно в это поверить, но все многообразие окружающей нас природы, все, что мы видим вокруг, – это лишь разные наборы всего трех элементарных частичек.

Вы, наверное, вспомните, как они называются. Не можете не вспомнить! Вот она, наша святая троица – протон, нейтрон и электрон. Познакомимся же с ними поближе. И начнем с электрона, его физики открыли самым первым.

Что мы можем о нем сказать? Какого он цвета? Он шершавый? Он влажный, твердый, газообразный? Он теплоемкий?

Нет! Все те свойства, к которым мы привыкли в нашем макромире, не имеют никакого отношения к миру элементарных частиц (микромиру). Нет в микромире ни цвета, ни запаха, ни шершавости, ни твердости, ни теплоемкости. Это все свойства макромира. Все эти свойства складываются из множества частиц, это макросвойства. А по отдельности частицы этих свойств не имеют.

А что же они имеют? Ну, должны же быть у электрона какие-то свойства, иначе бы его не существовало! Ведь существовать – это значит проявлять себя как-то, то есть иметь свойства!

Да, некоторые свойства у электрона есть. У него, например, есть размер. Радиус электрончика равен 2,81794×10–13 см.

У него есть масса. Электрон имеет массу 9,10938291×10–13 кг. Электрон в 1820 раз легче протона. Для сравнения: если протон – это танк, то электрон – это одна канистра с топливом. Если протон – человек, то электрон – это авторучка в его кармане. Вот такая разница в массе.



Кстати, а что такое масса? Масса – это просто количество вещества. Массу не нужно путать с весом, это совершенно разные вещи. Вес – это сила, с которой Земля притягивает массу. Сила, с которой массивное тело давит на опору, на которой лежит, или растягивает подвес, на котором висит. В космосе, в невесомости никакого веса нет, потому невесомость так и называется. Но все равно даже в невесомости толстый космонавт гораздо массивнее щуплого. И если они оттолкнутся друг от друга, то полетят в разные стороны с разными скоростями – толстый медленно, а щуплый быстро! Потому что количество вещества в их телах разное, в толстом вещества много, а в худом – кот наплакал. Масса измеряется в килограммах, а сила в ньютонах. Массу определяют с помощью весов, а силу с помощью специальных приборов – ньютонометров.



Электрон можно представить себе как маленький шарик, который вращается вокруг своей оси. Причем, как вы понимаете, летящий электрончик может вращаться или в одну сторону по отношению к направлению своего полета, или в другую, как это показано на рисунках ниже. И это тоже одно из свойств электрона – левое вращение или правое. По-научному вращение электрона называют спином. Спин – это собственное вращение электрона, от английского слова «spin» (вращение).



Вращение летящего в направлении стрелки электрона может быть правым или левым





Если в винтовочном стволе правая нарезка, то вылетевшая из ствола пуля будет иметь вращение вправо. А если левая – влево. Теперь представьте, что мы стреляем в мишень, свободно закрепленную в центре и могущую вращаться. В этом случае пули с правым вращением, впиваясь в мишень, будут передавать ей свое вращение, постепенно раскручивая в ту же сторону – примерно как отвертка крутит винт. Если мы не знаем, в какую сторону крутятся вылетающие из ствола пули, можно поставить опыт, стреляя по крутящейся мишени. В какую сторону она завертится, в такую и пули крутятся. Это и есть спин





А теперь признаемся честно: приведенные выше картины – чистая условность, с помощью которой физики, школьные учителя и авторы популярных книжек объясняют людям, что такое спин. На самом деле спин совершенно неправильно представлять себе как собственное вращение электрона! Хотя бы потому, что если шарик электрона мы представим вращающимся вокруг своей оси, то его экваториальные области будут двигаться быстрее скорости света, что невозможно. Да и шариком электрон можно назвать лишь очень-очень приблизительно, о чем мы еще поговорим далее. В общем, спин – это малопонятная и непредставимая квантовая характеристика электрона. Которую можно лишь отдаленно уподобить вращению.





Но спин – это сущая ерунда по сравнению с последним и самым загадочным свойством электрона. Свойство это называется зарядом. Но заряд не в том смысле, что электрон чем-то заряжен, как винтовка патроном, потому что патрон из винтовки можно вынуть. А этот загадочный заряд из электрона вынуть нельзя. Он ему присущ, он его часть. Он – главное его свойство. Электрон, собственно говоря, и есть элементарный заряд!

Что же такое заряд по сути своей?

Этого никто не знает. Но зато мы знаем, как загадочный заряд проявляет себя.

Давным-давно люди заметили, что если кусочек янтаря натереть шерстяной тканью, он начнет притягивать маленькие кусочки бумажки и легкие предметы. На указанное явление впервые обратили внимание те же древние греки. По-гречески янтарь – «электрон». И вы, наверное, уже догадались, что за притягивание бумажек отвечают электроны, раз эти частички физиками были названы в честь янтаря.

Действительно, в этом простом эксперименте человечество впервые столкнулось с действием электрических сил, которые обусловлены электрическим зарядом.

Теперь-то мы к электричеству привыкли. Теперь мы без него жить не можем. Теперь у нас кругом розетки. Теперь нас просто окружает электричество, без коего и шагу не ступить – все работает на электричестве. А линии электропередачи исправно доставляют потребителям электрический ток, который вырабатывается электростанциями.

А что такое электрический ток?

Нет ничего проще! Поток электронов – вот что такое электроток. Как река – это течение триллионов и биллионов молекул воды по руслу, так и электрический ток – это течение миллиардов электронов по металлическому проводу. Греки добывали чуть-чуть электричества, натирая шерстью янтарь. У нас же теперь – целые электростанции, которые занимаются производством электроэнергии в промышленных масштабах, и никто там не сидит и шерстью ничего не натирает – турбины работают!

Короче говоря, заряд электрона – это некое свойство, которое проявляет себя тем, что один заряд притягивается к другому заряду. Или отталкивается. Существуют два вида зарядов – положительный и отрицательный. Ничего положительного и отрицательного в бытовом смысле в них нет, они не хорошие и не плохие, просто их так назвали когда-то, да и все.

Электрон является носителем отрицательного заряда, а протон – положительного. Разноименные заряды притягиваются друг к другу, одноименные отталкиваются. Это прекрасно видно на рисунке.

Вот так мы и к протону незаметно перешли. Посмотрим-ка на него внимательно.

Если электрон маленький, легонький и электроотрицательный (минус), то протон большой, тяжелый и электроположительный (плюс). Полная противоположность! При этом протон и электрон притягиваются друг к другу.

А почему, собственно говоря, разноименные заряды притягиваются? И почему одноименные отталкиваются?

Этого никто не знает, потому что никто не знает, что такое заряд. Понять, почему так происходит, на современном этапе развития науки нельзя, к этому можно только привыкнуть. Привычка вполне заменят понимание. Можно сказать, что привычка и есть понимание.

Электрон и протон – на вид очень разные. И масса, и размер у них разные. А вот заряд одинаковый – заряд протона в точности равен заряду электрона, только знак имеет противоположный. И вообще протон и электрон – это минимальные порции заряда.





Притяжение и отталкивание электрических зарядов





Поскольку плюс и минус притягиваются, протон и электрон притягиваются друг к другу и могут образовать пару, напоминающую звездную систему. Только в звездной системе планета кружится вокруг светила, а тут электрон будет кружиться вокруг протона.

Самая простая подобного рода система состоит из одного протона, вокруг которого крутится один электрон.





Вращение Земли вокруг Солнца – и электрона вокруг протона





Аналогичные, казалось бы, системы. Но разница тем не менее есть. И состоит она главным образом в том, что планета и звезда электронейтральны, то есть не обладают зарядом. А электрон и протон обладают зарядом, то есть их притягивают друг к другу заряды. Планету же к звезде притягивает сила всемирного тяготения, которая действует на все массивные тела. Все тела, имеющие массу, притягиваются друг к другу. И чем больше масса, тем сильнее.

Вообще-то говоря, электрон и протон тоже имеют массу и потому притягиваются друг к другу без всякого заряда. Но их массы такие крошечные, что не смогли бы устроить между ними устойчивую связь без помощи зарядов.

А знаете, девушки, что у нас получилось, когда один электрон мы запустили крутиться вокруг одного протона?

Это атом водорода.

Самый легкий химический элемент. Самое простое вещество на свете. Номер первый в таблице Менделеева. Всего-навсего один протон и один электрон – и вот мы уже имеем газ водород. Нам удалось собрать всего из двух элементарных частиц первое химическое вещество! Для этого даже третья элементарная частица не понадобилась – нейтрон.

Нейтрон – парень скромный. Он не обладает таким ярким характером, как протон, хотя они очень похожи. У нейтрона почти такая же масса, как у протона и практически такой же размер. Но заряда у нейтрона нет. Он электронейтральный.

А зачем он тогда нужен?

И вправду, мы вон вполне удачно собрали первое, правда, пока самое простое вещество всего из двух элементарных частичек. Так зачем нужен нейтрон?

Разгадку этой загадки мы откроем чуть позже. А пока скажем обтекаемо: природе нейтрон зачем-то понадобился. И уже в следующем химическом элементе он присутствует.

Давайте попробуем собрать что-нибудь посложнее водорода!

Как? Простая логика подсказывает: если у нас в простейшем веществе две частички, надо добавить еще одну – третью. Вот вокруг нашего Солнца вращается около десятка планет. И поскольку атом напоминает планетную систему, давайте запустим вокруг протона еще несколько электронов.

Это будет сложновато! Я ведь не зря выше сказал, что заряды протона и электрона равны. Положительный заряд протона уже скомпенсирован отрицательным зарядом электрона, который кружится вокруг него. Мы уже получили электронейтральный в целом атом водорода. Все вещество, которое нас окружает, электронейтрально. А если случайно на нем накопится заряд, как на синтетической кофте, которую снимают через голову, или на янтаре, когда его шерстью потрешь, то мы это сразу увидим и почувствуем – заряженное вещество начнет притягивать мелкие предметы, потрескивать и искрить. Но это редкость, обычно вещество у нас в руках не искрит, не трещит, никуда ничего не притягивает и вообще ведет себя прилично. Нейтрально.

Поэтому если нам надо создать вещество, поимеем в виду, что оно должно быть электронейтрально, то есть число плюсиков в его атоме должно быть равно числу минусиков.

Значит, чтобы собрать что-то посложнее водорода, нужно запустить на орбиту еще один электрон и в дополнение ко второму электрону на орбите всобачить в центр (в ядро) еще один протон. Тогда два протона запросто удержат два электрона. И все уравновесится – в ядре атома будет два плюсовых заряда от двух протонов, а вокруг будут крутиться два электрона с двумя минусовыми зарядиками. И в целом атом останется электронейтральным.

И таким образом, что у нас получилось?

У нас почти получился гелий – вещество номер 2 в таблице Менделеева. До настоящего гелия ему не хватает только двух нейтронов в ядре. Добавим их, и получится гелий.





Атом гелия – два протона, два нейтрона, два электрона. Отлично поработали!





Природа устроила так, что количеству протонов в ядре атома приблизительно соответствует количество нейтронов. То есть если мы будем сооружать атом, например, с 10 протонами в ядре и 10 электронами на орбитах, то нам придется вдуть в ядро еще с десяток нейтронов. Как балласт или клей.

Поскольку протоны и нейтроны очень похожи (за исключением заряда), их часто называют одним словом – нуклоны. Таким образом, ядро атома состоит из нуклонов, а вокруг кружатся в бесконечном вальсе электроны. Прелестно!





Из этих трех деталюшек складывается весь наш мир





Ну, вот, собственно, и все! Вся природа у нас в кармане! Теперь нами понят ее главный принцип.

Как собрать следующий, третий по счету химический элемент в таблице Менделеева? Очень просто. Берем три протона, три нейтрона и три электрона. Нуклоны скатываем, как снежок, в одно ядро, вокруг запускаем три штучки электрончиков – и получаем литий. Литий – это уже не газ. Это уже легкий металл. Самый легкий металл на свете.

Вы, надеюсь, уже нашли водород, гелий и литий в таблице Менделеева…

А теперь поступим так. Найдите-ка в таблице наше родное и всеми горячо любимое золото. Стойте!.. Чтобы вы не листали книгу туда-сюда, я просто сам перенесу из таблицы Менделеева клеточку с золотом сюда.





Вот клеточка из таблицы Менделеева, где томится золото





Мы видим тут значок золота – Au (аурум) – и две цифры. Верхняя – это порядковый номер элемента в таблице Менделеева. У золота № 79. Почему такой?

Отчего золото оказалось в периодической таблице элементов под номером 79?

Не знаете? А могли бы и догадаться! Вспомните, как мы строили первые три простейших вещества. У первого, водорода, – один протон и один электрон. У второго, гелия, – по два. У третьего, лития, – по три. Уловили закономерность? Порядковый номер – это количество протонов в ядре атома и электронов на орбите, вот и все! Если элемент стоит в таблице Менделеева пятым, то это только потому, что у него пять протонов в ядре, а вокруг кружатся 5 электронов.

А вторая цифра, которая внизу, что значит? Выглядит она страшно, но пугаться не стоит. Это атомная масса. Только выражена она не в килограммах или граммах, а в атомных единицах, где гирькой служит нуклон. 1 нуклон – это одна единица массы. Два нуклона – две единицы атомной массы. Крайне просто.





В мире атомов вес измеряется в атомных единицах





Иногда еще атомную массу называют атомным весом. Мы знаем, что вес и масса – разные вещи, но так сложилось в науке, что атомный вес является синонимом атомной массы. Примем это как данность. Жалко, что ли? Мы же говорим «чайник закипел», хотя кипит вовсе не чайник, а вода в чайнике.

Так вот, каков атомный вес водорода? Одна атомная единица! Потому что в его ядре один нуклон. А у гелия? Четыре! Потому что в ядре гелия четыре нуклона – две гирьки протонов, а еще и две гирьки нейтронов. (Электроны при определении атомного веса не учитываются из-за чрезвычайной легкости.)

Проще говоря, атомная масса, которая указана возле каждого элемента в таблице Менделеева до запятой, – это общее количество нуклонов (протонов и нейтронов) в его ядре.

Посмотрите, в ядре атома золота 196 частиц. Протонов там, как мы уже выяснили, 79 штук. Все остальное – нейтроны. Их у золота 196 – 79 = 117 штук.

А что означают цифирки после запятой?..

В обычном нормальном атоме золота, как мы уже выяснили, 117 нейтронов и 79 протонов. Но иногда встречаются атомы-уродцы. У них есть лишние нейтроны. Как иногда у людей бывает по шесть пальцев на руках. Нечастое явление.

Предположим, на тысячу нормальных атомов приходится один дефектный. И если в норме в атоме золота 117 нейтронов, то иногда встречаются «вспухшие» уродливые атомы, в которых 118 нейтронов. Атомы-уродцы называют изотопами. Именно из-за них средний вес всех атомов вещества отличается от целого числа. Что понятно: если у нас из десяти атомов все десять имеют атомный вес в 6 единиц, то и средний атомный вес будет равен ровно шести:

(6+6+6+6+6+6+6+6+6+6): 10 = 6

А вот если один из десяти атомов имеет вес в 7 единиц, средний вес изменится:

(6+6+6+6+6+7+6+6+6+6): 10 = 6,1

Видите, после запятой появилась цифирка, которая говорит о том, что не «все шестерки одинаковы».

Если вы внимательно посмотрите на атомные веса элементов в таблице Менделеева, то увидите, что все они не являются целыми числами. Значит, каждое элементарное вещество имеет уродливые атомы. Даже водород. Хотя, казалось бы, проще водорода ничего быть не может – один протон, вокруг которого крутится один электрон, вот и весь атом. Это не какой-нибудь свинец, у которого в ядре больше двух сотен нуклонов, а вокруг этого огромного ядра кружится более 80 электронов!.. Однако все же бывают атомы водорода, в ядре которых, кроме протона, есть еще и нейтрон. Один. А порой и два! Такой водород называют тяжелым. Потому что его атом тяжелее обычного.

На рисунке ниже нарисованы атомы нормального водорода и редкие уродики, а также написано, как эти уродики называются.





Обычный водород. Дейтерий. Тритий





Но так как атомы-уродцы встречаются редко, говорить мы о них пока прекращаем. А возьмем сейчас тот же хлор и натрий, из которого ранее соль поваренную делали, и посмотрим, что тут к чему.





Натрий. Легкий металл. Как он сделан? Его номер 11-й. Значит, 11 протонов и 11 электронов. Атомный вес натрия – 22. То есть в ядре 22 нуклона.

22 нуклона минус 11 протонов = 11 нейтронов.

Все. Атом натрия готов.





Теперь хлор надо собрать по инструкции дяденьки Менделеева.

У хлора номер 17. То есть 17 протонов и 17 электронов. Атомный вес (число нуклонов в ядре) – 35.

35 – 17 = 18 нейтронов.

Все, собрали хлор.

Теперь соединяем два этих атома – хлора и натрия, – зацепив один за другой колечками самых дальних электронных орбит, и получаем сложное вещество – молекулу поваренной соли.

Так строятся все вещества – сцепляясь дальними орбитами электронов. При этом дальние электрончики, которые крутились на этих орбитах, становятся как бы общими для обоих ядер.

Все, можно стереть пот со лба. Мы освоили химию и физику элементарных частиц. Слава Менделееву! Науке слава!





Молекула поваренной соли – хлорид натрия. Кушать подано!





Теперь осталась одна маленькая деталь, которую нужно знать каждому приличному гражданину. Один маленький штрих, который завершит картину мироздания, сделав ее в ваших блестящих глазах более полной и блестящей.

Итак, мы знаем, что практически все окружающее нас вещество электронейтрально. Если вы дотрагиваетесь до шкафа, он не бьет вас током. Потому что в веществе шкафа количество положительных зарядов равно количеству отрицательных. Его атомы электронейтральны.

Но что будет, если атом потеряет один или два электрона? Вот такой рассеянный атом. Может такое быть? Может! Какое-нибудь сильное воздействие может парочку электрончиков у атома оторвать.

Вы скажете (подсмотрев в таблицу Менделеева):

– Ха! Даже если такое случится, невелика потеря! Вокруг ядра атома могут крутиться под сотню электронов! Например, у радия их 88. Некисло так! Подумаешь, пару потеряет…

Однако потеря даже одного отрицательного заряда означает избыток заряда положительного. Если атом теряет электрон, значит, у него остается один «лишний», нескомпенсированный протон. И атом в целом, таким образом, приобретает положительный заряд +1.

А если атом теряет два электрона, то он приобретает заряд +2.

Бывает и наоборот – когда к атому присоседится какой-нибудь приблудный лишний электрон. В этом случае атом получает один отрицательный заряд –1.

Такие заряженные атомы называются ионами.

Когда происходит подобное? Из-за чего атомы могут, например, терять электроны?

Это бывает при высоких температурах, то есть тогда, когда атомы газа имеют большую энергию и скорости, носятся как сумасшедшие, сталкиваются друг с другом. Частота и скорость соударений и есть температура. В обычном воздухе скорость соударений молекул невелика. А вот на Солнце раскаленный газ имеет температуру в тысячи (на поверхности Солнца) и даже десятки миллионов градусов (внутри нашего светила). Я сказал «на Солнце»? Это немного неточно. Скорее, «в Солнце». Потому что Солнце представляет собой раскаленный газовый шар. В основном оно состоит из водорода с небольшой примесью гелия.

Так вот в этих условиях скорость соударения атомов водорода такова, что «крышу срывает» у атомов на всю катушку. Атомы разрушаются, электроны слетают со своих орбит и начинают метаться одни, так же как и ядра, то есть протоны. Получается хаотическая электронно-протонная смесь или, иначе говоря, ионизированная плазма.

Плазма – горячая смесь ионов. Огонь – это тоже плазма. Только в обычном пламени костра или свечи содержание ионов не такое большое, как на Солнце, потому что температура ниже.

Со школьной скамьи вы помните три основных состояния вещества – твердое, жидкое и газообразное. Теперь знаете и четвертое – плазменное.

В твердом теле атомы и молекулы крепко держатся друг за друга, никуда не бегают, а только чуть-чуть дрожат и топчутся на одном месте, образуя кристаллическую решетку.

В жидкости энергетика частичек вещества такова, что они ломают кристаллическую структуру, рушат тесные ряды и начинают хаотически бродить, будучи не в силах удержаться в твердой структуре. Растекаются. Но еще не разлетаются друг от друга.

Разлетаться они начнут в третьем состоянии вещества – газообразном, которое наступит при дальнейшем нагреве, то есть дальнейшей накачке вещества энергией. Тогда скорость атомов станет уже такой, что силы их притяжения не смогут сдерживать энергичность расшалившихся атомов. Они просто разлетятся друг от друга и рассеются в пространстве.

Если же газ собрать в каком-то закрытом объеме или просто удерживать мощной силой гравитации (как на Солнце) и нагреть, то энергетика атомов станет такой огромной, что при столкновении друг с другом будут разрушаться уже сами атомы – с них начнет срывать электронные шубы. И останется только ионизированный газ – плазма. При этом газ начнет светиться, что говорит о его высокой температуре.

Плазма – это прекрасно. Мы любим смотреть на плазму и подкидывать в нее дровишек…

Назад: Часть I. Когда б вы знали, из какого сора…
Дальше: Четыре силы природы