Книга: Эволюция физики
Назад: Увеселительная горка
Дальше: Кинетическая теория вещества

Мера превращения

Меньше ста лет назад Майер ввел, а Джоуль экспериментально подтвердил новую идею, которая привела к понятию теплоты как формы энергии. Удивительно, что почти все фундаментальные работы о природе теплоты были сделаны не физиками-профессионалами, а людьми, которые рассматривали физику исключительно как свое любимое занятие. Это были многосторонний шотландец Блэк, немецкий врач Майер и американский предприниматель граф Румфорд, впоследствии живший в Европе, где занимался различной деятельностью и, в частности, был военным министром Баварии. Был среди них и английский пивовар Джоуль, проделавший в свободное время ряд наиболее важных экспериментов, касающихся сохранения энергии.

Джоуль экспериментально подтвердил предположение о том, что теплота – это форма энергии, и определил меру превращения.

Стоит потратить время, чтобы посмотреть, каковы были его опыты.

Кинетическая и потенциальная энергии системы составляют вместе ее механическую энергию. Мы предполагаем, что в случае движения вагона по увеселительной горке часть механической энергии превращается в теплоту. Если это верно, то как в этом, так и во всех других аналогичных физических процессах должна существовать определенная мера превращения механической энергии в тепловую (механический эквивалент теплоты). Это строго количественный вопрос, но тот факт, что данное количество механической энергии может быть превращено в определенное количество теплоты, весьма важен. Нам хотелось бы знать, каким числом выражается мера превращений, т. е. сколько теплоты мы получим из данного количества механической энергии.

Определение этого числа как раз и было предметом исследований Джоуля. Механизм одного из его экспериментов очень похож на механизм часов с гирями. Завод таких часов состоит в поднятии двух гирь, благодаря чему увеличивается потенциальная энергия системы. Если такие часы ни с чем не связаны, их можно считать замкнутой системой. Постепенно гири падают, и часы идут. По прошествии определенного времени гири достигнут своего наинизшего положения, и часы остановятся. Что произошло с энергией? Потенциальная энергия гирь превратилась в кинетическую энергию механизма, а затем постепенно рассеялась в виде теплоты.



Рис. 20.





Искусное изменение в механизме этого рода позволило Джоулю измерить тепловую потерю, а тем самым и меру превращения. В его приборе две гири вызывали вращение колеса с лопастями, помещенного в воду (рис. 20). Потенциальная энергия гирь превращалась в кинетическую энергию движущихся частиц воды, а стало быть, в теплоту, которая увеличивала температуру воды. Джоуль измерял это изменение температуры и, зная теплоемкость воды, подсчитывал количество поглощенной теплоты. Он подытожил результаты многих опытов в следующих положениях:

1. Количество теплоты, произведенной трением тел, твердых или жидких, всегда пропорционально количеству затраченной силы (силой Джоуль обозначал энергию).

2. Количество теплоты, необходимое для увеличения температуры фунта воды (взвешенной в вакууме и взятой при температуре между 55 и 60°) на 1° Фаренгейта, требует для своего развития расхода механической силы (энергии), представленной падением 772 фунтов с высоты в один фут.

Другими словами, потенциальная энергия 772 фунтов, поднятых на один фут над землей, эквивалентна количеству теплоты, необходимой для того, чтобы поднять температуру одного фунта воды от 55 до 56° по шкале Фаренгейта.

Последующие эксперименты внесли несколько большую точность, но механический эквивалент теплоты – это то существенное, что Джоуль нашел в своей первоначальной работе.

Поскольку эта важная работа была сделана, дальнейший прогресс шел быстро. Скоро было признано, что механическая энергия и тепловая – это только две из многих форм энергии. Все, что может быть превращено в какую-либо из этих форм, есть тоже форма энергии. Излучение, испускаемое Солнцем, есть энергия, ибо часть ее превращается на Земле в теплоту. Электрический ток обладает энергией, ибо он нагревает проводник и вращает ротор мотора. Уголь обладает химической энергией, высвобождающейся в виде теплоты во время сгорания. В каждом явлении природы одна форма энергии превращается в другую всегда при некоторой вполне определенной мере превращения. В замкнутой системе, изолированной от внешних влияний, энергия сохраняется и, следовательно, ведет себя подобно субстанции. Сумма всех возможных форм энергии в такой системе постоянна, хотя количество любого из этих видов энергии может изменяться. Если мы рассматриваем всю Вселенную как замкнутую систему, мы можем вместе с физиками девятнадцатого столетия гордо заявить, что энергия Вселенной неизменна, что никакая часть ее никогда не может быть создана или уничтожена.

В таком случае существуют два понятия субстанции: вещество и энергия. Оба подчиняются законам сохранения: масса и полная энергия изолированной системы не могут изменяться. Вещество имеет вес, а энергия невесома. Поэтому мы имеем два различных понятия и два закона сохранения. Можно ли и теперь использовать эти идеи в прежнем виде? Или эта, несомненно, хорошо обоснованная, картина изменилась в свете новейших исследований? Да, изменилась! Дальнейшие изменения в обоих понятиях связаны с теорией относительности. Мы вернемся к этому вопросу позднее.

Философские воззрения

Результаты научного исследования очень часто вызывают изменения в философских взглядах на проблемы, которые распространяются далеко за пределы ограниченных областей самой науки. Какова цель науки? Что требуется от теории, которая стремится описать природу? Эти вопросы, хотя и выходят за пределы физики, близко связаны с ней, так как наука дает тот материал, из которого они вырастают. Философские обобщения должны основываться на научных результатах. Однако, раз возникнув и получив широкое распространение, они очень часто влияют на дальнейшее развитие научной мысли, указывая одну из многих возможных линий развития. Успешное восстание против принятого взгляда имеет своим результатом неожиданное и совершенно новое развитие, становясь источником новых философских воззрений. Эти замечания неизбежно звучат неопределенно и неостроумно до тех пор, пока они не иллюстрированы примерами, взятыми из истории физики.

Мы постараемся здесь описать первые философские идеи о целях науки. Эти первые идеи сильно влияли на развитие физики до тех пор, пока, около ста лет назад, они не были отброшены благодаря новым данным, новым фактам и теориям, которые в свою очередь образовали новую основу для науки.





Броуновские частицы, видимые через микроскоп. (Сфотографировано Ж. Перреном.)





Одна броуновская частица, сфотографированная с длительной выдержкой. (Сфотографировано Брумбергом и Вавиловым.)





Последовательные положения, наблюденные для одной из броуновских частиц.





Путь, выведенный из этих последовательных положений.





Во всей истории науки от греческой философии до современной физики имелись постоянные попытки свести внешнюю сложность естественных явлений к некоторым простым фундаментальным идеям и отношениям. Это основной принцип всей натуральной философии. Он выражен уже в работе атомистов. Двадцать три столетия назад Демокрит писал:

«Условно сладкое, условно горькое, условно горячее, условно холодное, условен цвет. А в действительности существуют атомы и пустота. То есть объекты чувств предполагаются реальными и в порядке вещей – рассматривать их как таковые, но на самом деле они не существуют. Реальны только атомы и пустота».

Эта идея остается в древней философии не чем иным, как остроумным вымыслом воображения. Законы природы, устанавливающие связь следующих друг за другом событий, были неизвестны грекам. Наука, связывающая теорию и эксперимент, фактически началась с работ Галилея. Мы проследили за первыми шагами ее развития, приводящими к законам движения. На протяжении двухсот лет научного исследования сила и материя были основными понятиями во всех попытках понять природу. Невозможно представить себе одно без другого, ибо материя обнаруживает свое существование в качестве источника силы благодаря ее действию на другую материю.





Рис. 21.





Рассмотрим простейший пример: две частицы, между которыми действуют силы. Легче всего представить себе силы притяжения и отталкивания. В обоих случаях векторы сил лежат на линии, соединяющей материальные точки (рис. 21). Требование простоты приводит нас к картине частиц, притягивающих или отталкивающих друг друга; любое другое предположение о направлении действующих сил привело бы к гораздо более сложной картине. Можем ли мы сделать столь же простое предположение о длине векторов сил? Если мы пожелаем избежать слишком специальных предположений, мы можем высказать одно соображение: сила, действующая между двумя данными частицами, зависит только от расстояния между ними, подобно силам тяготения. Это предположение кажется довольно простым. Можно было бы представить гораздо более сложные силы, например зависящие не только от расстояния, но и от скоростей обеих частиц. С материей и силой в качестве основных понятий мы едва ли можем связать более простые предположения, чем те, что силы действуют вдоль линии, связывающей частицы, и зависят только от расстояния. Но возможно ли описать все физические явления с помощью сил только этого рода?

Огромные достижения механики во всех ее ветвях, ее поразительный успех в развитии астрономии, приложение ее идей к проблемам, по-видимому, отличным от механических по своему характеру, – все это способствовало развитию уверенности в том, что с помощью простых сил, действующих между неизменными объектами, можно описать все явления природы. На протяжении двух столетий, последовавших за временем Галилея, такая попытка, сознательная или бессознательная, проявляется почти во всех научных трудах.

Особенно ясно ее сформулировал Гельмгольц около середины девятнадцатого столетия:

«Следовательно, конечную задачу физической науки мы видим в том, чтобы свести физические явления к неизменным силам притяжения или отталкивания, величина которых целиком зависит от расстояния. Разрешимость этой задачи есть условие полного понимания природы».

Таким образом, линия развития науки согласно Гельмгольцу определена и следует строго установленному курсу:

«Ее призвание будет выполнено по мере того, как будет выполнено сведе́ние явлений природы к простым силам и будет доказано, что это единственно возможное сведе́ние, которое допускают явления».

Физику двадцатого столетия это воззрение представляется недалеким и наивным. Ему страшно было бы подумать, что величайшие успехи исследования могли бы скоро закончиться, перестав возбуждать умы, если бы непогрешимая картина строения Вселенной была установлена на все времена.

Хотя эти догматы сводили бы описание всех событий к простым силам, они оставляли открытым вопрос о точной зависимости сил от расстояния. Возможно, что для различных явлений эта зависимость различна. Необходимость введения многих различных видов сил для различных событий, конечно, неудовлетворительна с философской точки зрения. Тем не менее, это так называемое механистическое воззрение, наиболее ясно сформулированное Гельмгольцем, сыграло в свое время важную роль. Развитие кинетической теории вещества есть одно из величайших достижений науки, непосредственно вызванное механистическим воззрением.

Прежде чем показать его упадок, временно станем на ту точку зрения, которой придерживались физики прошлого столетия, и посмотрим, какие заключения мы можем вывести из этой картины внешнего мира.

Назад: Увеселительная горка
Дальше: Кинетическая теория вещества