Книга: Физика и астрофизика: краткая история науки в нашей жизни
Назад: Дирак и его безумная идея
Дальше: Откуда берется время

Относительно относительности

Теория относительности Эйнштейна – наиболее известная широкой публике физическая теория. Хотя она не самая странная и не самая сложная. Квантовая механика и посложнее, и постраннее будет. Но именно про теорию относительности в общих чертах имеют представление почти все от мала до велика. Сейчас это представление поимеете и вы, вне зависимости от того, малый вы или великий…

По-хорошему, про данную теорию нужно писать отдельную книгу – со схемами и графиками, но нам сейчас придется ограничиться только отдельными выводами из теории относительности. Они весьма нетривиальны.



Эйнштейн показал, что при приближении к скорости света масса тела растет (об этом мы уже знаем), линейные размеры тела сокращаются (оно становится короче), а время для него замедляется. Что означает последний факт? Он означает, что все процессы для этого тела текут медленнее – при взгляде со стороны, разумеется. Так, если на звездолете, передвигающемся с околосветовой скоростью, проходит минута, то на Земле могут пройти годы или даже столетия.

Но это еще не все странности. Эйнштейн трактует гравитацию как искривление пространства и замедление времени. Иными словами, то, что мы принимаем за тяготение, то есть стремление тел притянуться к Земле, есть просто побочный эффект кривого пространства. Наиболее наглядная картинка, которую можно вообразить, чтобы это понять, такова.

Представьте себе ровно натянутую и разлинованную в клеточку резиновую поверхность – это пространство без гравитирующих масс. Все линии и углы тут прямые. Мы имеем модель двумерной поверхности, то есть плоскость – на плоскости есть только ширина и длина, но нет высоты. Невесомый шарик (фотон) будет катится по этому прямому плоскому пространству прямолинейно. Такое прямое пространство называется эвклидовым в честь греческого геометра Эвклида.

Если теперь на эту плоскость положить массивный шар в виде тяжелой планетки, резиновая поверхность прогнется. Нарисованные на поверхности линии и углы растянутся и искривятся, причем чем ближе к шару, тем больше. И если снова запустить по этой резине какой-нибудь маленький пробный шарик, прямая траектория его движения неподалеку от тяжелого шара изогнется вслед за изогнутой поверхностью резины, а если скорость шарика невелика, он может вообще скатиться в прогнутую большим шаром ямку. Как бы притянется к нему. Но это «притяжение» лишь есть следствие изогнутости нашего двумерного пространства.

То же самое происходит и с нашим трехмерным пространством, просто его искривление представить себе не так просто, как искривление двумерной поверхности, то бишь плоскости.

Таким образом, каждая масса в нашем мире, начиная от самых легких частиц до самых тяжелых звезд и галактик, формирует вокруг себя искривление пространства, которое перестает быть прямым, эвклидовым.



Искривленное двумерное (плоское) пространство, двигаясь по которому пробный шарик попадает в яму изогнутого пространства





Но это еще не все хитрости старика Эйнштейна. По его теории, масса не только искривляет вокруг себя пространство, но еще и замедляет вблизи себя время, и чем больше масса – тем больше. Соответственно, возле Солнца время течет немного медленнее, чем около Земли.

Несмотря на все эти совершенно неочевидные вещи, теория Эйнштейна прошла все возможные экспериментальные проверки, и эффекты искривления пространства и замедления времени были зафиксированы приборно. Теория была блистательно доказана!.. Конечно, для тех масс, с которыми мы обычно имеем дело и на которых живем (Земля), эффект искривления пространства и времени слаб, но при должном старании ловится. А уж тут физики постарались, уверяю вас! И потому сегодня теория относительности является одной из главных и самых прекрасных драгоценностей в сокровищнице физической науки. Периодически взволнованные физики берут эту теорию дрожащими ручонками и, не отрывая глаз, тихо вздыхают, любуясь ею, будучи не в силах перенести восхищения.

Как физики от реальности отказались

Физика отличается от математики тем, что описывает не голые цифровые абстракции, а конкретный мир, хотя и с помощью математики. За математическими формулами в физике всегда стоит какая-то реальность, и если формулы эту реальность описывают неправильно, значит, теория не верна, нужно подобрать другие формулы, построив у себя в голове некую наглядную модель того, как происходят физические процессы – течет вода, летит тело под действием силы тяжести, нагревается тело, преломляется луч. Если найденная формула соответствует результатам экспериментов, значит, наглядная модель, возникшая в голове теоретика, соответствует действительности – по крайней мере до определенных пределов.

Однако все было так только до начала XX века, поскольку ранее физика занималась изучением в основном макромира, а потом перешла к изучению микромира. И вот в физике микромира наглядность начала пропадать. Представить себе частицу в виде маленького шарика – легко. Представить себе волну – тоже не сложно. А вот как представить себе волно-частицу? Как представить, что один электрон прошел одновременно через две щели? Как представить себе виртуальный квант или возбужденный вакуум?..

В нашем макромире подобных объектов нет. В этом и состоит проблема современной физики: человек есть животное, приспособленное к жизни в мире твердых тел, то есть в макромире. То, к чему мы привыкаем с детства, живя в этом мире твердых тел, мы и считаем наглядным, то есть понятным. Наглядность есть функция привычки, не более. А проникновение силою ума в микромир лишило физиков наглядных картинок, оставив в их инструментарии только абстрактное мышление и чистую математику. У нас нет и не может быть представлений о микромире: наше тело заточено под выживание в макромире.

Но так больно было расставаться с наглядностью! Так трудно было расставаться с привычным и естественным! Например, для нас совершенно естественно, что параллельные линии не пересекаются. Однако для нас это естественно только потому, что мы привыкли жить в так называемом эвклидовом пространстве, где работает привычная школьная геометрия. Однако физики уже оперируют и другими геометриями – геометриями искривленных пространств, в которых параллельные вполне себе пересекаются.

– Физика изучает мир и потому не может обойтись без наглядности, – считали физики старой школы. – Ведь за формулами всегда стоит какая-то реальность! Нужно просто придумать такие модели, которые бы и реальность адекватно описывали, и давали возможность ее понять не только на уровне формул, а в виде картинки. Вот мы же можем формулами описать сжатие пружины или полет пули и можем эти процессы наглядно себе представить. Давайте же найдем такие наглядные модели, которые бы давали наглядное представление о событиях в микромире.

– А это невозможно, – жестко возражало новое, молодое поколение физиков. – Как можно представить себе «вектор состояния» или «волновую функцию»? Придется вам теперь обходиться только формулами, старые козлы! Хе-хе.

– Какие же вы все-таки мерзкие! – обижались старички. – Ведь быть такого не может, чтобы природа сама о себе чего-то не знала. Скорее всего это мы о ней чего-то еще не успели узнать, раскрыть каких-то ее секретов, поэтому нам и кажется, что в природе микромира царят случайность и неопределенность и что летящий электрон находится одновременно во всех точках пространства. А на самом деле – он где-то в одном месте, сученыш! Просто нужно дальше изучать мир и постичь наконец скрытую пока еще от нас реальность. Потому как то, что получается из формул, просто противоречит интуиции!

– Да нет никакой скрытой реальности, дедки! – цинично смеялось над физиками старого поколения поколение молодое. И называло стремление стариков к наглядности «наивным реализмом». – А что касается интуиции, то она всего лишь порождение макромира и наших чувств, завязанных на макромир, забудьте про нее.

И вы уже знаете, что среди обиженных дедков были такие зубры, такие столпы физики, как Планк, де Бройль и Эйнштейн, которые сами стояли у истоков мировоззренческой катастрофы. Эти люди растерянно пытались найти хоть какие-то наглядные модели, чтобы описать корпускулярно-волновой дуализм и прочие чудеса микромира. А новое поколение только рукой махало, даже не пытаясь найти каких-то картинок, довольствуясь только формулами.

Об этом драматичном споре один из физиков новой волны – Макс Борн высказался так: «Нашу полемику нельзя назвать чисто научной дискуссией. Скорее, она напоминала религиозные споры времен Реформации. Так что надежд на примирение мало». И в общем, был прав. Мировоззренческая катастрофа была такой, что кое-кто из физиков на этой почве даже увлекся древнеиндийской философией, как это сделал, например, Эрвин Шредингер.

Усугубило катастрофу и то обстоятельство, что физике пришлось отказаться не только от концепции физической реальности, но и от концепции объективности! Раньше считалось, что есть объективный мир и есть субъект, то есть человек, который этот мир изучает. Объективность же мира в том и заключается, что он от субъекта никак не зависит. Он просто существует, вне зависимости от того, изучаем мы его или нет и кто этим занимается – Иванов, Петров или Сидорчук. Законы природы от нас не зависят, мы их просто познаем…

Но законы микромира оказались столь странными, что в них наблюдение субъекта за реальностью очень даже влияло на реальность! Объективная реальность оказалась зависящей от субъекта!

Вот пример. Двухщелевой эксперимент с электроном, который пролетает в две щели и рисует на экране интерференционную картину…

Итак, один электрон пролетел в две щели. Это удивительно. «А может, все-таки в одну?» – с надеждой вопрошали физики-классики. Что ж, можно проверить. Можно неподалеку от одной из щелей поставить регистратор, который будет засекать, пролетел в эту щель электрон или нет. Если регистратор электрон засечет – значит он действительно пролетел в эту щель. А если не засечет – значит в другую!

Ну, и что же вы думаете? Как только ставят регистратор, как только начинают проводить наблюдение, так электрон и вправду начинает пролетать только в одну щель – либо в эту, либо в соседнюю. Но при этом интерференционная картинка на экране исчезает!

Интерференция исчезает, когда электрон «узнает», что мы за ним наблюдаем, вот в чем проблема. Электрон начинает вести себя как обычная частица. А когда не наблюдаем (выключаем прибор регистрации), он снова ведет себя как волна, и картинка сложения волн на экране возникает опять.

Как неожиданно…

Одна из главных физических формул микромира, которая описывает так называемый «вектор состояния», она ведь описывает математическими значками не только само состояние изучаемой квантовой системы, но и наши знания о ней. Они включены в формулу! Ну, разве могли физики старой школы так легко с этим смириться?

А уж когда физики-теоретики стали изучать вакуум и самые мелкие структуры бытия, последние остатки наглядности в виде мысленных картинок или рисунков растворились, и остались одни сплошные формулы.

Что поделаешь, миром руководит математика!

Назад: Дирак и его безумная идея
Дальше: Откуда берется время