Механика искусственного разума
В течение многих лет искусственный интеллект находился во власти грандиозных планов по воссозданию возможностей человеческого мозга. Мы мечтали о машинах, способных понимать и узнавать нас, помогать в принятии решений. В последнее десятилетие мы смогли достичь поставленных целей, но не так, как это представляли себе первопроходцы отрасли.
Неужели мы нашли способ имитировать человеческое мышление? До этого еще далеко. Наоборот, мы в корне пересмотрели основополагающее видение проблемы. Искусственный интеллект окружает нас повсюду, а его результативность сводится к big data и статистике: системы выполняют сложные вычисления на основе огромного количества данных. Мы смогли создать разум, но не такой, как наш. Мы все больше и больше полагаемся на эту новую форму интеллекта, и нам, возможно, придется пересмотреть и свое собственное мышление.
Рик Рашид нервничал. И это было вполне объяснимо – выходя на сцену в 2012 году со своим обращением к нескольким тысячам ученых и студентов в Тяньцзине (Китай), он рисковал попасть в постыдную ситуацию. Рашид не говорил на китайском, а учитывая неудачное выступление его переводчика в прошлом, в этот раз мог произойти конфуз.
– Мы надеемся, что через несколько лет сможем преодолеть языковой барьер между людьми, – заявил основатель Microsoft Research своим слушателям. Возникла напряженная двухсекундная пауза, а затем из колонок послышался голос переводчика.
– Лично я уверен, что отсутствие языковых барьеров приведет нас к созданию лучшего мира, – продолжал Рашид. Еще одна пауза, и вновь прозвучал перевод на китайский. Рашид улыбнулся. Толпа аплодировала каждой реплике. Некоторые люди даже заплакали.
Столь восторженная реакция была вполне объяснимой: переводчик Рашида отлично показал себя. Каждое предложение было переведено идеально и понятно публике. Но самым впечатляющим было то, что речь Рашида переводил не человек.
Несмотря на все усилия ученых, когда-то выполнение подобной задачи выходило за пределы возможностей даже самого сложного искусственного интеллекта. На Дартмутской конференции в 1956 году и всех последующих мероприятиях были четко обозначены основные цели развития отрасли: машинный перевод, машинное зрение, понимание текста, распознавание речи, управление роботами и машинное обучение. Так появился целый список того, что мы хотели получить от ИИ.
На протяжении трех последующих десятилетий к исследованиям подключались мощнейшие ресурсы, однако ни один из пунктов списка не был достигнут. И лишь в конце 1990-х годов начали реализовываться многие прогнозы, предсказанные за 40 лет до этого. Но до новой волны успеха ИИ пришлось усвоить один очень важный и поучительный урок.
Что изменилось? «Мы не нашли способа обучить компьютеры разумности, – рассказывает Нелло Кристианини из Бристольского университета, описывая историю и эволюцию исследований в области ИИ. – Было похоже, что мы сдались». Но все же это стало прорывом. «Как только мы оставили попытки по воссозданию умственных и психологических качеств, нам начал сопутствовать успех», – говорит он.
При этом исследователи отказались от запрограммированных символических правил и переключились на машинное обучение. Эта техника позволяла компьютерам самообучаться благодаря использованию огромных объемов данных. При получении достаточно больших объемов информации такие системы можно было научить действовать «разумно», например выполнять переводы, распознавать лица или управлять автомобилем. «Если положить друг на друга определенное количество кирпичей, а затем отойти подальше, то можно увидеть перед собой дом», – говорит Крис Бишоп из кембриджского подразделения Microsoft Research в Великобритании.
Несмотря на то, что конечная цель не изменилась, сами методы создания ИИ претерпели ряд важных преобразований. Ранние проектировщики систем инстинктивно придерживались принципов нисходящего программирования. Они старались воссоздать интеллектуальное поведение с помощью формирования математической модели того, как мы обрабатываем речь, текстовую и графическую информацию, и ее дальнейшей реализации в виде компьютерной программы, которая могла бы логически оценивать поставленные перед ней задачи. Этот подход оказался ошибочным. Инженеры полагали, что любой прорыв в искусственном интеллекте позволит нам лучше понять свой собственный, – и они вновь ошиблись.
С годами становилось все более ясно, что такие системы не могут взаимодействовать с беспорядочным реальным миром. Отсутствие значимых результатов после десятилетий работы привело к тому, что к началу 1990-х годов большинство инженеров начали отказываться от своей мечты по созданию универсальной, способной к дедукции и рассуждениям машине. Исследователи стали присматриваться к более скромным проектам, делая акцент только на задачах, которые могли бы решить.
Некоторого успеха удалось добиться системам по подбору рекомендуемых товаров. Несмотря на сложности с пониманием причин, побуждающих человека к покупке, программы без труда составляли список товаров, которые могли бы заинтересовать покупателя, на основании данных о его предыдущих покупках или выборе товаров похожей категории клиентов. Если вам понравились первый и второй фильмы о Гарри Поттере, то с большой долей вероятности понравится и третий. Для принятия такого решения не нужно разбираться в мотивации: анализ большого количества данных поможет вам обнаружить все необходимые связи.
Могут ли такие восходящие цепочки взаимосвязей смоделировать и другие формы разумного поведения? В конце концов, в ИИ существовали и другие проблемные области, где не было теории, но было множество данных для анализа. Столь прагматический подход ознаменовал положительные сдвиги в областях распознавания речи, машинного перевода и простых задач по машинному распознаванию образов (например, распознавание рукописных чисел).
Новые успехи в середине 2000-х годов помогли области ИИ усвоить самый важный урок: данные могут оказаться намного сильнее теоретических моделей. Появилось новое поколение интеллектуальных машин, основанных на небольшом наборе алгоритмов статистического обучения и больших объемах данных.
Исследователи также отказались от предположения о том, что ИИ позволит лучше понять наш собственный интеллект. Попытайтесь узнать из алгоритмов, как именно люди выполняют разные задачи, и вы гарантированно потратите время впустую: интеллект – это набор данных, а не алгоритм.
Область ИИ прошла через смену парадигмы и вступила в новую эру искусственного интеллекта на основе больших данных, или data-driven ИИ. Новым основополагающим методом стало машинное обучение, а язык сместился с логики на статистические данные.
Представьте себе спам-фильтр в электронной почте, который решает выборочно изолировать определенные письма на основе их содержимого. Каждый раз, когда вы перемещаете письмо в «Спам», вы позволяете этому фильтру считать сообщения от данного отправителя или письма, содержащие определенное слово, спамом. Использование этой информации для всех слов в сообщении позволяет спам-фильтру выстроить эмпирические предположения о новых письмах. Глубоких знаний здесь не требуется – вся процедура ограничивается подсчетом частоты использования слов.
Когда данные идеи применяются в колоссальном масштабе, происходит нечто удивительное: машины начинают делать то, что было бы крайне трудно запрограммировать напрямую, например завершать предложения, предсказывать наш следующий клик или рекомендовать какой-то товар. Данный подход продемонстрировал отличные результаты в языковом переводе, распознавании рукописного ввода, распознавании лиц и многом другом. Вопреки предположениям 60-летней давности, нам не обязательно задавать точное описание интеллектуальных качеств для воссоздания их в машине.
Несмотря на явную простоту этих механизмов – их даже можно назвать статистическими подсказками, – при внедрении нескольких таких алгоритмов в сложную программу и снабжении ее миллионами примеров результат может выглядеть как высокоадаптивное поведение, которое мы склонны называть «разумным». При этом обработчик данных не имеет внутреннего представления о том, что он делает и почему.
Полученные таким образом экспериментальные результаты иногда называют «необоснованной эффективностью данных». Для исследователей ИИ это был очень важный и поучительный урок: простые статистические приемы в сочетании с огромным количеством данных позволили добиться такого поведения, которое на протяжении десятилетий казалось недостижимым для лучших теоретиков отрасли.
Благодаря машинному обучению и доступности больших наборов данных ИИ смог наконец-то создать приемлемые вопросно-ответные системы, а также системы видения, речи и перевода. Интеграция в более крупные системы позволит укрепить мощность таких продуктов и сервисов, как Siri (Apple), онлайн-магазин Amazon, беспилотные автомобили от Google и т. д.
Хомский против Google
Должны ли мы понимать искусственный интеллект, который сами же и создаем? Этот вопрос породил неожиданный спор между двумя интеллектуальными гениями из совершенно разных научных областей.
На праздновании 150-летия Массачусетского технологического института Ноаму Хомскому, отцу современной лингвистики, предложили прокомментировать успех статистических методов в создании ИИ. Оказалось, что Хомский не входит в ряды поклонников ИИ.
Работы Хомского в лингвистике повлияли на многих специалистов, изучающих человеческий интеллект. В основе его теорий лежит идея о том, что в нашем мозге существуют четко прописанные и фиксированные правила. Возможно, этим и объясняется его неодобрение современного подхода к ИИ, при котором правила заменяются статистическими корреляциями. Иначе говоря, мы не можем объяснить, почему эти ИИ считаются разумными; они просто таковыми являются.
Сторонники статистических методов в глазах Хомского подобны ученым, которые изучают танцы пчел и моделируют движения этих насекомых, не задаваясь вопросом, почему пчелы делают это именно так. По мнению Хомского, статистические методы дают нам предположение, но не понимание. «Это новое определение успеха. Ничего подобного в истории науки я не встречал», – сказал он.
Питер Норвиг, директор по исследованиям в Google, ответил Хомскому в эссе на своем сайте. Огромное негодование у него вызвал комментарий Хомского о том, что статистический подход имел «ограниченный успех». Как утверждал Норвиг, сейчас статистический подход, наоборот, является доминирующей парадигмой. Которая, кстати, приносит по несколько триллионов долларов в год. В академическом эквиваленте грубого оскорбления он сравнил взгляды Хомского с мистицизмом.
И все же основное разногласие между двумя исследователями было более фундаментальным. Норвиг утверждал, что ученые, подобные Хомскому, которые стремятся создавать более простые и изящные модели для объяснения мира, уже устарели. «Не факт, что природу черного ящика получится описать простой моделью», – говорит он. Норвиг считает, что подход Хомского создает иллюзию понимания, но не имеет ничего общего с реальностью.
То, что началось с разногласия об ИИ, похоже, переросло в спор о природе самого знания.