В 1847 году Томсон пытался соотнести тепловой двигатель Карно, который работал при условии сохранения тепла (количество теплоты, покинувшее горячий резервуар, всегда равняется количеству теплоты, перешедшему в холодный резервуар) и выполнение работы с механическим эквивалентом тепла Джоуля, которое требовало поглощения тепла для производства работы тепловым двигателем. Тем не менее Джоуль и Карно были единогласны в том, что тепловой двигатель мог преобразовывать тепло в работу. Однако их точки зрения на то, что в это время происходило с теплом, отличались. Будучи сторонником теплородной теории, Карно считал, что тепло сохраняется, в то время как Джоуль думал строго наоборот, а именно – что тепло превращается в работу и таким образом исчезает, а не сохраняется в процессе работы. Подобно Карно, Томсон тогда был не готов отказаться от мысли о том, что тепло сохраняется.
В 1824 году Карно открыл обратимый (идеальный) тепловой двигатель и, основываясь на этом, получил много новых сведений. Безусловно, Карно был первооткрывателем, который использовал оригинальную математическую модель. Ее результатом стали удивительные открытия, хотя они и основывались на ошибочной теплородной теории. Однако в 1850 году изменилось общее направление термодинамики, и дни теплородной теории были сочтены, поскольку было открыто первое начало, гласившее, что энергия – нечто большее, чем просто тепло, и она сохраняется, – что нашло отражение в работах Майера, Джоуля и Гельмгольца. Отчасти именно это позволило Рудольфу Клаузиусу разрешить противоречия между тепловыми теориями Карно и Джоуля.
Клаузиус родился в 1822 году в Кёслине, Пруссия (ныне Кошалин, Польша), и был младшим из 18 детей. Он получил начальное образование в маленькой частной школе, директором которой был его отец. Изначально он интересовался историей, но позже получил степень кандидата наук по математической физике в Университете Галле в 1847 году. Он интересовался электричеством и магнетизмом и даже разрабатывал, ссылаясь на Уильямсона, теорию о заряженных атомах в растворах (электролитах), которую часто называют теорией Уильямсона – Клаузиуса (что кажется несправедливым, учитывая, что Уильямсон никогда не рассматривал подобные типы растворов). Он также сделал вклад в кинетическую теорию, введя понятие средней длины свободного пробега – среднего расстояния, которое проходит частица (молекула или атом) при свободном движении в жидкости, прежде чем «столкнуться» с другой частицей. Однако его самые значимые работы касаются именно термодинамики, а именно теоретических аспектов механического эквивалента тепла, первого начала и открытия энтропии (несомненно, его ключевой труд).
В 1850 году Клаузиус опубликовал мемуары, в которых он «примирил» работы Джоуля и Карно. Не имея возможности найти оригинал работы Карно, Клаузиус, как и Томсон, изучал теорию Карно по статье Клапейрона, опубликованной через два года после смерти Карно. И Карно, и Клапейрон ошибочно полагались на теплородную теорию, согласно которой тепло не пропадает, что препятствует его поглощению тепловым двигателем во время производства работы. Они считали, что работа производится при «падении» температуры с высокой к низкой, и количество тепла никогда не меняется.
Клаузиус рассматривал тепло с точки зрения двух фундаментальных процессов: проводимости и преобразования. В случае с тепловым двигателем Клаузиус полагал, что часть тепла, покидающая нагреватель, преобразовывалась в работу, в то время как оставшаяся (не используемая для работы) свободно переходила из нагревателя в холодильник; это количество теплоты и есть результат работы двигателя.
Клаузиус считал, что эксперименты Джоуля совершенно четко установили соотношение между теплом и работой. Более того, он утверждал, что «основополагающий принцип» теории Карно заключался в том, что тепло переходит от высокой температуры к низкой, за счет чего производится работа. Поэтому вместо того, чтобы выбирать из двух теорий верную, Клаузиус вывел из них одну, более цельную. Вот что он говорил по этому поводу:
«Похоже, что, когда речь идет о работе, обе теории могут быть верны; определенное количество теплоты может быть поглощено, а другая его часть передана от теплого тела холодному; и та, и другая части могут так или иначе влиять на количество производимой работы».
К 1850 году Томсон начал приходить к тем же выводам, что и Клаузиус. Он наконец-то отказался от теплородной теории и ее основного принципа сохранения тепла, таким образом начиная признавать, что тепло может быть преобразовано в работу, как утверждал Джоуль. Это позволило Томсону, как и Клаузиусу, сходным образом объединить теории Карно и Джоуля. К своему облегчению, Томсон обнаружил, что исключение сохранения тепла из теории Карно сохраняет математические уравнения, которые он вывел изначально. В 1851 году, через год после работы Клаузиуса, Томсон опубликовал «Динамическую теорию тепла», где он совмещает теории Карно и Джоуля, признавая, что первым это сделал Клаузиус.
Основным вкладом Томсона в Динамическую теорию тепла, возможно, было его исследование энергии системы. Он снял акцент с тепла и работы, на котором фокусировался Карно, а вслед за ним – и Джоуль с Клаузиусом, и вместо этого переместил его на энергию.
Томсон определил энергию как неотъемлемое свойство системы; все системы изначально обладают энергией. Кроме того, он заявил, что энергия системы может измениться только через взаимодействия с ее окружением. Поэтому, если система полностью изолирована от своей среды, ее энергия не может измениться, она сохраняется.
Заметьте, что это утверждение не учитывает того, что содержит система; и при этом оно не учитывает того, что происходит внутри нее, поскольку это не имеет значения. Пока система изолирована от окружения, в природе не найдется силы, чтобы как-то изменить ее; энергия всегда будет сохраняться. Это действительно очень сильное заявление. Это освободило Томсона от необходимости размышлять о природе вещества внутри системы.
Из части 1 мы узнали о различных системах, а именно – о тех, которые изучал Галилео (например, шар, катящийся по наклонной плоскости). Тогда мы не говорили о том, что же на самом деле составляет систему и среду. Поэтому давайте проясним это теперь.
Под изолированной системой мы подразумеваем такую систему, в которую ничто не может вмешаться и из которой ничто не может выйти: внутри такой системы не могут производиться ни тепло, ни работа – и на такую систему ими нельзя воздействовать. Представьте себе наклонную плоскость с шаром наверху, готовым скатиться вниз при небольшом толчке. Теперь возьмем наклонную плоскость, шар и меня – и поместим все это внутрь здания. Как только все будет внутри, дверь закрывается с внешней стороны. Наша система состоит из всего, что есть в здании. Очевидно, никакое вещество не может покинуть здание или проникнуть в него. Далее предположите, что стены были полностью изолированы таким образом, чтобы никакое тепло не могло попасть внутрь или наружу. Таким образом мы гарантируем, что ни тепло, ни какой-либо объект не смогут войти в нашу систему или покинуть ее.
Что же насчет работы? В части 1 мы выяснили, что работа производится благодаря приложению сил к объекту, чтобы переместить его на определенное расстояние. Если какая-либо внешняя сила получала бы энергию из-за пределов системы, из окружения, тогда, возможно, она могла бы воздействовать на нашу систему. Например, если бы шар, находящийся на вершине наклонной плоскости, был сделан из магнитного материала вроде железа, сильное магнитное поле, воздействующее на него из-за пределов системы, заставило бы шар прийти в движение и скатиться вниз по наклонной плоскости. В этом случае окружающая среда проделала бы работу с системой.
Кроме того, в сходном сценарии вы можете вообразить силу внутри системы (в здании), которая бы произвела работу, меняя окружающую среду; в этом случае мы скажем, что работа была произведена системой над окружением. Однако мы исключили эту возможность и поместили нашу систему (наклонную плоскость, шар и меня) в границы здания, полностью изолировав ее от окружения. Согласно Томсону, энергия системы должна теперь быть сохранена независимо от того, что происходит внутри. Давайте проверим эту идею.
Я толкну шар, заставляя его катиться по наклонной плоскости. Толчок передал шару определенный объем моей собственной энергии. Шар, катящийся вниз, изменяет свою потенциальную энергию на кинетическую. Шар катится по наклонной плоскости и, коснувшись поверхности, останавливается, но только после того, как он передаст всю свою кинетическую энергию этой поверхности. И хотя все это происходит внутри системы, «потери» энергии – например, когда я толкнул шар; потенциальная энергия, которую потерял шар при движении; кинетическая энергия, которую он потерял при остановке, – равняются ее приросту. Прирост складывается из энергии, которую шар получает при стартовом толчке; кинетической энергии шара в движении; кинетической энергии, полученной поверхностью от катящегося по наклонной плоскости шара, пока он не остановился.
Энергия всего лишь передается от одного объекта другому, в то время как ее общее количество остается прежним. Однако если мы снимем все эти ограничения, картина изменится. Предположим, что тепло может проникать сквозь стены. Далее мы позволим, чтобы работа проводилась на системе или самой системой таким способом, как было описано ранее. Теперь, когда система взаимодействует со своей средой через нагревание и работу, ее энергия изменится. Еще раз, слепая приверженность формулам освобождает нас от точных деталей системы, у нас есть очень мощный инструмент, применимый к большому разнообразию систем.
Например, рассмотрим стакан воды с крышкой (благодаря которой молекулы воды не могут испаряться). Стакан и крышка формируют границы системы, и молекулы воды остаются внутри. Если стакан воды пришел в равновесие, теперь он сохраняет комнатную температуру, не теряя и не получая тепло, – помните, чтобы тепло могло переходить из одной области в другую (из горячей в холодную), необходима разница температур. Более того, если оно просто находится там, никакая работа не будет производиться. Другими словами, наш стакан воды становится изолированной системой, и мы предполагаем, что, как и в других системах, энергия внутри него будет неизменна.
Теперь, однако, у нас нет способа провести подробный анализ процессов, происходящих внутри. В конце концов, мы даже не можем видеть молекулы воды. Безусловно, молекулы воды обмениваются энергией, поскольку они врезаются друг в друга, все время сохраняя энергию, и «потери» и «прибыли» отлично уравновешивают друг друга.
Подобно Томсону, Клаузиус также признавал «энергетическую концепцию». Однако, когда в 1850 году он издал свою работу – чуть раньше Томсона, – ее физическое описание было неполным, и он просто не понимал главных идей так же хорошо, как Томсон. Таким образом, даже при том, что Клаузиус опередил Томсона почти на год, описание энергии системы и ее изменений при взаимодействиях с окружением у Томсона было намного более полным. Томсон первоначально назвал энергию системы механической энергией, но позже, в 1856 году, он выбрал более подходящее имя – действительная энергия. Позднее Гельмгольц назовет это внутренней энергией.