Книга: Черные дыры. Лекции BBC
Назад: У черных дыр нет волос? Радиотрансляция 26 января 2016 года
Дальше: Мягкие волосы черной дыры[21] Стивен У. Хокинг, Малколм Дж. Перри[22], Эндрю Стромингер[23]

Черные дыры не так черны, как их малюют
Радиотрансляция 2 февраля 2016 года

В первой лекции я остановился на самом интересном: на парадоксе о природе черных дыр, невероятно плотных объектов, порожденных коллапсом звезд. Согласно одной из теорий, черные дыры с одинаковыми параметрами могут сформироваться из бесконечного разнообразия звезд. Другая теория говорит о том, что число возможных типов исходных объектов должно быть конечно. В этом заключается проблема информации, а именно: каждая частица и каждая сила во Вселенной в самой основе своей содержит ответ на закрытый вопрос – «да» или «нет».
Поскольку, как выразился физик-теоретик Джон Уилер, «у черной дыры нет волос», находясь снаружи черной дыры, невозможно сказать, что находится у нее внутри. Наблюдателю известно только три параметра черной дыры: ее масса, угловая скорость вращения и величина электрического заряда. Это означает, что черная дыра содержит огромное количество информации, которая скрыта от внешнего мира. Если количество информации, спрятанное внутри черной дыры, зависит от размера черной дыры, то, исходя из общих физических принципов, можно ожидать, что черная дыра обладает температурой и, следовательно, должна светиться как раскаленный металл. Но это невозможно, потому что, как всем известно, ничто не может покинуть пределы черной дыры, в том числе и тепловое излучение. По крайней мере, так считалось.
Этот парадокс просуществовал до начала 1974 года, когда я исследовал поведение вещества вблизи черной дыры в свете законов квантовой механики.
Д. Ш.: Квантовая механика – наука о физических явлениях на микромасштабах ; она призвана объяснить поведение мельчайших частиц. Законы квантовой механики отличаются от законов, регулирующих поведение больших объектов, таких как планеты, то есть законов, впервые сформулированных Исааком Ньютоном. Использование этой «науки о малом» в изучении очень большого – основа оригинального подхода Стивена Хокинга.
К моему огромному изумлению, я обнаружил, что черная дыра, похоже, испускает частицы с постоянной интенсивностью. Соглашаясь с тогдашним общепринятым мнением, я принял постулат о том, что черная дыра ничего не излучает. И поэтому пришлось приложить немало усилий в попытке избавиться от полученного мной досадного эффекта. Однако чем больше я работал над этим, тем более серьезные доводы получал в его защиту. В конце концов мне все же пришлось его принять. Окончательно я убедился в том, что это действительный физический процесс, когда математические расчеты показали: длины волн исходящих частиц в точности соответствовали тепловому излучению. Согласно моим расчетам, черная дыра рождает и испускает частицы и излучение так же, как если бы она была обычным нагретым телом с температурой, пропорциональной ее поверхностной гравитации и обратно пропорциональной ее массе.
Д. Ш.: Это были первые расчеты, показавшие, что черная дыра – это не улица с односторонним движением, заканчивающаяся тупиком. Неудивительно, что найденное излучение получило имя автора и сегодня носит название «излучение Хокинга», или «испарение Хокинга».
С того времени правильность математических вычислений, доказавших тот факт, что черные дыры испускают тепловое излучение, подтвердили многие ученые, которые использовали разные подходы и методы. И вот один из способов понять, что собой представляет такое излучение. Согласно законам квантовой механики все пространство заполнено виртуальными парами частиц и античастиц, которые постоянно материализуются из вакуума, а затем тут же исчезают, аннигилируют друг с другом.
Д. Ш.: Эта концепция опирается на представление о том, что вакуум никогда не бывает абсолютно пустым. Согласно квантово-механическому принципу неопределенности всегда есть вероятность того, что частицы существуют, но недолго. Таким образом, пары частиц с противоположными характеристиками будут постоянно появляться и исчезать.
Эти частицы называются виртуальными, потому что в отличие от реальных частиц их нельзя регистрировать непосредственно с помощью детектора частиц. Однако косвенные следствия их присутствия могут быть измерены. Существование этих частиц подтверждается небольшим сдвигом, называемым лэмбовским сдвигом, который они производят для одного уровня энергетического спектра возбужденных атомов водорода. В присутствии черной дыры одна виртуальная частица пары может влететь под горизонт, пропав навсегда, а вторая частица этой пары останется без партнера, необходимого для взаимной аннигиляции. Оставшаяся частица (или античастица) может и сама упасть в черную дыру вслед за своим партнером, но она может и уйти от черной дыры на бесконечность и тогда будет выглядеть как излучение черной дыры.

 

Д. Ш.: Ключевым моментом в таком процессе является то, что рождение и исчезновение виртуальных частиц, как правило, проходит незамеченным. Однако если это происходит непосредственно на краю черной дыры, то одна частица пары может оказаться втянутой в черную дыру, а другая – нет. И убегающая частица будет выглядеть в точности так, как если бы черная дыра «выплюнула» ее.
Черная дыра с массой, равной массе Солнца, будет излучать указанным способом частицы чрезвычайно медленно – настолько медленно, что этот процесс невозможно обнаружить. Однако могут существовать черные дыры и гораздо меньших масс, например, с гору. Черная дыра размером с гору будет испускать рентгеновское и гамма-излучение, излучаемая энергия в секунду, или мощность, должна составить около 10 млн мегаватт. Такого количества энергии достаточно для снабжения электричеством всего мира. Однако использовать черную мини-дыру очень непросто. Дело в том, что ее нельзя поместить внутрь электростанции, потому что она тут же провалиться сквозь Землю и окажется в ее центре. Если бы мы действительно раздобыли такую черную дыру, то единственный способ ее удержать – поместить на земной орбите.

 

 

Ученые искали черные мини-дыры таких масс, но пока ничего не нашли. И очень жаль! Потому что если бы они отыскались, я получил бы Нобелевскую премию. Есть, правда, другая возможность заполучить черные мини-дыры – создать их самостоятельно в многомерном пространстве-времени.
Д. Ш.: Словосочетание «многомерное пространство-время» обозначает то, что выходит за пределы трех пространственных измерений, всем нам хорошо знакомых из повседневной жизни, в сочетании с четвертым – временем. Эта идея возникла как частная задача при попытках объяснить, почему гравитационные силы настолько слабее всех других сил в природе, например электромагнитных. Быть может, гравитация так слаба в нашем мире на малых масштабах, потому что вынуждена одновременно «работать» и в параллельных измерениях.
Согласно некоторым теориям Вселенная, в которой мы живем, – это всего лишь четырехмерная поверхность в 10– или 11-мерном пространстве-времени. Фильм «Интерстеллар» дает некоторое представление о том, на что это могло бы быть похоже. Дополнительные измерения мы, конечно, не видим. Дело в том, что свет может распространяться только в четырехмерном пространстве-времени, он не может проникнуть в другие измерения. А вот гравитация вездесуща, и ее действие в дополнительных измерениях может оказаться гораздо сильнее, чем в нашем мире. Именно поэтому небольшая черная дыра смогла бы сформироваться в дополнительных измерениях. Возможно, этот процесс даже можно наблюдать при помощи БАК, Большого адронного коллайдера, в ЦЕРНе в Швейцарии. Этот ускоритель состоит из кругового тоннеля длиной 27 километров. Два пучка заряженных частиц двигаются по этому тоннелю в противоположных направлениях и сталкиваются. В результате некоторых столкновений могут родиться черные микродыры. Об их появлении на свет будут свидетельствовать излучаемые ими частицы определенного вида. Так что Нобелевская премия мне, быть может, еще и достанется!

 

Д. Ш.: Нобелевская премия по физике присуждается, когда теория «проверена временем». На практике это означает наличие веских доказательств. Например, Питер Хиггс был одним из ученых, которые еще в 1960-х годах предполагали существование частицы, благодаря которой другие частицы приобретают массу. Почти пятьдесят лет спустя два независимых детектора на БАК зарегистрировали признаки объекта, ставшего известным как бозон Хиггса. Это был триумф науки и технологии, гениальной теории и ее неопровержимого доказательства. В итоге Питер Хиггс и бельгийский ученый Франсуа Энглерт были удостоены высшей научной награды. Что же касается излучения Хокинга, то пока никаких доказательств этого эффекта не обнаружено. Некоторые ученые предполагают, что зафиксировать его слишком сложно. Но это все еще может случиться, потому что с каждым годом наши знания о черных дырах умножаются.
Частицы, улетая от черной дыры, уменьшают ее массу, в результате чего черная дыра сокращается в размерах. С уменьшением размера черная дыра излучает все интенсивнее. В конце концов она теряет всю свою массу и попросту исчезает. Возникает вопрос: что же тогда происходит со всеми частицами и незадачливыми космонавтами, когда-то давно попавшими в черную дыру? Они же не могут возникнуть снова, когда черная дыра исчезнет. Получается, что информация о том, что упало в черную дыру, пропала. Если не считать общей массы, скорости вращения и электрического заряда. Потеря информации приводит к серьезной проблеме, которая затрагивает самую суть нашего понимания науки.
Более двух веков ученые верили в научный детерминизм, согласно которому эволюция Вселенной подчиняется законам физики. Этот принцип сформулировал Пьер-Симон Лаплас. Он писал, что если нам известно положение Вселенной в какой-то момент времени, то законы физики определят ее положение в любой момент в будущем или прошлом. Наполеон как-то спросил Лапласа, как концепция Бога вписывается в такую полностью детерминированную картину мира. «Сир, – отвечал Лаплас, – я не нуждаюсь в этой гипотезе». Я не думаю, что Лаплас отрицал существование Бога – он говорил только о его невмешательстве в законы физики. Таковой должна быть позиция любого ученого. Научный закон не является подлинно научным, если опирается только на решение какого-либо сверхъестественного существа о том, выполняться этому закону или нет.
В концепции детерминизма Лапласа для предсказания будущего поведения некоторой системы необходимо знать точные положения и скорости всех частиц этой системы в некоторый момент времени. Но ведь есть принцип неопределенности Гейзенберга, который был сформулирован им в 1923 году и лег в основу квантовой механики.
Он постулирует, что чем более точно вы определяете положения частиц, тем менее точно вы можете определить их скорости, и наоборот. Другими словами, невозможно точно знать и положения, и скорости частиц. Как же тогда точно предсказать будущее поведение системы? Ответ такой: хотя и нельзя предсказать отдельно положения и скорости, но можно прогнозировать то, что называется «квантовым состоянием». Квантовое состояние – это нечто такое, из чего могут быть выведены и положения, и скорости, но только с некоторой точностью. Мы по-прежнему считаем, что Вселенная должна быть детерминированной – в том смысле, что если мы знаем квантовое состояние Вселенной в некоторый момент времени, то с помощью законов физики мы можем предсказать квантовое состоянии Вселенной в любой другой момент времени.

 

Д. Ш.: Начав с объяснений того, что происходит вблизи горизонта событий черной дыры, мы углубились в исследование некоторых важных философских вопросов в науке – перешли от точного, как часы, мира Ньютона к законам Лапласа, а потом к неопределенности Гейзенберга – и к тем аспектам, где его принцип перестает быть бесспорным ввиду загадочных свойств черных дыр. По сути, если согласно общей теории относительности Эйнштейна попадающая в черную дыру информация уничтожается, в квантовой теории информация не может быть уничтожена.
Если информация навсегда исчезает в черной дыре, мы не сможем предсказать будущее, потому что черная дыра может излучать любой набор частиц. Она может в принципе излучать работающие телевизоры или полное собрание сочинений Шекспира в кожаном переплете, хотя вероятность таких «экзотических излучений» будет ничтожно мала. На первый взгляд может показаться, что невозможность предсказать, что именно выйдет из черной дыры, не слишком-то важна. Рядом с нами ведь нет черных дыр. Но это дело принципа.
Если детерминизм, то есть предсказуемость Вселенной, нарушается при наличии черных дыр, то он может нарушиться и в другом контексте. Что еще хуже, если детерминизм в принципе может нарушаться, мы не можем быть уверенными не только в предсказании будущего, но и в знании прошлого. Учебники истории, наши воспоминания – все может оказаться иллюзией. Прошлое – это то, что рассказывает нам о том, кто мы есть. Не зная этого, мы теряем самих себя.
И поэтому чрезвычайно важно понять, действительно ли в черных дырах информация исчезает навсегда или гипотетически она может быть восстановлена. Многие ученые придерживались того мнения, что информация не теряется, но никто не предложил механизма, который помог бы ее сохранить17. Я думаю, что нашел ответ. Он имеет отношение к идее Ричарда Фейнмана, согласно которой вместо одной истории есть множество возможных историй, и все они разновероятны. При таком подходе существуют два вида истории: в одной есть черная дыра, в которую могут падать частицы, а в другой ничего такого нет.
Вообще говоря, с точки зрения внешнего наблюдателя нельзя быть уверенным наверняка, существует черная дыра или нет. Так что всегда есть шанс, что черной дыры нет . Такой возможности достаточно для сохранения информации, однако информация возвращается в виде, сложном для восприятия. Это как сжечь энциклопедию: в буквальном смысле информация не теряется, если сохранить весь дым и пепел, но такую книгу очень и очень трудно читать… Кип Торн и я поспорили с другими физиком, Джоном Прескиллом, что информация теряется в черных дырах. Но я обнаружил, что информация может быть сохранена, и проиграл. Тогда я подарил Джону Прескиллу энциклопедию. Быть может, нужно было вручить ему ее пепел.
Д. Ш.: Теоретически – и с чисто детерминистической позиции по отношению ко Вселенной – вы можете сжечь энциклопедию, а потом восстановить ее в том случае, если вам известны характеристики и положение каждого атома, который составлял каждую молекулу чернил и бумаги, и если вы можете отследить их в любой момент времени.
В настоящее время я работаю в Кембридже с моими коллегами Малколмом Перри и Эндрю Стромингером из Гарварда над новой теорией, в основе которой лежит математическая модель, называемая супертрансляцией. Мы хотим разработать механизм возвращения информации из черной дыры. Согласно нашей теории, информация кодируется на горизонте событий черной дыры. Нужно просто посмотреть внимательнее в нужное место!
Д. Ш.: С тех пор как были записаны эти лекции, профессор Хокинг и его коллеги опубликовали статью, где приводится пример математических расчетов, показывающих, как информация может быть сохранена на горизонте событий черной дыры. Их теория основана на преобразовании информации в двумерную проекцию в результате процедуры супертрансляции. Статья, названная «Мягкие волосы черной дыры», позволяет познакомиться с эзотерическим характером этой области, который в полной мере иллюстрирует аннотация, приведенная в конце этой лекции. Там же рассказано о проблемах, с которыми сталкиваются ученые, пытаясь объяснить этот математический феномен.
Что все вышенаписанное может сказать нам о возможности нырнуть в черную дыру и вынырнуть в другой вселенной? Существование параллельных историй – с черными дырами и без них – свидетельствует, что такое в принципе возможно. Черная дыра должна быть большой, и если она вращается, то может препроводить нас в другой мир. Однако нельзя будет вернуться обратно. И хоть я и увлечен идеей передвижения в космическом пространстве таким образом, я не собираюсь ее испытывать.

 

Д. Ш.: Если черная дыра вращается, то ее внутренняя часть не содержит сингулярности в общепринятом смысле этого слова, то есть точки с бесконечной плотностью. Вместо этого там может быть сингулярность в виде кольца, что дает повод порассуждать не только на тему крушения в центр черной дыры, но и о возможности пронырнуть сквозь нее. То есть возможности навсегда покинуть ту Вселенную, которую мы так хорошо знаем. Стивен Хокинг заключает свое выступление смелой мыслью: нечто может оказаться по ту сторону черной дыры.
В этой лекции я хотел донести до вас, что черные дыры совсем не так черны, как их малюют. Они отнюдь не вечная тюрьма, как однажды представляли. Объекты могут покидать черную дыру и возвращаться в нашу Вселенную или, быть может, попадать в другую. А потому если вы почувствуете, что оказались в черной дыре, не паникуйте: выход есть!
Назад: У черных дыр нет волос? Радиотрансляция 26 января 2016 года
Дальше: Мягкие волосы черной дыры[21] Стивен У. Хокинг, Малколм Дж. Перри[22], Эндрю Стромингер[23]