Когда Бааде направил пятиметровый телескоп — называемый «большой глаз» — на Лебедь А, полученные фотопластинки привели его в изумление: «Уже просматривая негативы, я понял, что столкнулся с чем-то необычным. По всей пластинке были разбросаны галактики — больше двухсот, и самая яркая — в центре. С признаками приливных деформаций, гравитационного притяжения между двумя ядрами; я еще не видел ничего подобного. Я мог думать только об этом: я ехал домой ужинать, но решил остановить машину и поразмыслить». Вместе радиоастрономия и оптическая астрономия смогли ответить на важный вопрос: Лебедь А оказался дальней деформированной галактикой. Ее спектральные линии были смещены в красную область на 5,6%, и это говорило о том, что она удаляется от нас со скоростью 15 600 км/с. В модели расширяющейся Вселенной, где красное смещение является показателем расстояния, это означает, что до нее — 750 млн световых лет. Радиоволны, которые мы сейчас видим, рождались в тот момент, когда обитатели Земли были размером с булавочную головку.
Бааде размышлял об энергии, которая, возможно, выделялась в результате космических «крушений», и предположил, что сверхъяркий Лебедь А состоит из двух столкнувшихся галактик. Рудольф Минковский, коллега Бааде в Калтехе, оспорил его теорию, и Бааде предложил поспорить на $1000. (Физики-теоретики, изучающие черные дыры, очевидно, не единственные азартные ученые.) В те времена это была месячная зарплата. Минковский отказался, и Бааде понизил ставку до бутылки виски, которую Минковский проиграл, получив спектр с эмиссионными линиями очень горячего газа у центра Лебедя А. При столкновении двух галактик содержащийся в них газ нагревается. (Бааде впоследствии жаловался, что Минковский расплатился плоской бутылкой виски вместо полноразмерной, да и ту выпил сам во время следующего визита.) Впрочем, в дальнейшем после точных расчетов некоторые теоретики пришли к выводу, что столкновение галактик не объясняет яркости радиосвечения. Главный вопрос — как вообще Лебедь А может излучать в радиодиапазоне в 19 млн раз больше энергии, чем Млечный Путь, — остался без ответа.
В 1950 г. был предложен новый механизм возникновения космических радиоволн. Если электроны движутся в магнитном поле с околосветовой скоростью, они перемещаются по спирали и создают сильное излучение в широком диапазоне длин волн — так называемое синхротронное излучение. Синхротронное излучение было получено в лабораторных ускорителях в 1940-х гг., но неожиданно оказалось, что этот процесс может происходить и при ускорении частиц в космосе, когда они разгоняются в областях протяженностью в сотни или тысячи световых лет. В 1958 г. на международной конференции астрофизиков в Париже ученые выступили с докладами, утверждая, что синхротронное излучение может объяснить солнечные вспышки, послесвечение сверхновой 1054 г. в Крабовидной туманности, необычность эллиптической галактики М87, а также, возможно, Лебедь А.
В 1959 г. кембриджские радиоастрономы опубликовали третий каталог. Оптическая астрономия обратила внимание на самые компактные источники радиоволн — это сулило хороший шанс найти соответствующий им оптический объект. Как и раньше, в центре событий оказались астрономы Калтеха. Наблюдая 48-й объект из каталога — 3С 48, Том Мэтьюс и Алан Сэндидж обнаружили в направлении источника радиоизлучения бледно-голубой объект, окруженный тусклой туманностью. Свет менялся быстро: объект не мог сильно превышать размеры звезды. Загадочным оказался его спектр с яркими широкими эмиссионными линиями, которые не удалось связать ни с одним известным элементом. Мэтьюс показал находку Джесси Гринстейну, эксперту по звездам, но и тот никогда не видел такого звездного спектра. Гринстейн, не найдя объяснений, сунул картинку в ящик стола и забыл о ней.
Следующий шаг сделал Мартен Шмидт. Молодой голландский астроном приехал в Калтех изучать образование звезд в галактиках, но непонятный источник его заинтриговал. В 1963 г. австралийские радиоастрономы во время затмения 273-го объекта каталога 3С Луной сумели очень точно измерить положение источника. Через пятиметровый телескоп Шмидт увидел похожий на звезду голубой объект со спектральными линиями, смещенными к краю спектра. Спектр объекта содержал загадочные эмиссионные линии, подобные тем, что наблюдались в 3С 48. Шмидт попытался сопоставить рисунок линий с каким-нибудь хорошо известным элементом и понял, что это линии водорода, сдвинутые в красную область на 16%. Если объяснять красное смещение расширением пространства, то 3С 273 удаляется от нас с немыслимой скоростью — 45 000 км/с. Четыре классические статьи с описанием открытия Шмидта были опубликованы в журнале Nature.
Через 50 лет Мартен Шмидт вспоминал момент открытия: «Я стал интерпретировать находку как космологическое красное смещение — потому что это был очень яркий объект в небе, как оказалось, с очень высокой светимостью. Что примечательно, потому что объект был несопоставимо ярче обычных галактик, даже самых больших. Итак, у вас есть нечто далеко во Вселенной, оно ярче целой галактики и выглядит как звезда. Это было ошеломляюще» (илл. 21).
Благодаря находке Шмидта Гринстейн вспомнил о спектре 3С 48 и быстро опознал линии обычных химических элементов, более чем дважды смещенные в красную область — на 37%. Объект 3С 273 оказался удален на 2 млрд световых лет, а 3С 48 — на 4,5 млрд световых лет, его свет рождался, когда Земля только формировалась, и с тех пор летел сквозь космос. Оба объекта меньше Солнечной системы, но излучают в 100 раз больше света, чем целая галактика. Мартен Шмидт предложил новый термин для обозначения этого экстраординарного класса объектов — квазизвездный радиоисточник, или квазар.
Поскольку основная работа велась в Лос-Анджелесе (Пасадену давно поглотил растущий город), мы будем использовать мегаполис в качестве аналогии. Представьте, что ночью вы пролетаете высоко в небе над Лос-Анджелесом на вертолете. В городе с населением около 10 млн человек, где на каждого жителя приходится примерно десять источников света от домов, улиц и машин, получаем в сумме около 100 млн огней (для простоты я округлил числа до ближайших порядков). Если бы Лос-Анджелес был галактикой, каждый источник света представлял бы примерно 1000 звезд. Представьте теперь, что в деловом центре Лос-Анджелеса есть одиночный источник, сияющий в несколько сот раз ярче, чем весь город, хотя размером он всего несколько сантиметров — не больше любого из отдельных огней. Если бы мы могли подняться высоко над Землей и город оказался бы в тысячах километров под нами, мощный источник света в его центре оставался бы видимым долгое время после того, как отдельные огни исчезли из виду. Если смотреть на галактику из огромной дали Вселенной, она может оказаться слишком маленькой, тусклой, едва заметной, но ее яркое ядро ослепительно сверкает. Это квазар.
Самое поразительное свойство квазаров — сильное красное смещение, указывающее на большое удаление и высокую светимость. Расширение Вселенной растягивает волны движущихся в ней фотонов — этот эффект называется космологическим красным смещением. Красное смещение, обозначаемое буквой z, определяется по формуле 1 + z = Ro / Re, где Ro — размер Вселенной (или расстояние между любыми двумя точками пространства) на момент, когда наблюдается свет объекта, а Re — размер Вселенной (или расстояние между любыми двумя точками пространства, поскольку все пространство расширяется одинаково) на момент, когда этот свет был излучен. Точно таким же является соотношение для излучения, 1 + z = λо / λе, где λо — растянутая или смещенная в красную область спектра длина волны фотона, который мы сейчас наблюдаем в телескоп, а λе — длина волны этого фотона в момент его первоначального появления.
Чем дальше галактика, тем быстрее она улетает от нас, в действительности любая галактика удаляется от любой другой галактики. Это наблюдение, сделанное Эдвином Хабблом в 1929 г., привело к идее расширяющейся Вселенной. Если красное смещение невелико, оно примерно равно скорости удаления в долях скорости света. До открытия квазаров самым далеким известным объектом была галактика в скоплении Гидры с красным смещением z = 0,2. Через два года Мартен Шмидт зарегистрировал новое красное смещение — квазар 3С 9 с z = 2,0, удаляющийся со скоростью 80% от световой. Свет, который мы видим сейчас, был излучен, когда Вселенная была в четыре раза моложе, чем сейчас (илл. 22). Поскольку дальний свет — это древний свет, астрономы используют далекие объекты как «машины времени». Квазары — это зонды для изучения далекой и древней Вселенной.
Поначалу поиск квазаров был трудным делом. Чтобы точно их локализовать, радиоастрономам приходилось заниматься долгой монотонной работой. Типичный день за телескопом состоял из двух 12-часовых смен, поскольку радиоволны хорошо регистрируются как днем, так и ночью. Нужно было проверить и перепроверить множество электрических соединений в аппаратной. Подключения подавали сигналы от разных телескопов или элементов решетки антенн на коррелятор, и только эксперт мог разобраться в этих хитросплетениях. Вычислительные машины только появились, сигналы записывались в аналоговой форме на магнитную ленту. Штатные сотрудники в течение всего дня должны были следить за магнитофонными деками и менять бобины, чтобы лента не закончилась. Затем данные вводили в большую ЭВМ с помощью перфокарт и видели, как меняется сила радиосигнала по мере движения источника по небу, после чего соединяли эти данные с точными измерениями времени для расчета местоположения. Для точного вычисления только одной позиции требовались долгие дни и бесконечные замеры.
Что касается оптической астрономии, жизнь ученого была несколько проще и привлекательнее. Он управлял «стаканом» первичного фокуса большого телескопа, подвешенного над главным зеркалом, словно муха, угодившая в стальную паутину. Щель купола обсерватории выходила на усеянные звездами пространства. Астроном приносил в кабину «стакана» фотопластинки, заключенные в светонепроницаемую упаковку, и аккуратно помещал их в камеру, чтобы на них упал свет ночного неба. Затем с помощью кнопок на маленькой панели астроном тонко корректировал скорость движения телескопа, чтобы обеспечить максимальную четкость изображений. Романтика, но в то же время монотонная работа. Зимой — холод 12-часовых ночных дежурств: работа заключалась фактически в том, чтобы каждые несколько секунд нажимать кнопки управления и каждые несколько часов менять фотопластинки. Астроном мог провести у телескопа всю ночь, измеряя красное смещение одного-единственного объекта.
Было каталогизировано лишь несколько десятков квазаров, когда астрономы заметили, что эти квазары — более голубые (следовательно, более горячие), чем любая другая звезда. Нашлись исследователи, которые поняли, что имеются другие, столь же голубые квазизвездные объекты, не связанные ни с каким радиоисточником. Судя по спектрам, многие из этих голубых объектов имели сильное красное смещение; они тоже были квазарами. Воодушевленные открытием, астрономы провели фотографические исследования больших участков неба, чтобы «собрать урожай» самых голубых объектов. Метод оказался очень эффективным: найденных квазаров оказалось в десять раз больше, чем квазаров с сильным радиоизлучением.
Временами охота за квазарами приводила к личным конфликтам. В 1965 г. Алан Сэндидж из Института Карнеги написал статью о новом классе радиоспокойных квазаров, и, положившись на репутацию ученого, редактор Astrophysical Journal опубликовал статью без рецензирования. Это вызвало возмущение Фрица Цвикки из Калтеха — ведь ранее именно он открыл компактные галактики со свойствами квазара. Через несколько лет в предисловии к своей книге о свойствах этих удивительных галактик он желчно выразился: «Несмотря на то, что все эти факты были известны Сэндиджу в 1964 г., он пошел на одну из дичайших попыток плагиата, заявив о существовании нового важнейшего элемента Вселенной — квазизвездных галактик. Эпохальное открытие Сэндиджа заключается не более чем в переименовании компактных галактик, которые он назвал “незваными гостями” и квазизвездными галактиками, таким образом, сам оказавшись в положении незваного гостя». Вот вам и благовоспитанные ученые!
Из-за соперничества Института Карнеги и Калтеха появились многие масштабные проекты, продвигающие оптическую астрономию XXI в. Калтех построил десятиметровые телескопы-близнецы в обсерватории Кека на Гавайях, а Карнеги — пару 6,5-метровых телескопов Магеллана в Чили. В настоящее время Институт Карнеги является ведущим партнером проекта Гигантского Магелланова телескопа, а Калтех — ведущий партнер проектируемого Тридцатиметрового телескопа. Оба проекта являются международными и стоят миллиарды долларов. Поскольку астрономы охотятся за самыми отдаленными светящимися точками, их «игрушки» становятся сложнее и значительно дороже.
Аризонский университет производит зеркала для Гигантского Магелланова телескопа. Примерно раз в год я наведываюсь в помещение под футбольным стадионом, где в десятиметровую емкость помещают 20 тонн чистого стекла в виде отдельных мелких сегментов, нагревают до 1170 °C и начинают раскручивать. Огромная печь вращается во всполохах света и волнах жара, превращаясь в адскую карусель; стоящие вокруг инженеры в белых халатах и защитных очках напоминают безумных ученых. Три месяца спустя, когда зеркало полностью охладится, его полируют почти до идеальной гладкости. Что любопытно, если бы готовое зеркало можно было увеличить до размеров континентальной части США, самые значительные неровности его поверхности выступали бы менее чем на 2,5 см. В Гигантском Магеллановом телескопе семь таких зеркал: шесть из них окружают центральный элемент как лепестки цветка. Тем временем строится и Тридцатиметровый телескоп из 492 шестиугольных зеркал, по 1,5 м в поперечнике каждое. Оба проекта претендуют на звание нового крупнейшего телескопа в мире. В каждом проекте значительная часть времени будет уделяться изучению квазаров.
Еще до открытия квазаров имелись причины полагать, что в центре некоторых галактик происходит нечто необычное. В 1959 г. расчеты показали, что широкие эмиссионные линии сейфертовских галактик могут объясняться гравитацией компактного объекта, который в миллиард раз массивнее Солнца. Английский теоретик Джеффри Бербидж лаконично сформулировал проблему радиогалактик: энергия их магнитных полей и релятивистских частиц такова, что для ее получения необходимо полностью преобразовать в энергию до 100 млн солнечных масс. Релятивистскими называются частицы, движущиеся с околосветовой скоростью. Армянский теоретик Виктор Амбарцумян предложил «радикально пересмотреть концепцию галактического ядра», утверждая: «Мы должны отбросить мысль, что ядра галактик состоят только из звезд».
Посыпались гипотезы. Возможно, источником энергии являются вспышки в плотном ядре звезды, когда одна сверхновая запускает цепную реакцию в остальных. Возможно, звездное скопление может достичь очень высокой плотности вследствие столкновений, ведущих к выбросу большого количества газа. Возможно, энергию излучает одна сверхмассивная звезда. Через год после эпохального открытия Шмидта два теоретика предположили, что источником энергии квазара является аккреция на сверхмассивную черную дыру. Они поняли, что термоядерный синтез в ядрах звезд явно недостаточен для выработки энергии квазара. Здесь нужен гравитационный двигатель. Масса, перемещающаяся по спирали на самую внутреннюю устойчивую орбиту вокруг массивной черной дыры, может быть преобразована в энергию частиц и излучения с эффективностью, близкой к 10%. Даже при такой эффективности самые яркие квазары должны питаться черными дырами, которые в миллиарды раз массивнее Солнца.
Астрофизики не сразу приняли идею сверхмассивных черных дыр. Напомню, что в 1964 г. был предложен термин «черная дыра» и впервые зарегистрирован Лебедь Х-1. Мысль о черных дырах звездной массы все еще казалась инновационной — и тут теоретики заводят речь о черных дырах в миллиарды раз более массивных! Похоже на дикую выдумку. Можете себе представить увеличение в миллиард раз? Это разница между одной крупинкой песка и полной песочницей, между бродягой, который может позволить себе бургер, и самым богатым человеком в мире, между массой ваших ближайших родственников и массой горы Эверест. Даже видавших виды астрофизиков шокировала мысль о черных дырах весом с небольшую галактику.
Предположение о гигантской энергоемкости квазаров основывается на факте их исключительной отдаленности от Земли, следовательно, чтобы быть настолько яркими, квазары должны обладать очень высокой светимостью. Светимость — это абсолютная яркость, или показатель того, сколько фотонов в секунду излучает источник света. Если бы квазары не были удалены от нас на расстояния, о которых свидетельствует их красное смещение, то требования к их энергоемкости были бы менее жесткими. Вот как это работает. Стоваттная лампочка на расстоянии 100 м кажется тусклой, но если до лампочки 100 км, то она должна быть в миллион раз ярче, чтобы мы не увидели разницы в яркости, — то есть 100-мегаваттной. Квазары тусклые, но они удалены от нас на миллиарды световых лет и потому должны быть фантастически яркими.
Это заставило небольшую, но авторитетную группу астрономов, в том числе нескольких выдающихся ученых, подвергнуть сомнению космологическую природу красного смещения квазаров. Космологическое красное смещение в модели расширяющейся Вселенной преобразуется в расстояние. Астрономы указали на места, где наблюдались квазары вблизи галактик со значительно меньшим красным смещением; их было больше, чем можно было бы объяснить случайностью. Ученые обратили внимание на преобладание специфических красных смещений, необъяснимых при космологической интерпретации. Большинству астрономов статистические выкладки показались неубедительными, но отмахнуться от аргументов, опирающихся на физический показатель плотности энергии, оказалось сложнее. Физики утверждали, что квазары должны «захлебнуться» собственным излучением и погаснуть, не успев ярко засветиться. Квазары с очень быстро меняющимся радиосигналом настолько компактны, что релятивистские электроны, излучив фотоны радиодиапазона, должны были бы сталкиваться с этими же фотонами и разгонять их до частот оптического, затем рентгеновского и гамма-излучения. В результате радиоисточник исчез бы, превратившись в гамма-источник. В середине 1960-х гг. ученые многократно и весьма бурно обсуждали эту тему на конференциях, не приходя к консенсусу. Для решения задачи потребовались новые, более совершенные радиообсерватории.
Несложно понять, почему радиоастрономы были несколько раздосадованы. Они первыми нашли свидетельство наличия огромной энергии в ядрах галактик и точно определили их местоположение, что позволило открыть квазары. Однако понять природу квазаров невозможно без измерения красного смещения, что делается в оптическом диапазоне, к тому же в основном квазары, как оказалось, генерируют довольно слабое радиоизлучение. Создалось впечатление, что теперь действие переместится в область оптической астрономии.
Однако у радиоастрономов нашелся еще один козырь. На этапе обнаружения квазаров они пользовались «тарелками», разнесенными на сотни метров, благодаря чему погрешность позиционирования не превышала одной угловой минуты. Когда же в интерферометрах они увеличили расстояние между антеннами до километра и перешли на самые короткие волны, погрешность свелась к угловой секунде, что практически соответствует точности оптического позиционирования. Радиоастрономия стала строить такие же точные карты радионеба, как и оптическая астрономия. Детально изученные, радиоисточники оказались удивительно разнообразными. Обнаружились радиогалактики, оптический компаньон которых, очевидно, тоже был галактикой, и квазары, оптический компаньон которых был похож на звезду. Чаще других наблюдались источники с огромными лепестками радиоизлучения, охватывающими эллиптическую галактику с радиоисточником в ядре, причем в некоторых случаях эти лепестки простирались в межгалактическое пространство на несколько миллионов световых лет. Многие галактики имеют необычную или возмущенную форму. Создается впечатление, что из центра галактики выбрасываются пучки частиц высоких энергий, поддерживая радиосвечение парных лепестков. Красивым примером является Лебедь А.
Мы обнаруживали галактики с таинственными и необычными свойствами. Одни имеют мощное радиоизлучение, другие интенсивно излучают в рентгеновском диапазоне, третьи отличаются сильным оптическим излучением, а вблизи центра наблюдается быстро движущийся газ. Ни одно из этих проявлений не характерно для галактики, являющейся лишь большим скоплением звезд. Астрономы обозначают галактики с особенно интенсивными энергетическими процессами в ядре общим термином «активная галактика».
Поскольку я занимаюсь оптической астрономией, то, как правило, предпочитаю видимые данные, но для изучения активных галактик я воспользовался «Очень большой решеткой» (VLA) в Нью-Мексико: я работал в той же аппаратной, где во время съемок фильма «Контакт» Джоди Фостер получила послание от инопланетян. VLA представляет собой комплекс из 27 тарелок (каждая диаметром 25 м), которые можно конфигурировать в форме буквы Y, размещенной на плоскости в 40 км. Тарелки перемещают по железнодорожным путям, увеличивая и уменьшая расстояние между ними. Пока местные радиоастрономы охотно помогали мне с обработкой данных, я заметил, что им нравится сохранять ауру таинственности вокруг своей работы. Я был не более чем почетным гостем в их племени.
Радиоастрономы уделяли особое внимание источникам, неразличимым для существующих интерферометров. Изменчивость источников свидетельствовала об их размерах — ненамного больше нашей Солнечной системы. В 1960-х гг. ученые задумали создать радиотелескоп размером с Землю. Нужно было найти другой способ сопоставления сигналов разных телескопов, поскольку для трансконтинентальной передачи не годились кабели и линии СВЧ-связи. Радиоастрономы решили записывать сигнал каждого телескопа на магнитную пленку с указанием времени по атомным часам и далее сводить сигналы всех пленок и получать интерференционные полосы — а затем карту. Данные кропотливо обрабатывались, что требовало таких технических средств, как атомные часы, компьютеры и магнитофоны. В 1967 г. группы американских и канадских астрономов наблюдали несколько источников при помощи антенн, находящихся на расстоянии 200 км. Через год они подключили удаленные антенны в Пуэрто-Рико, Швеции и Австралии. База увеличилась до 10 000 км, или 80% диаметра Земли. Угловое разрешение выросло в 1000 раз, до одной тысячной доли угловой секунды — это угловой размер десятицентовой монетки на вершине Эйфелевой башни, если смотреть на него из Нью-Йорка (илл. 23). Теперь радиоастрономия располагала гораздо более четкими изображениями — по сравнению с оптической астрономией.
Новую технологию назвали интерферометрией с очень длинной базой (Very Long Baseline Interferometry, VLBI). В 1970 г. радиоастрономы, изучая квазары при помощи VLBI, заметили, что самые компактные радиоисточники создают односторонние струи, в которых часто присутствуют «пузыри» — или горячие точки. Собрав данные за год, они увидели, как эти пузыри удаляются от ядра. Астрономы привыкли иметь дело с огромной временной шкалой межгалактической Вселенной, поскольку галактика совершает один оборот за сотни миллионов лет, и были счастливы, заметив изменения, происходящие от года к году. Однако, преобразовав наблюдаемое поперечное перемещение пузырей в скорость, они были потрясены: скорость разлета в 5–10 раз превышала скорость света. Это нарушение принципа относительности? Нет, всего лишь оптическая иллюзия. Поскольку джет от компактного радиоисточника направлен практически прямо на нас, а пузыри двигаются с околосветовой скоростью, создается впечатление, что они быстро движутся в поперечном направлении. Представьте, что кто-то с Земли перемещает по поверхности Луны световое пятно очень мощного прожектора. Если луч двигается быстро, наблюдателю на Луне покажется, что он перемещается быстрее света, хотя фотоны луча летят со скоростью света — и ни на йоту быстрее. Этот феномен, называемый сверхсветовым движением, наблюдался у десятков компактных радиоисточников.
Ювелирно точное картирование радиоисточников показало, что радиоастрономы могут получать такие же прекрасные изображения, как и в оптической астрономии (илл. 24). Данные поддерживают гипотезу сверхмассивных черных дыр. Мощное радиоизлучение свидетельствует о работе ускорителя частиц, а компактность означает, что излучение приходит из крохотной области пространства. На это способна только гравитационная машина — такая, как черная дыра. Кроме того, поскольку галактики имеют импульс, а компактный объект в центре галактики должен быть вращающимся, газ будет улетать от него над полюсами вдоль оси вращения. Черная дыра намного более мощный ускоритель частиц, чем любое творение рук человеческих. Гравитация питает парные джеты намагниченной плазмы, которые выбрасываются вовне из области вблизи черной дыры почти со скоростью света, протягиваясь далеко за границы галактики и освещая радионочь.
В притче о слепцах, ощупывавших слона в попытке узнать, как он выглядит, говорится, что один потрогал ногу и сказал, что слон похож на колонну, второй — хвост и сравнил слона с веревкой, третий ощупал ухо и сказал, что слон напоминает лист пальмы, а четвертому, ощупавшему бивень, слон показался похожим на трубу (илл. 25). Эта притча показывает, как опасно делать выводы на основании неполной информации. Давайте посетим «зоопарк» активных галактик и узнаем, на что похожи эти создания.
Активные галактики определяются через отрицания: их поведение в энергетическом отношении невозможно объяснить составом звезд или звездными процессами. Их изучение началось со спиральных галактик, открытых Сейфертом в 1943 г. Их яркое голубое ядро и широкие эмиссионные линии указывали на газ, движущийся необъяснимо быстро для нормального паттерна вращения галактики. Теперь мы понимаем, что галактики Сейферта — это «недостающее звено» между нормальными галактиками и квазарами, поскольку они имеют нетепловое излучение, но находятся ближе и являются менее яркими, чем квазары. Однако, поскольку галактики Сейферта были позабыты на несколько десятилетий, на момент открытия квазары казались беспрецедентным явлением. С помощью космического телескопа «Хаббл» астрономы сделали фотографии глубокого космоса и доказали, что «туман» вокруг квазаров в действительности является светом дальней галактики. Возвращаясь к аналогии с полетом над ночным Лос-Анджелесом, можно назвать это демонстрацией того, что квазар как источник света обитает в звездном мегаполисе.
Предпринималась аналогичная попытка классифицировать радиоисточники разных видов. Радиогалактики с низкой светимостью имеют ядро и парные джеты, обычно оканчивающиеся в пределах галактики лепестками излучения неправильной формы. Радиогалактики с высокой светимостью имеют ядро и одиночную струю, выбрасывающую лепесток далеко за пределы родительской галактики. Радиоисточниками с самыми мощными ядрами оказались квазары с быстро меняющейся яркостью в радио- и оптическом диапазонах и чрезвычайно высокими плотностями энергии. Подвид с самыми экстремальными характеристиками получил название «блазар». Судя по названию, он характеризуется резкими колебаниями яркости, иногда меняющейся ежеминутно. И это вполне коррелирует с ситуацией, когда мы смотрим через жерло релятивистского джета на центральную машину — сверхмассивную черную дыру.
Много лет назад я отправился в Россию охотиться на блазары, и результаты этой охоты превзошли ожидания. Временами моя поездка превращалась в настоящий шпионский роман. Двое крепких мужчин с пистолетами под пиджаками сели по бокам от меня на заднее сиденье автомобиля, меня охватили дурные предчувствия. Обычно жизнь астронома из обсерватории не столь богата событиями. Мы ехали через границу на фабрику мороженого в Грузии, чтобы набрать сухого льда для охлаждения инструмента, который я привез из США.
Мы прибыли к российскому шестиметровому — самому большому в мире — телескопу, который используют для изучения самого редкого «зверя» внегалактического «зоопарка». Интенсивность света блазара менее чем за час может усилиться настолько, что в 100 раз превысит светимость целой галактики. Нашим инструментом был фотометр, способный измерить яркость далекого источника излучения менее чем за секунду. Мы надеялись получить незамутненные изображения воронки вокруг сверхмассивной черной дыры. Моим «подельником» был Сантьяго Тапиа, чилийский астроном, с которым я познакомился в Аризоне. Нас принимали сотрудники обсерватории — ведущие исследователи с ученой степенью, чья зарплата не превышала $100 в месяц (этого едва хватало на то, чтоб прокормить и одеть семью). По сравнению с ними я, молодой постдок из Америки, был богачом.
Такой была Россия на закате Советского Союза. Повсюду были признаки разрухи и упадка. На рынках в Ленинграде мы видели пустые прилавки, у ресторанов (каких было немного) выстроились длинные очереди. Нас ждало трехдневное путешествие на Кавказ — туда, где находился телескоп, по пути в наш поезд ворвались солдаты с автоматами Калашникова наперевес в поисках воровских банд. На следующий день после прибытия я по наивности отправился на прогулку над речной долиной. Тем же вечером, когда мы с хозяевами ели водянистый борщ и черствый хлеб, они попросили меня быть осторожным, сообщив, что в долинах можно встретить грузинских торговцев контрабандным оружием — их поведение непредсказуемо.
Сбор данных шел тяжело. Мы с Сантьяго по очереди катались в «стакане» первичного фокуса — в металлическом цилиндре наверху телескопа, где фокусируется свет, отражающийся от главного зеркала. В патроне находился и фотометр, который мы привезли из Соединенных Штатов. «Стакан» не был утеплен, и, несмотря на многослойную зимнюю одежду, к концу долгой февральской ночи я промерзал до костей. Однако были и радостные моменты. Одной ясной ночью объект наших наблюдений начал мерцать, и счетчик фотонов инструмента показывал, как подскакивает и спадает его яркость. Я представил себе, как разрывается на части звезда, врезавшаяся в аккреционный диск и отправляющаяся на корм чудовищу. Под утро мы с нашими русскими хозяевами ели «икру бедняков», приготовленную из мелко нарезанных маринованных овощей. Мы допивали бутылку обжигающей водки и делились историями, пока распухший красный диск солнца поднимался над Кавказскими горами.
«Проблема слона» в случае активных галактик вызвана избирательным зрением. При использовании метода радиоволн вы увидите ядро, джеты и лепестки, но большинство активных галактик — радиоспокойные. Пользуясь оптическими методами, вы увидите широкие эмиссионные линии и яркое ядро в окружении тусклой родительской галактики, но упустите из виду феномен релятивистских джетов. Эти два фрагмента электромагнитного спектра не составят полной картины. Нам нужны другие методы наблюдения.
Как мы уже говорили, рентгеновская астрономия позволила в 1964 г. открыть эталонную черную дыру Лебедь Х-1. Через шесть лет ракета зарегистрировала рентгеновское излучение двух ближних активных галактик — Центавр А и М87, а также квазара 3С 273. В 1970-х гг. высокая чувствительность орбитальной обсерватории «Эйнштейн» позволила обнаружить множество квазаров. Их рентгеновское излучение было переменным, свидетельствуя, что оно исходит из областей вблизи центральной машины. Ультрафиолетовое и рентгеновское излучение многих квазаров напоминало тепловое излучение газа при температуре 100 000 кельвинов. Примечательно, что это соответствовало моделям с аккреционным диском вокруг сверхмассивной черной дыры.
Каждый раз, когда астрономы начинали наблюдения в новом диапазоне частот, обнаруживались активные галактики. С помощью астрономического спутника с инфракрасным телескопом, запущенного в 1977 г., удалось выяснить, что квазары активно излучают в ИК-диапазоне. Была высказана догадка, что коротковолновое излучение, возникающее возле ядра, преобразуется частицами космической пыли в инфракрасное излучение с большей длиной волны. В течение 1990-х гг. принадлежащая NASA гамма-обсерватория «Комптон» открыла еще один способ наблюдения за активными галактиками — в области высоких энергий. Парные джеты, выбрасываемые из полюсов черной дыры, способны излучать огромное количество гамма-лучей. Разница между длинами волн, на которых наблюдались некоторые активные галактики, невероятно велика — 100 млн трлн (1020). В 2018 г. было открыто новое великолепное окно наблюдений за активными галактиками — в момент обнаружения нейтрино, испущенного блазаром в 4 млрд световых лет от нас. До этого регистрировались только нейтрино Солнца и относительно близкой сверхновой. Нейтрино возникло вблизи сверхмассивной черной дыры блазара и через 4 млрд лет было обнаружено детектором, установленным во льдах Антарктики.
«Проблему с описанием слона» может обострять «шовинизм диапазонов». Астрономы специализируются не только в предмете своего внимания, но и в методах наблюдения. Оптические астрономы, по-прежнему составляющие большинство профессионалов, следуют классической траектории развития этой области знания — от наблюдений невооруженным глазом к фотографии и ПЗС-фотометрии. В радиоастрономию часто переходят инженеры, а в инфракрасную и рентгеновскую — физики. Помимо технических различий, астрономов, работающих с разными длинами волн, разделяет принадлежность к разным «племенам». Они редко общаются, хотя это было бы совсем не лишним.
Астрономы пытаются унифицировать «обитателей зоопарка» активных галактик, исходя из предположения, что их облик зависит от направленности. Спиральные галактики являются уплощенными, а аккреционные диски — тонкими, следовательно, можно ожидать, что свойства активных галактик определяются ориентацией в пространстве. Простая аналогия: сфера всегда имеет округлую форму независимо от расположения, а тонкий диск может выглядеть как круг, эллипс и даже линия.
Радиоастрономы поняли, что разница в радиояркости квазаров может не иметь отношения к различиям в светимости. Если джеты, ускоряющие частицы почти до скорости света, направлены непосредственно к лучу зрения, то излучение резко усиливается. Прямой взгляд вдоль полярной оси сверхмассивной черной дыры обнаружит мощное радиоядро, односторонний джет и, возможно, слабое гало широко распространившегося излучения в радиодиапазоне. Таковы быстро меняющиеся блазары, составляющие малую долю от общего числа, поскольку это очень специфическая направленность. Если мы посмотрим на тот же источник сбоку, то увидим слабое ядро, парные джеты и протяженные лепестки на той или другой стороне.
Блазары — тема моей докторантской диссертации, и еще десять лет после этого я занимался их исследованиями. Они притягательны, как спорткар для юноши, — быстрые, стильные и способные с равной вероятностью выбросить на обочину или прокатить так, что захватит дух. Блазары непредсказуемы, поскольку их излучение зависит от изменчивых астрофизических характеристик среды возле сверхмассивной черной дыры. Часами я впустую торчал у телескопа, поскольку почти все интересующие меня объекты не подавали признаков жизни, а некоторые оказывались и подавно слишком тусклыми, но, когда мне везло, результаты были достойны Книги рекордов Гиннесса. За период работы мне удалось засечь активные галактики с наивысшей светимостью, самыми быстрыми изменениями, самым компактным излучением и высочайшей поляризацией. Поляризация происходит, когда колебания электромагнитного излучения лежат в одной плоскости; поляризация света дает информацию о геометрии источника света.
Однако серьезная наука требует аналитического подхода и систематических наблюдений, поэтому исследование строилось на совокупности данных, а не на самых захватывающих моментах. Я узнал, что блазары позволяют взглянуть на центральную машину с весьма интересного ракурса. Горячий газ, движущийся на скорости 99% световой, свидетельствует о том, что блазары в сотни раз ярче активной галактики — если не смотреть на нее вдоль релятивистского джета. Теоретикам непросто было обосновать возможность ускорения газа до такой скорости, но наблюдатели вроде меня любят подбрасывать теоретикам трудные задачки. Постепенно обнаруживались гораздо более многочисленные активные галактики с не менее поразительным поведением и джетом, не направленным вдоль луча зрения. Моей целью было не утвердить уникальность и экзотичность блазаров, а найти им подходящее место в «зоопарке» активных галактик.
Различные идеи объединились в унифицированной модели активного ядра галактики (АЯГ). Ее основная гипотеза гласит: все активные галактики получают энергию от аккреции на сверхмассивную черную дыру, а наблюдаемые различия вызваны по большей части, но не полностью, их ориентацией в пространстве (илл. 26). На наблюдаемые свойства сильно влияет поглощение света пылевой средой и то, что газ в джетах движется с околосветовой скоростью. Истинные свойства ядра зависят от типа материнской галактики, вращения черной дыры и интенсивности аккреции. Каким бы боком ни поворачивался слон, он остается слоном.