История гигантской звезды не заканчивается после ее взрыва. Внутри светящегося облака осколков звезды может по-прежнему биться сердце – неистово вращающееся, выросшее до огромных размеров атомное ядро со сверхмощным магнитным полем. Или же звезда превратится в бесплотный призрак с гравитационным полем и будет восприниматься как брешь, пробитая в пространстве-времени.
Факты таковы: ночью 9 октября 1604 года взоры европейских обывателей, которым не спалось, обратились на юго-запад. Там, в созвездии Стрельца, в эту ночь должны были сойтись планеты Юпитер, Сатурн и Марс. Некоторые люди верили, что это радикально изменит мир.
Планеты вышли на парад по расписанию. Но внимание наблюдателей привлекло нечто в соседнем созвездии Змееносца. Там появилась совершенно новая звезда. Ее яркость возрастала на протяжении 20 дней, она стала ярче, чем любая планета, замешкалась на какое-то время, а потом начала постепенно гаснуть. В общей сложности, звезда была видна на протяжении года. Так вспыхнула сверхновая в галактике Млечный Путь – на данный момент последняя, которую удалось увидеть невооруженным глазом.
«Мы можем быть уверены только в одном, – писал Иоганн Кеплер, составивший подробный отчет об этом событии. – Либо эта звезда ничего не значит для человечества, либо она означает нечто настолько важное, что находится за пределами понимания человека». Сегодняшние астрономы – по крайней мере, если они в настроении побыть претенциозными, – могут склониться ко второму утверждению.
До сих пор остаток сверхновой Кеплера можно наблюдать в виде расширяющегося облака – того, что осталось после взрыва. Фактически ученые напоминают в этой ситуации следователей, которые по брызгам крови пытаются восстановить картину происшедшей трагедии. Бросая взгляд в прошлое, астрономы классифицируют событие 1604 года как сверхновую типа Ia. Современная космология использует этот тип сверхновых в качестве мерила для оценки возраста и размера Вселенной.
В целом причины возникновения сверхновых типа Ia пока не ясны. Предлагается, например, такая модель: вещество от соседнего красного гиганта падает на плотное горячее ядро белого карлика, которое затем самоуничтожается в термоядерном взрыве. Или другая модель: сверхновые типа Ia возникают, когда два белых карлика при слиянии уничтожают друг друга.
Может ли сверхновая Кеплера помочь выбрать нужный вариант? Картина взрыва сопровождается одним обстоятельством, которое можно считать ключевым: газ, выброшенный из звезды во время взрыва сверхновой, похоже, врезается в другой газ, который был выброшен из того же объекта еще раньше. Приходится признать, что сценарий с участием красного гиганта подходит больше, чем столкновение белых карликов: ведь именно у красного гиганта есть свойство выбрасывать в пространство часть своей атмосферы.
Но поиски звезды-спутника не увенчались успехом. Это может означать следующее. Рядом с белым карликом действительно была вторая звезда, но она тоже превратилась в белый карлик незадолго до того, как в двойной системе произошел взрыв, уничтоживший обе звезды. Не исключено также, что вторая звезда все еще обретается по соседству с местом взрыва, но замаскирована или обезображена взрывом – и теперь не видна из-за малой светимости или по иным причинам.
Астрономы, впрочем, пока не потеряли надежду найти вторую звезду; они также рассчитывают, что спектральные исследования остатка сверхновой дадут новые улики того, что произошло во время взрыва. До тех пор же нераскрытое дело так и будет «висеть» на юго-западном небосводе и понемногу истлевать в горниле, пылающем от жара белых карликов.
После взрывов сверхновых остаются ядра взорвавшихся массивных звезд – нейтронные звезды. Источником энергии сверхновых типа Ia являются термоядерные реакции, других сверхновых подпитывает энергия гравитационного коллапса. Когда в массивных звездах заканчивается ядерное горючее и давление излучения падает, они коллапсируют под действием собственной гравитации и сжимаются до критической плотности, пока не возникает новая сила, способная остановить дальнейшее сжатие звезды. Сильное ядерное взаимодействие, которое удерживает вместе протоны и нейтроны в ядрах атомов, начинает играть роль отталкивающей силы в плотно сжатом веществе.
Гравитационное и сильное взаимодействия оказываются в тупике, когда ядро сжимается примерно до размеров 10–15 км. При этих условиях большинство протонов и электронов объединяются и образуют нейтроны. Эти частицы упакованы так плотно, что чайная ложка нейтронного вещества весит несколько миллиардов тонн. Нейтронное вещество должно быть сверхтекучим – способным течь без трения – и пронизанным магнитными вихрями.
Это вещество само по себе очень странное. Но природа пошла еще дальше – по крайней мере, в гипотезах некоторых физиков. В особенно массивных нейтронных звездах, говорят они, избыточное давление может вызвать распад нейтронов, высвобождая кварки, из которых они состоят. Или частицы могут образовать бозе-эйнштейновский конденсат – такое квантовое состояние, в котором индивидуальные свойства нейтронов размываются, и они ведут себя как одна большая коллективная частица.
Теории существования экзотического вещества получили настоящий удар «под дых» от нейтронной звезды под названием EXO 0748-676. Ее масса, по оценкам, равна двум массам Солнца. В то же время большинство моделей кварковых звезд и нейтронных звезд, содержащих бозе-эйнштейновский конденсат, предсказывают, что они коллапсируют в черную дыру, не успев достигнуть такой высокой массы.
Но дело еще не полностью закрыто. В 2014 году Чарльз Хоровиц и его коллеги из Университета Индианы (г. Блумингтон, США) смоделировали поведение крошечной нейтронной звезды размером меньше одного атома, содержащей десятки тысяч нейтронов и протонов. Сверхплотная упаковка протонов и нейтронов оказывается полем битвы между сильным ядерным взаимодействием и электростатической силой и превращает звезду в подобие некоей вафельной конструкции. По своим характерным размерам эти вафельные структуры лишь немногим больше атомного ядра.