Мозг человека сосредоточен на движениях или изменениях, и из-за какого-нибудь малейшего шевеления рядом с собой человек, бывает, вздрагивает. Подобные отклики развились в нас эволюционно: лучше несоразмерно отозваться на дуновение ветерка, чем проморгать настоящую угрозу. Мимолетный испуг, подумаешь. Однако иммунной системе приходится быть осмотрительнее. Ее мощь нельзя пускать в ход в порядке простой предосторожности. Чересчур рьяные иммунные клетки способны легко уничтожить здоровые клетки и ткани – как случается при аутоиммунных заболеваниях, например, при рассеянном склерозе или детском диабете, а также при септическом шоке.
Как Чарлз Джейнуэй, его современник, канадский иммунолог Ралф Стайнман ломал голову над тем, как зарождается иммунный отклик. Но у Стайнмана оказался несколько иной ход мыслей. Вопрос, ответ на который он считал важнейшим, был таков: как организм принимает решение об иммунном ответе сообразной осторожности? Таков был ключевой вопрос, поскольку, как считал Стайнман, если бы мы знали, как иммунная система решает, когда и как следует откликаться, мы бы поняли, как регулировать иммунитет и устранять неприятности, если он идет вразнос – как при аутоиммунных заболеваниях. Писатель Артур Кёстлер в своей книге «Акт творения» утверждал: «В истории открытий то и дело добираются до неожиданных гаваней, а также до гаваней желанных, но не тем судном» . Гаванью назначения Стайнмана, взявшегося разрешать эту важную загадку – как работает иммунная система, – стало монументальное научное открытие: новый тип клеток.
Родители Стайнмана хотели, чтобы он изучал религию и принял управление семейным делом – магазином, торговавшим всем подряд, от бытовых приборов до одежды, но Стайнман влюбился в на- уку . В ту пору ученые лишь недавно выяснили, как выделять различные клетки крови или тканей. Открылся новый фронт науки: предстояло выяснить, как действует иммунная система, – смешать клетки в лабораторной посуде, в различных комбинациях, и изучить их поведение. Решив работать в этой области и вдохновившись циклом лекцией по «новой клеточной иммунологии», прочитанной во время его медицинской подготовки в Массачусетской больнице общего профиля в Бостоне, Стайнман в 1970 году подключился к исследованиям лаборатории Зэнвила Кона при Рокфеллеровском университете, Нью-Йорк; в исследованиях иммунных клеток у этой лаборатории уже была грандиозная репутация .
Первые пару лет Стайнман трудился в рамках тогдашней главной темы лаборатории – как иммунные клетки поглощают собой молекулы в своем непосредственном окружении , – однако в 1972 году он обратил внимание на другой вопрос, и тот оказался необычайно благодатным: речь о загадке вспомогательных клеток. В те времена вспомогательная клетка оставалась скорее чистой идеей, нежели действительностью – ее придумали, чтобы как-то объяснить наблюдение, которое иначе никак не удавалось истолковать: если смешать выделенные иммунные клетки (в частности, Т- и В-) с чем-то, что способно вызвать иммунный ответ, ничего не происходит . Предположительно, чтобы иммунные клетки откликались, необходимо что-то еще, но никто не понимал, что именно – и почему. «Вспомогательной клеткой» назвали это самое дополнительное нечто, чем бы оно ни оказалось.
Было известно, что иммунные реакции живее всего зарождаются в селезенке. Применив Т- и В-клетки селезенки, взятые у мыши, Стайнман обнаружил, как и многие до него, что спровоцировать иммунный ответ в чашке Петри ему не удается, если не добавить «вспомогательные» клетки, а на практике это означало добавить в чашку то, что успело налипнуть на стекло из взятого в селезенке. Стай- нман решил приглядеться к тому, что же все-таки на стекло налипло. В мешанине клеток, размазанной под линзой микроскопа, он обратил внимание на некоторые – из-за их силуэта: они походили на звездочки, были покрыты шипами. С многочисленными тонкими выпуклостями, торчавшими подобно ветвям дерева, эти клетки довольно сильно отличались от тех, что похожи на плюхи яичницы-глазуньи, какие рисуют в школьных учебниках. Более того, они отличались от всего, что Стайнману доводилось видеть до сих пор.
Хотя в то время ему это известно не было, кое-кто такие клетки уже, вообще-то, видел – на сто лет раньше, в 1868 году: немецкий биолог Пауль Лангерханс. Лангерхансу тогда был двадцать один год, и звездчатые клетки он увидел в пробе кожи. Счел их нервными – из-за их необычной формы, – и опубликовал статью с описанием этих клеток: «О нервах в человеческой коже»; в ту пору он еще был студентом . Стайнман разглядел, как эти странные клетки двигаются, и заметил, что они способны, говоря его словами, «принимать самые разнообразные ветвистые очертания и постоянно то выбрасывать, то втягивать многочисленные тонкие клеточные придатки» . Ни разу не доводилось ему наблюдать такое движение клеток. То ли никто раньше не замечал, как двигаются эти клетки, то ли замечал, но не обратил внимания. Не «эврика!», конечно: Стайнману было невдомек, ни что это за движение, ни что означает такая необычная форма клетки. То было, скорее, переживание «ух ты, ну и ну», однако чутье подсказало Стайнману, что клетки эти очень важны.
Научное открытие, сделанное вот так, благодаря взгляду на клетки под микроскопом, не происходит запросто, как это могло бы показаться. Двое гарвардских психологов, Кристофер Чэбрис и Дэниэл Саймонз, предложили добровольцам посмотреть видеозапись, в которой шесть бейсболистов – трое в белых футболках, трое в черных – перебрасывают друг другу мяч, и так продемонстрировали, почему такие открытия даются трудно. Чэбрис и Саймонз попросили зрителей посчитать, сколько раз мяч перешел из рук в руки между игроками в белых футболках, – а эта задача требует от наблюдающих некоторой сосредоточенности . На середине записи, которую вы и сами можете посмотреть онлайн , в кадре появляется женщина в костюме гориллы, встает среди игроков, колотит себя по груди, глядя в камеру, и уходит из кадра. По окончании просмотра зрителей спросили, заметили ли они что-нибудь необычное. Вопреки тому, что приборы, следившие за движениями глаз, показали, что все зрители смотрели на гориллу соизмеримо долго, заметила ее лишь половина участников эксперимента. Эта «слепота восприятия» оказалась даже хуже, когда эксперимент поставили на группе экспертов-радиологов, которых попросили изучить снимки легких, сделанные на компьютерном томографе, и поискать новообразования – они на снимках выглядят как ярко-белые круги. На некоторых снимках имелись изображения гориллы – в сорок восемь раз более крупные, чем узелки, которые экспертам было поручено высматривать – и этому же их в свое время обучили; 83 % радиологов не заметили гориллу, хотя смотрели прямо на нее .
Эти эксперименты подчеркивают важную истину: мы видим в первую очередь мозгами, а не глазами. Мозг человека фильтрует и толкует все, что засекают органы чувств, и поэтому мы зачастую видим лишь то, что выискиваем, и не замечаем неожиданного – даже если оно бросается в глаза, как горилла, что бродит среди людей, играющих с баскетбольным мячом. Чтобы даже просто увидеть эти новые клетки, Стайнману пришлось преодолеть такую человеческую особенность. Возможно, сыграло на руку то, что Стайнман взялся смотреть в микроскоп без всякого отчетливого желания изучить вспомогательные клетки: он просто решил поглядеть – и эксперимент с незримой гориллой подсказывает, что легче заметить нечто новое, если не высматривать ничего прицельно. В затемненной комнате между исследователем, вперяющимся в окуляр микроскопа, и кусочком живой природы почти ничего не стоит. В таком одиночестве – и при сосредоточенном восприятии – мы, вероятно, делаемся более открытыми новому.
Однако слепота восприятия – не единственная и даже не самая мощная преграда, какая могла встать у него на пути, окажись Стайнман в меньшей мере ученым, чем был. Всевозможные толкования увиденного могли привести к тому, что Стайнман попросту отмахнулся бы от замеченного. Знаменит случай с Галилеем, когда в ноябре 1609 года он глянул на Луну в свежеизобретенный телескоп и увидел светлые и темные пятна на лунной поверхности: Галилей осознал, что Луна – не гладкая, как прежде считалось, а покрыта горами и глубокими долинами; английский же астроном Уильям Лоуэр, глядевший на Луну в телескоп всего на несколько недель раньше, лишь заметил, что поверхность Луны похожа на пирог с патокой, недавно испеченный его поваром . Стайнман мог бы решить, что клетки причудливых очертаний, которые он заметил, – варианты уже известных, или же это странно нездоровые клетки – вероятно, поврежденные в ходе их выделения из живой ткани. Необычные движения клеток можно было отнести на счет того, что все дело в стекле, к которому они прилипли. (Понадобилось примерно три десятилетия, чтобы техника позволила наблюдать за движениями этих клеток в живом организме животного .) Как сказал ученый Альберт Сент-Дьердьи, открывший витамин С, штука в том, чтобы «увидеть то, на что смотрели все остальные, но при этом подумать о том, что не пришло в голову никому другому» .
Помогла Стайнману и его рабочая обстановка. Глава лаборатории Зэнвил Кон всегда очень поддерживал своего коллегу. У «Рокфеллер Юниверсити Пресс» был свое научное издание, «Джорнел оф Экспериментал Медисин», и, вероятно, оказалось кстати, что Стайнман мог опубликовать свои первые открытия в таком престижном родственном журнале. Однако самое главное заключалось в том, кто работал в лаборатории этажом выше. На пятом этаже здания, как писал сам Стайнман, находилось, «вероятно, самое крупное скопление специалистов по биологии клетки из всех, что когда-либо трудились вместе, бок о бок», а среди них – Джордж Паладе .
Гюнтер Блобель, еще один нобелевский лауреат, говорил о Паладе, что это самый влиятельный специалист по клеточной биологии ; именно Паладе разработал метод, благодаря которому ученые получили возможность рассматривать клетки под электронным микроскопом – это прибор, в котором применяется не обычный свет, а поток электронов, и с его помощью можно увеличивать предметы в тысячи раз лучше, чем обычным микроскопом. Более того, первые фотоснимки клеток, сделанные электронным микроскопом, были опубликованы в 1945 году исследовательской группой Кита Портера, Альбера Клода и Эрнста Фуллэма – там же, в Рокфеллеровском университете . Паладе подключился к этой группе и применил электронный микроскоп в исследовании митохондрий – внутренних отделов клетки, где происходят химические реакции, производящие энергию для нужд клетки. Паладе затем открыл, например, где клетки производят белковые молекулы, что исключительно важно для нашего понимания процессов, лежащих в основе большинства процессов биотехнологической промышленности – производства инсулина и тому подобного. Эти открытия состоялись благодаря микроскопу и оказались революционными – как замечает историк и ученый Кароль Моберг: «На рубеже ХХ века… анатомы, гистологи, патологоанатомы и биохимики нередко спорили о подлинности существования компонентов клетки. Многие считали клетку просто кульком с ферментами, залитыми бесформенной протоплазмой, без всякого порядка» . Рокфеллеровский университет, тогда все еще некрупное заведение, прославился на весь мир как источник нашего современного понимания того, что происходит внутри клетки.
Стайнман применил микроскопы Паладе и с их помощью вгляделся внутрь шипастых клеток. Самое главное: он перестал сомневаться, что эти клетки действительно отличаются от иммунных клеток других разновидностей. В них оказалось, например, гораздо больше цитоплазмы – густой жидкости, заполняющей пространство клетки вокруг ядра, – чем в других клетках. Убедившись, что это новые клетки, Стайнман задумался, как бы их назвать. Придумывать новое научное название – редкая привилегия. Стайнман решил присвоить им имя «клодиациты» – в честь своей супруги Клодии, без чьей любви и поддержки, как часто говорил сам ученый, он таких исследовательских успехов не добился бы . (Клодия, хоть и преуспевала в торговле недвижимости, большую часть времени посвящала их
со Стайнманом сыну и дочерям-двойняшкам, сам же Стайнман дома бывал редко .) В конце концов Стайнман остановился на названии «дендритные клетки» – от греческого слова «дендрон», что означает «дерево», – поскольку самая яркая отличительная черта этих клеток была именно в многочисленных отростках, похожих на древесные ветви, торчащих из основного клеточного тела.
Хотя дендритные клетки есть в теле повсюду – в крови, в коже и едва ли не во всех внутренних органах, – их везде довольно немного. И вот к чему свелся следующий шаг в трудах Стайнмана, которым он посвятил сорок лет: выяснить, каковы задачи таких клеток, а для этого попытаться выделить их, чтобы подробно изучить. Задача оказалась непростая – потребовалось пять лет, чтобы выработать действенную процедуру, и в этом, опять-таки, ключевую роль сыграли люди, трудившиеся на верхних этажах.
На седьмом этаже группа под управлением Кристиана де Дюва вскрывала клетки при помощи мыльных растворов и других препаратов и так выделяла клеточные составляющие для дальнейшего анализа. Разделить компоненты клетки удавалось, применяя центрифугу – прибор, вращающий предметы (в данном случае – пробирки со взломанными клетками), как это происходит в стиральной машине, только гораздо быстрее, на сотнях оборотов в секунду . Этот метод действен, потому что различные компоненты клетки имеют разную плотность, и более плотные части клетки скапливаются под действием центробежной силы ближе ко дну пробирки, тогда как компоненты полегче собираются («оседают») ближе к верху. Далее довольно просто откачать фрагменты клеток и изучать их раздельно. Таким способом группа де Дюва смогла выявить удивительный мир органелл – буквально «маленьких органов» – внутри клетки. Ядро – крупнейшая клеточная органелла, его довольно легко увидеть, однако де Дюва обнаружил, что внутренность клетки заполнена множеством других малюсеньких составляющих – крошечных мешочков, заключенных в мембраны, изолирующие различные реакции и процессы. «Я много перевидал всякого в живой клетке, но с помощью центрифуги, нежели микроскопа», – говорил де Дюва, принимая Нобелевскую премию вместе с Паладе в 1974 году .
Стайнман позаимствовал методы у де Дюве и приспособил центрифугу, чтобы отделять друг от друга разные клетки, а не их компоненты. Клетки с разной плотностью запросто отделялись за несколько минут вращения центрифуги – красные кровяные тельца очень отличаются от иммунных клеток, например, и их таким способом устранить легко. Однако, чтобы отделить дендритные клетки от всех остальных иммунных, даже с похожей плотностью, Стайнману пришлось разработать особый метод. По сути, путем проб и ошибок, он не один год пытался понять, как этого добиться. В конце концов разработанный процесс состоял из нескольких этапов. На первой стадии очистки иммунные клетки (включая и дендритные) поднимались к верхней части пробирки, прокрученной в центрифуге, а клетки помельче и поплотнее опускались на дно. Далее иммунные клетки откачивались из пробирки, и их оставляли на стекле на час. Поскольку клетки по-разному «прилипают» к стек- лу в зависимости от того, какие белковые молекулы покрывают их поверхность, некоторые клетки, в том числе и дендритные, за этот час приставали к стеклу, а остальные можно было смыть. За ночь оставшиеся клетки сами отлипали от стекла, и Стайнман мог подвергать их реакции, которая скучивает иммунные клетки, отличные от дендритных, вокруг красных кровяных телец. Затем следовал второй раунд центрифугирования, и благодаря ему красные кровяные тельца отделялись, забирая с собой прочие иммунные клетки; так оставались лишь дендритные.
Замысловатость этой процедуры и то, что она требовала знания специфических нюансов, – в той же мере, в какой не сразу учишься ездить на велосипеде, лишь прочитав о том, как это делается, – вероятно, в конечном счете помогли Стайнману: дендритные клетки были целиком и полностью в его власти, без явных внешних соперников в этой области знания, по крайней мере лет на десять . Впрочем, была и другая причина, почему ученые не рвались изучать дендритные клетки: многие не считали, что это новая разновидность. Большинство ученых думало, что Стайнман выделил подвид клетки, которую уже открыл – в 1882 году – украинский зоолог Илья Мечников; за это открытие он удостоился в 1908 году Нобелевской премии .
Темпераментный, однако повсеместно признанный творческий гений Мечников рассуждал, что «болезнь – не прерогатива человека», животные тоже болеют, а потому было бы познавательно понаблюдать, что происходит в животных при столкно-вении с угрозой . Мечников изучил, помимо многих других биологических видов, личинки морской звезды, которые, что важно, достаточно прозрачны, чтобы рассматривать их под микроскопом вживую. В своей частной лаборатории на Сицилии он наблюдал, что происходит с личинками морской звезды, если уколоть их острой щепочкой. (По легенде, ученый протыкал их шипом розы.) Увиденное Мечниковым породило целое новое направление в знании об иммунитете: некоторые клетки личинки двинулись к ранке.
Вероятно, отчасти потому, что из курса патологии он недавно узнал, что иногда внутри белых кровяных телец обнаруживаются микробы, Мечников подумал, что клетки должны двигаться к месту поражения прицельно для того, чтобы обволочь – или съесть – болезнетворных микробов, которые могут попасть в рану . «Меня осенило, – говорил Мечников, согласно биографии, которую его супруга опубликовала после его смерти, – что подобные клетки, возможно, служат защитой организму против внешних вторжений… Я так воодушевился, что принялся расхаживать туда и сюда по комнате и даже вышел на берег, чтобы собраться с мыслями» . Не с точки зрения пострадавшего организма размышлял Мечников – он осознал, что болезнь или во всяком случае некоторые разновидности недугов есть битва двух биологических видов, битва, выражаясь его словами, между «микробом снаружи и подвижными клетками самого организма» . Он обнаружил, иначе говоря, что у некоторых клеток есть особая задача – защищать организм от болезни, и эти клетки – иммунные. 23 августа 1883 года он публично заявил, что «животные обезоруживают бактерии, поедая и переваривая их» . Позднее Мечников с помощью коллег назвал открытые им клетки фагоцитами, а их работу по перевариванию вредоносных микроорганизмов – фагоцитозом, от греческих слов, означающих «процесс поедания клетки» . Клетки, лучше прочих способные поглощать микробов, получили название макрофагов – «больших едоков».
Вообще-то, ученые сообщили об этом процессе на несколько лет раньше, но на их работу в истории иммунологии почти не обратили внимания . Мечников, тем не менее, во всех подробностях развил мысль, как именно иммунные клетки способны обволакивать микробов: он сравнивал клетки разных биологических видов, из разных органов, при различных температурах и применял разнообразные окрашивающие средства – и наблюдал, что происходит с различными типами бактерий. Он изучил даже воздействие наркотиков. И смиренно признавался, что такое взаимодействие иммунных клеток с микробами обнаружил не первым. Первенство Мечникова в этом исследовании заслуженно, в основном, не потому, что он взял и открыл иммунные клетки, наблюдая личинки морской звезды, проколотые розовым шипом, а потому что он заметил отклик этих организмов и сформулировал соображение о том, что именно происходит, и затем настойчиво пытался разобраться в этом процессе досконально.
Так же и со Стайнманом: он не определил дендритные клетки, когда впервые увидел их под микроскопом. Тот миг стал лишь началом пути – и ученые отнеслись к заявкам Стайнмана, мягко говоря, скептически . Один студент Стайнмана вспоминает отношение к разговорам Стайнмана о дендритных клетках на некоем международном съезде как попросту «оскорбительное» . Большинство ученых решили, что клетки, которые Стайнман выделил, – макрофаги, поскольку макрофаги, как уже было известно, тоже липнут к стеклу и их больше, чем дендритных клеток. Чтобы убедить научное сообщество, Стайнману пришлось не только предъявить доказательства, но и немало полетать самолетом. Авиа- сообщение в то время сделалось дешевле, и ученые уже не могли полагаться на одни лишь публикации, чтобы их работу заметили: если нужно было предложить и обсудить свои соображения с другими, все важнее становились личные поездки на встречи. В результате семья Стайнманов частенько выбирала место отпуска с привязкой к иммунологическим конференциям .
Эксперименты, которые проводила группа Стайнмана в начале 1980-х, были необходимы для того, чтобы убедить научное сообщество: дендритные клетки – самостоятельная разновидность. Учащийся в лаборатории Стайнмана по имени Мишель Нуссенцвайг сравнил отклик Т-клеток в присутствии других иммунных клеток и обнаружил исключительную способность дендритных клеток инициировать ответ Т-клеток. Иными словами, работа Нуссенцвайга предоставила мощное доказательство того, что дендритные клетки и есть те самые загадочные вспомогательные . Развивались приборы, накапливались знания, различные типы иммунных клеток изучать стало проще; были разработаны реагенты, позволяющие подкрашивать дендритные клетки и так выделять их среди прочих , и лаборатория Стайнмана смогла доказать, что дендритные клетки действительно способны стимулировать иммунный ответ по меньшей мере в сто раз лучше, чем макрофаги или клетки любых других разновидностей . В 1982 году еще один студент из этой лаборатории, Уэзли ван Вурис, обнаружил дендритные клетки человека – все первые изыскания проводились на клетках мышей – и показал, что и они наделены мощной способностью вызывать иммунный ответ .
Даже после того, как Стайнман и его коллеги убедили большинство ученых, что действительно открыли клетку новой разновидности, годы усилий не слишком-то продвинули Стайнмана к отчетливому ответу на его исходный вопрос: как тело решает произвести иммунный ответ с сообразной осторожностью? Стайнман обнаружил, что дендритные клетки способны инициировать иммунный отклик, но не понимал, почему, как и что именно это означало для работы иммунной системы в целом. Путь к настоящему пониманию функции дендритных клеток открылся, лишь когда Стайнман и его команда выяснили, что способность дендритных клеток запускать иммунный ответ изменчива.
Важную роль в этом открытии сыграл дерматолог по имени Герольд Шулер, присоединившийся к группе в 1984 году . Другие ученые в команде Стайнмана разобрались, что дендритные клетки, выделенные из кожи, куда менее способны вызывать иммунный ответ, чем дендритные клетки, выделенные из селезенки, однако никто не понимал, ни почему это так, ни какое это имеет значение для работы дендритных клеток в организме в целом. Шулер же выяснил, что, когда дендритные клетки только что извлекли из кожи, они действительно довольно слабо вызывали иммунный отклик, однако если те же клетки подержать в лабораторных условиях два-три дня, они набирали силу . Это означало, что дендритные клетки существуют не в одном-единственном состоянии – у них их два, «вкл.» и «выкл.». Процесс, при котором они переходят в состояние «вкл.», Стайнман назвал созреванием, и вот так были определены два состояния дендритной клетки, названные зрелым и незрелым.
Как и подсказывает их название, зрелые дендритные клетки находятся в состоянии «вкл.» и вызывают иммунный ответ. Незрелые дендритные клетки «выключены» – вызывать иммунный отклик у них получается плохо, однако стало ясно и то, что незрелые дендритные клетки вовсе не бездействуют. У них на поверхности располагается множество образ-распознающих рецепторов – тех самых, чье существование предсказал Джейнуэй, например, толл-подобные рецепторы, а также другие, наделяющие их врожденной способностью замечать и ловить бактерии, вирусные частицы и фрагменты зараженных мертвых клеток в прилегающем пространстве. Иначе говоря, незрелые дендритные клетки – хорошие фагоциты, у них получается поедать. Вот так сложилось представление о двух состояниях дендритных клеток: незрелые дендритные клетки качественно чуют и ловят инородные тела в организме, а зрелые успешно включают в действие другие иммунные клетки. И все же знание о двух состояниях дендритных клеток само по себе не проясняло, что происходит в организме; понадобилось еще одно значимое открытие, после которого все наконец стало проясняться.
К концу 1980-х и в начале 1990-х дендритные клетки уже изучало внушительное международное научное сообщество, и Стайнман был его бесспорным вожаком. Целая череда тематических симпозиумов началась в 1990 году и продолжается по сей день; исследователи, занятые в этой области, встречаются раз в два года . К началу этих встреч в нескольких лабораториях был разработан инструментарий, с помощью которого можно выявлять расположение дендритных клеток и определять каждую по отдельности, зрелая она или нет. Так дендритные клетки были обнаружены в коже, легких и кишечнике, а также в селезенке и лимфоузлах – маленьких, похожих на фасолины органах на шее, подмышками, под коленями и так далее; эти органы наполнены иммунными клетками. (На шее они набухают, если человек подцепил инфекцию и заболел; их часто именуют железами, хотя вообще-то это неверно.) Важнейшее открытие в этой области исследований состоит в том, что дендритные клетки тканей кожи, легких и кишечника, – незрелые, а клетки в селезенке и лимфоузлах – наоборот.
Тогда же наконец сложилось и понимание, чем заняты дендритные клетки в теле. Незрелые дендритные клетки следят почти за всеми нашими органами и тканями, но особенно – за местами в организме, открытыми для внешней среды: за кожей, желудком и легкими. Эти дендритные клетки специализируются на выявлении микробов, что удается им благодаря многочисленным образ-распознающим рецепторам на их поверхности. Наткнувшись на микроба, незрелая дендритная клетка обволакивает его и уничтожает. Проделав это, она переходит в другое состояние – зрелое. Зрелая дендритная клетка устремляется к ближайшему лимфатическому узлу или к селезенке – складам, битком забитым другими иммунными клетками. Там, в лимфоузле, другие иммунные клетки получают доступ к фрагментам микроба, которого поглотила дендритная клетка. Иммунные клетки нужной разновидности отправляются из лимфоузла к месту поражения и там разбираются с возникшей неприятностью. Все эти движения осуществляются через кровеносную и лимфатическую системы, последняя – особая разветвленная сеть тонких цилиндрических сосудов, по которым иммунные клетки добираются до лимфоузлов в жидкости под названием лимфа – она похожа на кровь, но в ней нет красных кровяных клеток. Дендритные клетки перемещаются к лимфоузлам по лимфатическим сосудам, тогда как Т-клетки, например, покидают лимфоузел и направляются к тканям тела через кровь.
Отклик тела на порез или ранение, очевидно, изумителен и сложен. Сперва иммунные клетки движутся к месту поражения, и это место краснеет и отекает: таков отклик нашего врожденного иммунитета, первой линии обороны – иммунные клетки предупреждены о беде благодаря тому, что на поверхности этих клеток есть рецепторы, засекающие молекулы вирусов, бактерий, грибков или поврежденных клеток. Однако, помимо мгновенного отклика, начинается и сложная хореография иммунных клеток – возникает следующий уровень отклика, в точности соответствующий профилю микробов, проникших в тело: это ответ нашего приобретенного иммунитета. Такой вот точный и продолжительный иммунный отклик возникает, когда дендритные клетки достигают лимфоузла и показывают тамошним Т-клеткам образцы молекул микробов, которых удалось поглотить.
У звездчатых очертаний дендритной клетки – у ее многочисленных отростков – есть очевидная задача: они позволяют дендритным клеткам соединяться одновременно со множеством Т-клеток. Вспомним, что у Т-клеток есть рецепторы со случайно сформированными концами, что позволяет им соединяться со всевозможными другими молекулами . У большинства Т-клеток не найдется рецептора подходящей формы, чтобы сомкнуться с чем бы то ни было на поверхности дендритной клетки. Однако у некоторых Т-клеток найдется нужный рецептор, и смыкание с молекулой из поглощенного микроба состоится. Раз у этих Т-клеток есть правильный рецептор для распознания такого микроба, они подходят для прицельного иммунного ответа. Соприкоснувшись с дендритной клеткой, поглотившей микроба, который эта Т-клетка способна распознать, она принимается размножаться.
Одна Т-клетка продолжит делиться, пока ее количество в лимфоузле не возрастет по крайней мере в сто или тысячу раз. (Этим повышением концентрации клеток объясняется ощутимое увеличение лимфоузлов у вас на шее, когда вы подцепили заразу.) Т-киллеры – слово «киллер» здесь вполне формальное научное название, а не моя попытка оживить рассказ – покидают лимфоузел и устремляются к месту неполадки, чтобы убить больные клетки (например, зараженные вирусом). Тем временем другие Т-клетки, именуемые Т-хелперами , побуждают прочие иммунные клетки к действию. Ныне нам известно, что существует несколько разных типов Т-хелперов. Те, что называются Т-хелперами типа 1, например, помогают побеждать бактерии, а Т-хелперы типа 2 поддерживают устранение червей-паразитов . Благодаря Т-хелперам типа 1 мобилизуются макрофаги – большие едоки, и те разбираются с бактериями. Клетки типа 2 же включают реакцию типа «вымыть и выгнать»: стараясь не вдаваться в живописные подробности, скажу, что клетки кишечника выделяют слизь, а мышечные сокращения выталкивают живых червей-паразитов наружу .
Не вполне понятно, как включается подходящий отклик Т-клеток – первого или второго типа (есть и другие). Это сейчас передовое знание . Есть вот такой важный процесс: дендритные клетки привлекают к действию Т-клетки определенного типа в соответствии с разновидностью сигнала созревания. Черви-паразиты, например, вызывают у дендритных клеток созревание определенного вида, не такого, каким вызывают бактерии. Это происходит, в частности, потому, что разные образ-распознающие рецепторы в обширном арсенале дендритной клетки сцепляются с разными патогенными организмами: один распознает бактерии, другой – вирусы, третий – грибки, четвертый – червей и так далее. Эти образ-распознающие рецепторы задают вариант созревания дендритной клетки – меняют репертуар белковых молекул, которые зрелая дендритная клетка показывает на своей поверхности, например, – а это, в свою очередь, вызывает тот или иной отклик Т-клетки.
Короче говоря, дендритные клетки засекают неполадку и запускают иммунный ответ, подходящий для данной неполадки. Выражаясь строже, они связывают ответ нашего врожденного иммунитета, мгновенную реакцию нашего тела на микробов, с откликом иммунитета приобретенного, который длится дольше, действует точнее и привлекает к работе Т- и В-клетки. Другие клетки человеческого организма, включая микрофаги, тоже способны на такие действия, но только если организму нужно запустить иммунный ответ против микробов, с которыми оно уже сталкивалось. Дендритные клетки необходимы для запуска точного иммунного ответа, когда тот или иной микроб впервые попадает в организм . Они – наши клетки пожарной тревоги.
Если бы история этим и завершалась, дендритных клеток и исследований Стайнмана хватило бы для привлечения всеобщего внимания. Однако это лишь начало. Роль дендритных клеток в организме оказалась страннее – и куда менее очевидной, – чем то, что явили нам результаты первых экспериментов.
«Мои ученики считают, будто почтенные писатели, усаживаясь сочинять книгу, более-менее представляют, что у них там будет происходить, поскольку сюжет они прописывают, и потому книги получаются такие ладные, жизнь у писателей такая легкая и приятная, самооценка замечательная, а доверие и способность изумляться – ну прямо как у детей. Н-да. Ничего из всего этого мне незнакомо. Все мои приятели, нащупывая сюжет и подходящую структуру, мечутся, ноют и отчаиваются» .
Такое описание того, как романисты ищут свои сюжеты, предложенное Энн Ламотт, вполне применимо и к тому, как нащупывают свои повествования ученые.
Поиск бозона Хиггса, секвенирование генома человека или отправка космического корабля к Марсу требуют громадного долгосрочного планирования и бумажной возни. Однако, чтобы разобраться, чем вновь открытые клетки заняты в живом организме, нужен совсем другой подход. Такого рода передовые исследования – не точная наука. Во всяком случае поначалу никаких внятных теорий, которые нужно было бы подтверждать или опровергать, нет, как нет и международных сообществ или многодисциплинарных исследовательских групп, которые можно было бы координировать. Прогресс происходит благодаря нескольким отдельным людям, которые держат нос по ветру. В этой точке творчество художника и ученого очень похожи. Ученые и творцы в равной мере мечутся, ноют и отчаиваются – в поисках подходящего сюжета.
Стайнман открыл дендритные клетки без всякой великой теории о том, как они способны вызывать иммунный ответ: у него не было повествования, которое могло бы направлять дальнейшие эксперименты. Мячик Стайнману выдали, а что это за игра, предстояло выяснить самостоятельно. Ему и его группе нужно было разобраться, что произойдет, если дендритные клетки смешать с такими и сякими другими клетками, в различных сочетаниях: станут ли они размножаться, перемрут или же начнут выделять те или иные белковые молекулы? Значимо ли то, что их оставили на час – или на сутки? Меняют ли они форму, притягиваются друг к дружке или отталкиваются, движутся быстрее или медленнее, укрупняются или мельчают, выпускают больше или меньше отростков, включают или выключают тот или иной ген?
Сперва все эксперименты подводили Стайнмана и остальных к пониманию, что дендритные клетки исключительно важны для запуска точного иммунного отклика. Но затем, когда удалось опробовать разнообразные условия и обстоятельства, некоторые эксперименты показали, что верно полностью противоположное: присутствие дендритных клеток способно остановить иммунный ответ. Не успел Стайнман решить, что разобрался в этой игре, как выяснилось, что он лишь на первом ее уровне, и никто не понимал, сколько там еще этих уровней. Сколько б ни было нам известно, всегда гораздо больше того, чего мы не знаем.
В одном из экспериментов, который, казалось, противоречит предыдущим исследованиям, дендритные клетки подверглись воздействию белковых молекул, чужеродных для человека, а не целых микроорганизмов. Вроде бы дендритные клетки в таких условиях не должны вызывать иммунный отклик: их образ-распознающие рецепторы не засекут микробов, и клетка должна остаться незрелой. Дендритные клетки действительно не пробудили отклика в других иммунных клетках, но кое-что все же произошло. Другие иммунные клетки, приведенные в соприкосновение с этими дендритными, сделались неспособны позже участвовать в иммунном отклике даже в присутствии микробов. Иначе говоря, эти дендритные клетки вызвали состояние бездействия – или толерантности – у других иммунных клеток, сделали их невосприимчивыми.
Когда возникала вот такая невнятица, Стайнмана питало то же, что поддерживает любого ученого: вера в то, что природа все устроила сообразно, и ответы существуют. Мы не сдаемся, мы вглядываемся пристальнее: чтобы понять, как одни и те же клетки в одних случаях инициируют ответ, а в других пресекают его, нужно разобраться, как именно устроен механизм взаимодействия дендритных клеток с другими иммунными. Вспомним, что дендритная клетка обволакивает микроба на месте заражения, а затем, в лимфоузле, показывает Т-клеткам образцы молекул, произведенных микробом. Теперь мы знаем, что этот процесс требует белков, кодируемых горсткой чрезвычайно важных генов – эта группа генов называется главным комплексом гистосовместимости (ГКГС) или, попроще, генами совместимости . Белки, закодированные этими конкретными генами, торчат на поверхности дендритных клеток. Они цепляют мелкие образцы других белковых молекул изнутри дендритной клетки, в том числе и молекулы любых микробов, которые дендритной клетке удалось поглотить, и выставляют их у себя на поверхности. Т-клетки проверяют эти образцы белков, которые им предложили, и ищут среди них те, которых в теле прежде не бывало.
Кроме того, что на них лежит выполнение этой важной задачи, такие белки – особенные, потому что гены, которые их кодируют, – а значит, и сами белки, – у разных людей разные. В общем и целом, у нас один и тот же набор генов – 23 000 единиц человеческого генома, – но примерно 1 % нашего генома у каждого человека свой: эти гены влияют на цвет волос, глаз, кожи и так далее. Что важно: те гены, которые сильнее всего отличаются от человека к человеку, никак не отвечают за нашу внешность – они часть нашей иммунной системы. Вариации в этих генах придают белкам, выпирающим с поверхности наших дендритных клеток и предъявляющим образцы того, что в данный момент находится у этих клеток внутри, несколько отличающиеся очертания. Это означает, что каждый из нас предъявляет особый состав белков, находящихся внутри наших дендритных клеток. Такова одна, но не единственная, причина, почему все мы справляемся с одной и той же инфекцией несколько по-разному.
Стоит отметить, что, в пределах моего понимания, в целом, никому не достается худший или лучший состав этих конкретных генов. Вариант, соотносимый с откликом лучше среднего на инфекции при наличии ВИЧ, одновременно соотносится с большей подверженностью другим болезнями – аутоиммунным, например. В этой системе нет иерархии. Генетическое многообразие в пределах нашего вида необходимо для нашей способности противостоять всевозможным потенциальным инфекциям, что, на мой взгляд, мощная глубинная причина радоваться этому самому многообразию .
Нюанс, благодаря которому удалось разрешить загадку способности дендритной клетки и вызывать отклик, и предотвращать его, таков: если Т-клетка сцепляется с чем-то, чего в теле прежде никогда не было, – применительно к привычному диапазону белка гена совместимости, – одного этого недостаточно, чтобы запустить иммунный отклик. Т-клетке нужно больше доказательств, что иммунный ответ уместен. По сути, любой Т-клетке нужно два показателя возникшей неполадки. Первый – сигнал номер один, как его называют, – поступает при распознании образца белковой молекулы, которой прежде в теле не имелось. Сигнал номер два приходит от так называемых костимулирующих белков . Костимулирующие белки содержатся внутри дендритных клеток, они перемещаются к поверхности клетки, когда образ-распознающие рецепторы дендритной клетки соединились с микробом (и дендритная клетка при этом переходит из незрелого состояния в зрелое). В результате эти белки присутствуют в заметных концентрациях на поверхности лишь тех дендритных клеток, которые соприкоснулись с микробом , и это оставляет действенный молекулярный след, означающий, что та или иная дендритная клетка соприкоснулась с микробом .
Иначе говоря, дендритная клетка применяет образ-распознающие рецепторы, чтобы засечь микроба или какой-либо еще признак неполадки – фрагмент зараженной мертвой клетки, например, – а затем дендритная клетка созревает (или включается) и предоставляет образцы микроба Т-клетке. Т-клетка, у которой есть рецептор подходящих очертаний, способный соединиться с тем, что представила дендритная клетка, – нечто чужое, – требует присутствия костимулирующего белка у той же самой дендритной клетки – как сигнал к тому, что это самое чужое есть часть микроба и что отклик необходим. Если Т-клетка сцепляется с тем, что представила дендритная клетка, но костимулирующих белков нет, Т-клетка понимает, что откликается на что-то не микробное. Возможно, это молекула, которой прежде в теле не было почему-либо еще: может, это пища или новые белки, произведенные во время беременности или в подростковый период. В таком случае Т-клетка не просто пресекает иммунный отклик: она переходит в другое состояние и превращается в толерантную Т-клетку. Такая Т-клетка более не способна вызывать иммунный отклик – ни сейчас, ни даже позднее. Вот так дендритные клетки способны выключать Т-клетки, которые в противном случае нападали бы на здоровые клетки и ткани.
Ученые, исследующие иммунную систему, часто заявляют, что участок, на котором они трудятся, – важнейшая часть системы. Действительно, система настолько сложна и многослойна, что в равной мере правомочно утверждать, будто Т-клетки важны необычайно – или В-клетки, или макрофаги, или образ-распознающие рецепторы и так далее. Однако дендритные клетки в самом деле занимают во всем этом устройстве особое место. У них есть способность включать и выключать иммунную систему – и управлять нашим иммунитетом и его борьбой с микробами и вирусами, и не давать ему атаковать здоровые клетки и ткани. Открытие механизма действия дендритных клеток – начинание Стайнмана, а позднее эту работу продолжили тысячи других ученых – в конце концов ответило на исходный вопрос этого ученого, как тело запускает иммунный отклик вдумчиво: ей для этого нужен не один сигнал.
Стайнмана неизменно поддерживала вера, что его исследование можно будет применить при разработке новых лечебных препаратов . Поскольку дендритные клетки совершенно необходимы, чтобы возник иммунный отклик, когда микроб впервые обнаружен в теле, они, по сути, – природный адъювант, вырабатываемый самим телом. Мы все еще не знаем точно, как внешние вещества, подобно солям алюминия, выполняют задачи адъюванта, но, похоже, они воздействуют на дендритные клетки и тем самым вынуждают их переходить из незрелого состояния в зрелое, словно в присутствии настоящего микроба . Само собой, полагал Стайнман, мы, следовательно, сможем применять дендритные клетки при создании вакцин нового поколения – против ВИЧ, туберкулеза или рака.
Японская исследовательница Кайо Инаба в 1990 году провела в лаборатории эксперимент, показавший, что вакцина на основе дендритных клеток могла бы оказаться действенной. В то время эта область изучения была, несомненно, в мужских руках: по словам Инабы, «женщины в иммунологии не работают», и ее это пугало . (На самом деле в иммунологии в то время все же работало несколько женщин, но, да, немного.) Эксперимент, который она провела, ныне широко признан революционным . Сперва она выделила дендритные клетки мыши. Затем обработала эти клетки в лабораторной чашке вытяжками из клеток опухоли или белками, которых в организме мыши нет. Обработанные таким образом дендритные клетки затем вводили животным. Мыши, которым ввели такие дендритные клетки, далее производили иммунный отклик против тех же молекул, с которыми соприкоснулись дендритные клетки . Иначе говоря, Инаба установила, что дендритные клетки можно включить вне исходного организма, а затем ввести их обратно, и они подготовят ответ иммунной системы. Так обнаружился новый способ подталкивать иммунный отклик и, потенциально, – вакцина нового типа. В 1992 году Инаба вернулась в Японию, где совершила еще один прорыв: стала первой женщиной-доцентом на факультете естественных наук в Киотском университете, а ко времени публикации этой книги заняла пост вице-президента этого университета и деятельно включилась в укрепление гендерного равноправия .
Цель вакцины на основе дендритных клеток, следовательно, состоит в том, чтобы применять эти клетки для активации защит организма против, скажем, вирусов, подобных ВИЧ, туберкулезных бактерий или раковых клеток. Эксперименты Инабы доказали, что этот подход применим к мышам. Но, как частенько острят иммунологи, везет же мышам. Проверка этой процедуры на людях многократно сложнее. В случае с раковым пациентом, например, дендритные клетки нужно выделить или добыть из пробы крови, а затем обработать в лабораторной посуде белковыми молекулами, взятыми из раковых клеток пациента. В ту же посуду потребуется добавить адъювант (компоненты бактерий, допустим), чтобы дендритные клетки созрели и были готовы активировать другие иммунные клетки. Зрелые дендритные клетки – вобравшие в себя молекулы раковых клеток пациента – нужно ввести пациенту же. Если все пойдет как надо, дендритные клетки отправятся в лимфоузел и покажут Т-клеткам образцы молекул из раковых клеток самого пациента. Вот так подходящие Т-клетки – способные засекать рак – включатся, и начнется иммунный отклик на рак .
Замысел медицинской процедуры такой сложности обычно проверяется пошагово, много лет, если не десятилетий. Исследования клеток в лабораторной посуде ведут к изучению на животных, затем к более обширной работе, возможно, на других животных, а затем – к небольшим проверкам на безопасность с участием людей – так отшлифовывается протокол лечения, поэтапно, – и лишь потом все это допускается к клиническим испытаниям. В марте 2007 года у Стайнмана внезапно не осталось на это времени. Рак на серьезной стадии – скопление клеток размером с плод киви – обнаружился у него в поджелудочной железе. Ученому сообщили, что жить ему осталось несколько месяцев. Выкладывая новость детям, он сказал: «Не надо это гуглить» .
Все мы этого опасаемся, однако и размышляем над этим время от времени: что предпримем, если окажется, что жить нам осталось недолго? Некоторые бросят работу и отправятся в широкий мир – посмотреть на то, что всегда хотели увидеть, но пока не получалось. Однако Стайнман оказался не из тех, кто меняет свои планы. Он не оставил свою научную миссию, хотя кое-что поменялось: теперь он мог экспериментировать на себе.
Взявшись применять дендритные клетки для излечения собственного рака, Стайнман надеялся, что работа всей его жизни ее же и спасет. За это новое начинание он взялся не в одиночку. Друзья и коллеги со всего мира вместе взялись придумывать, как именно можно устранить опухоль у Стайнмана. Ожидались масштабные испытания на одном человеке – непомерное усилие спасти жизнь, и усилие это питали любовь и почтение к Стайнману и его достижениям. В ход пошли все накопленные идеи.
Стайнман не готов был подвергать себя закулисным тайным экспериментам и накачивать себя бурлящими снадобьями. Все продолжало происходить по правилам, а они означали громадную бумажную волокиту – для всех участников. Однако в попытке спасти Стайнману жизнь были заново рассмотрены все потенциальные опасности и риски. Обычно, к примеру, во всех лабораториях, где работают с человеческой кровью, исследователям строго-настрого не велят применять собственную кровь . Ради Стайнмана в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) были поданы на утверждение особые протоколы гуманного применения в данной конкретной ситуации. Чиновники оказались отзывчивыми, и утверждения, какие обычно длятся месяцами, удавалось протолкнуть за несколько дней .
Первый аспирант Стайнмана Мишель Нуссенцвайг в ту пору уже был профессором Рокфеллеровского университета, Нью-Йорк. Он взял у Стайнмана пробу опухоли, удаленной хирургически, и вырастил ее в мышах – для дальнейшего исследования. Тем временем Айра Меллмен, вице-президент отдела онкологических исследований в компании «Дженетек», работавший со Стайнманом после защиты диссертации, поручил своей группе вырастить клетки из опухоли Стайнмана, а затем испытал на них несколько лекарств, к которым имел доступ, но их пока не опробовали в клинических условиях . Еще один друг Стайнмана, в Торонто, анализировал особые генные мутации, происходившие в опухоли. В Тюбингене, Германия, другие коллеги выделяли из опухоли белковые молекулы – для применения в экспериментальных вакцинах . Одна исследовательница из той группы знала Стайнмана еще с тех пор, когда проходила летнюю вузовскую практику у него в лаборатории . Меллмен вспоминает, как встретился со Стайнманом у него в кабинете – выяснить, что имеет смысл пробовать, а что нет: «Состоялась совершенно непринужденная научная беседа – с той лишь поправкой, что обсуждали мы его опухоль» .
В общей сложности Стайнман попробовал восемь различных экспериментальных методов лечения, включая и три вакцины на основе дендритных клеток. Для двух таких вакцин были выделены дендритные клетки из тела самого Стайнмана, и их модифицировали – по-разному, – чтобы в них оказались молекулы из опухоли. Для одной вакцины дендритные клетки Стайнмана накачали ДНК из раковых клеток его опухоли. В каждом случае дендритные клетки вводили Стайнману в кровь – много раз за несколько месяцев – в надежде, что те смогут подтолкнуть иммунный отклик на рак.
Третья вакцина была другого действия. Для нее раковые клетки из тела Стайнмана выделили и генетически модифицировали, чтобы те производили белковую молекулу (с неуклюжим названием гранулоцитарно-макрофагальный колониестимулирующий фактор), которая побуждает к действию дендритные и другие иммунные клетки. Затем генетически модифицированные клетки опухоли подвергали облучению в больших дозах, что предотвращало их размножение, какое происходит при активном раке. Следом раковые клетки вводили обратно в кровь Стайнману. В этом случае соображения были такие же: облученные клетки опухоли привлекут внимание дендритных клеток в организме Стайнмана, те обволокут их и покажут Т-клеткам в лимфоузле, чтобы иммунная система поняла, что́ ей устранять.
Стайнман применил и более традиционные подходы, которые проходили в то время клинические испытания, – обычно в сочетании с вакцинами на основе дендритных клеток. Нашлось одно комбинированное лечение, показавшееся Стайнману особенно многообещающим, но его так и не опробовали – не получили разрешения от FDA. Вопреки этому препятствию Стайнман сохранял оптимизм – верил, что излечится . До самого последнего дня вне больницы он был полностью поглощен исследованиями, пытался разобраться, как же можно применять дендритные клетки в борьбе с раком. Лишь отчасти в шутку он желал опубликовать статью в «Нью-Ингленд Джорнел оф Медисин»: «Моя опухоль и как я ее устранил» . Однако 25 сентября 2011 года, отужинав накануне с женой, тремя детьми и тремя внуками, он отправился в больницу – в последний раз.
Никак не узнать, продлили ли все те эксперименты ему жизнь: единичный случай не имеет статистического значения. Но Стайнман несгибаемо верил, что примененные методы сработали. Исходный диагноз предсказывал ему остаток жизни длиной от нескольких недель до нескольких месяцев, вероятность прожить год – меньше 5 % . В итоге он прожил четыре с половиной года, до 30 сентября, и умер в шестьдесят восемь лет. Скорее всего, рак у Стайнмана был уже в той стадии, что даже если экспериментальное лечение и поддержало его иммунную систему, раковые клетки, видимо, нашли способ избегать атаки. «То был лабораторный эксперимент, он некоторое время действовал, как нам кажется, но вернуться и повторить его мы не можем, а потому никогда не узнаем наверняка», – говорил Меллмен .
Через три дня после смерти Стайнмана его жена Клодия встала до рассвета попить воды и увидела, что «блэкберри» покойного супруга мигает в вазе рядом с его ключами. Телефон не трогали несколько дней, но Клодия увидела сообщение с временной отметкой 5:23 утра: «Дорогой доктор Стайнман, у меня для вас хорошая новость…» Клодия позвала дочь, та еще спала: «Папа получил Нобеля!» Размышляя о том событии, Клодия вспоминает, что мужа «не было рядом, чтобы разделить это счастье… [вышло] горько и радостно» . Когда объявили присуждение премии, вряд ли кто-то знал, что Стайнмана больше нет. Один знакомый – наверняка не единственный – попал в неловкое положение, отправив поздравительное письмо . Разумеется, знай Нобелевский комитет о кончине Стайнмана, премию ему присудить не смогли бы. Сложилось так, что эта новость добралась до комитета через час после объявления лауреатов. Нобелевский комитет назначил собрание – обсудить сложившуюся ситуацию. Если бы решили, что премию Стайнману давать нельзя, его доля денег – почти полмиллиона фунтов – скорее всего досталась бы Бётлеру и Офману, разделившим с ним премию. В конце концов постановили, что в этих исключительных обстоятельствах отменять ничего не следует. В тот же год, когда Джейнуэю отказали в премии на основании того, что ученого уже не было в живых, Стайнман ее получил – вопреки своей смерти.
Стайнман остается единственным человеком в истории, получившим Нобелевскую премию и не узнавшим об этом. Он мог бы – и большинство ученых согласно, что так и должно было случиться, – получить премию раньше. Вглядываясь в кроличью нору, Стайнман открыл страну чудес иммунитета, мир, полный причудливых персонажей со странными силуэтами, взаимодействующих по сложным правилам, согласно которым клетки многочисленных разновидностей делятся данными и координируют свою деятельность, сражаясь с болезнью. По словам Меллмена: «Он – тот, кто единолично породил целое поле исследования и занимался им и после того, как мы, все остальные, сдались, чтобы не портить себе карьеру» .
К концу жизни Стайнмана чтило огромное сообщество ученых, исследующих дендритные клетки. Дерево познается по плодам его: имя Стайнмана теперь уже навеки связано с дендритной клеткой. Но, как и все ученые, он умер, а некоторые его устремления так и не достигли цели. Он всегда желал, чтобы его исследования оказались полезными в медицине. В этом успех он обрел лишь отчасти. Одна вакцина на основе дендритных клеток увеличивает вероятность выживания у пациентов с раком простаты – примерно на четыре месяца, и FDA утвердило ее для использования в США . Однако вакцины на основе дендритных клеток в лечении рака пока еще не применяются широко. Клинические испытания других подобных вакцин идут непрерывно, и этот тип лечения в будущем может получить большее распространение, однако трудностей пока хватает.
Одна из причин, почему такие вакцины не имеют большей действенности, заключается в том, что у опухолей появились способы противодействовать иммунной системе. Некоторые опухоли, например, выделяют собственные белковые молекулы, мешающие дендритным клеткам поднимать костимулирующие белки к своей поверхности. Пораженные таким путем дендритные клетки не только бесполезны – они деятельно отключают иммунную защиту тела, превращая Т-клетки в толерантные по отношению к раку, что потенциально ухудшает положение пациента.
Вторая неувязка: дендритные клетки активируются вне тела, их оснащают всем необходимым для включения иммунного отклика, но, когда их вводят в тело, они зачастую теряют способность перемещаться внутри организма. Дендритные клетки, введенные обратно в тело пациента, лишь иногда добираются до лимфоузла, где им нужно столкнуться с Т-клетками и включить иммунный ответ . Третья незадача с вакцинами на основе дендритных клеток состоит в том, что, как показывают недавние открытия, существует много разных типов дендритных клеток. В коже они, например, отличаются от тех, что находятся в кишечнике, а те, в свою очередь, не похожи на кровяные, и даже в пределах одного места в теле дендритные клетки отличаются друг от друга. До некоторой степени это придает иммунной системе сходство с экосистемой: клетки в разных местах обитания имеют много родственных черт, однако и отличаются друг от друга и способны приспосабливаться при перемещении. Передовой край исследований – попытки понять это многообразие дендритных клеток. Более того, вероятно, мы не завершили и исходный эксперимент Стайнмана: не выяснили, какова же она, самая успешная клетка – вспомогательная – в деле включения иммунного отклика. Возможно, в смысле вакцины существует подтип дендритной клетки, способный включать иммунные отклики особенно мощно .
В пределах жизни самого Стайнмана его дар человечеству – не новые лекарства, а новое осознание человеческого тела. Не одно столетие мы знали, что кровь циркулирует в организме, распределяя кислород и питательные вещества. Стайнман и тысячи ученых по всему миру, так или иначе исследовавших дендритные клетки вместе с ним, явили нам особенности другой большой жизни в человеческом теле: различные типы иммунных клеток снуют между нашими органами и тканями, в лимфоузлы и прочь из них, и так предоставляют нам постоянную и совершенно необходимую защиту.
Оставив за скобками вакцины на основе дендритных клеток, можно сказать, что широкий взгляд Стайнмана на новые лекарства, способные задействовать мощь иммунной системы, все еще в моде. Однако прежде, чем этот взгляд укоренился, необходимо разобраться с целым отдельным слоем взаимодействий внутри иммунной системы.