Книга: Энергия и цивилизация
Назад: Пределы традиционного земледелия
Дальше: Первичные движители

4. Топливо и первичные движители доиндустриальной эпохи

Большинство людей в обществах доиндустриальной эпохи всю жизнь оставались крестьянами, и в работе они использовали методы, в некоторых случаях не менявшиеся тысячелетиями. Но непостоянные излишки продовольствия, которые удавалось получать с помощью небольшого числа простых инструментов и напряжения собственных мускулов и мускулов домашних животных, не могли поддерживать неравномерно развивающееся сложные городские общества. В физическом смысле достижения той эпохи в первую очередь отражены в знаменитых сооружениях (от пирамид древнего Египта до барочных церквей на заре нового времени), в увеличении скорости транспорта и объема транспортных потоков (от медленного движения колесного транспорта по земле до куда более быстрых кораблей, способных обогнуть планету) и в улучшении множества производственных техник, в первую очередь – прогресс в металлургии.
Первичные движители и топливо, обеспечивавшие этот процесс, оставались неизменными в течение тысячелетий, но человек постоянно искал и находил пути более продуктивного их использования. В конечном итоге некоторые способы превращения энергии стали настолько мощными и эффективными, что сделались основой первичных этапов современной индустриализации. Два главных пути вели к более высокой продуктивности и лучшей эффективности. Первый состоял в умножении малых сил и в первую очередь заключался в лучшей организации, в особенности с приложением одушевленной энергии. Второй сводился к техническим инновациям, которые предполагали новые формы конверсии энергии или увеличивали эффективность уже существующих процессов. На практике эти два подхода часто смешивались, и, например, монументальные структуры, которые возводила практически каждая культура древности, требовали труда тысяч людей. При этом строительные инструменты и механизмы прошли эволюцию от простых рычагов и насыпей до блоков, кранов и лебедок.
Различия между первыми упомянутыми в документах преобразователями механической энергии и их потомками, которые применялись в начале индустриальной эпохи, были часто весьма значительными. В ранних образцах хвостовых водяных молотов, простейших механизмов, работавших на энергии падающей воды, не использовалось даже постоянное вращательное движение; они представляли собой периодически приводимые в действие простые рычаги (рис. 4.1). Позже вертикальные водяные колеса превратили хвостовые молоты в надежных помощников в кузницах в Азии и Европе, и некоторые их образцы XIX века были впечатляющими, сложными, искусно изготовленными устройствами (рис. 4.1).

 

Рисунок 4.1. Текущая вода приводила в движение все три изображенных здесь молота, но они сильно отличались по сложности и эффективности. Примитивный китайский хвостовой молот начала XIV века был простым рычагом, который приводила в движение падающая вода (слева). Европейские кузнечные молоты конца XVI века двигались благодаря водяным колесам, чья вращательная мощность передавалась через присоединенные к ним стержни (справа). Хвостовые молоты в английской литейной промышленности XIX века были высокоэффективными, настраиваемыми машинами (снизу).Воспроизведено по рисункам из Needham (1965) и Reynolds (1970)

 

Схожим образом можно сравнить любые механизмы, опирающиеся на энергию воды или ветра. Мы можем оценить разницу между грубо сколоченным горизонтальным деревянным мельничным колесом Средневековья, чья мощность выражалась лишь в нескольких сотнях ватт (менее половины лошадиной силы), куда лучше сконструированными вертикальными машинами XVII века с мощностью в десять раз выше, и «Леди Изабеллой», крупнейшим верхнебойным колесом в Англии, изготовленным из металла и способным поставлять более 400 кВт, эквивалент мощности около 600 сильных лошадей! Или между неэффективной и тяжелой столбовой мельницей средневековой Европы, которую приходилось вручную разворачивать под ветер и терять более 80 % потенциальной энергии из-за несовершенных лопастей и механизмов, и автоматически регулируемой мельницей того же типа из Америки XIX века, с пружинными лопастями и гладкими передачами. Именно такие устройства – они часто применялись, чтобы качать воду, – помогли освоить Великие Равнины.
Контрасты не менее существенны в области использования одушевленной энергии и потребления древесного топлива. Мощная тягловая лошадь XIX века, с железными подковами и удобным хомутом, впряженная в легкий фургон с плоским дном, на дороге с хорошим покрытием могла с легкостью везти в двадцать раз больше, чем ее более слабый, неподкованный, впряженный в ярмо предок, волочивший тяжелую деревянную телегу по грязному проселку. И домна XVIII века потребляла меньше трети древесного угля на единицу полученного металла, чем требовалось ее предку из Средневековья (Smil 2016). Разве что возможности человека мало изменились с античности до начала индустриализации. Даже в тех обществах, где средний вес человеческого тела увеличился, этот выигрыш оказал крайне малое влияние на максимальное мускульное напряжение, а именно оно всегда требовалось там, где комбинировали мощность многих индивидуумов.
Чтобы передвинуть египетский обелиск в 327 тонн с того места, где его оставили римляне (Калигула поместил его на центральной линии своего цирка, к югу от нынешнего собора Святого Петра) на 269 метров к востоку, Доменико Фонтана пустил в ход огромные (до 15 метров длиной) деревянные рычаги и блоки. Чтобы поднять обелиск с древнего основания и переместить на новый фундамент, 10 сентября 1586 года он использовал 900 человек и 75 лошадей, которые тянули веревки (Fontana 1590; Hemphill 1990). Весь проект занял тринадцать месяцев, а на поднятие груза ушел один день. После более поздних знаменитых перемещений обелисков один из них стоит на площади Согласия в Париже (перемещен в 1833 году), другой – на берегу Темзы (1878 год), и третий – в Центральном парке Нью-Йорка (с 1881 года; Petroski 2011).
Когда самая тяжелая колонна в мире – 604 тонн красного финского гранита, добытого, чтобы отпраздновать победу России над вторгшимся в страну Наполеоном, – была воздвигнута в Санкт-Петербурге 30 августа 1832 года, французский архитектор Огюст Монферран использовал 2400 человек (1700 из них тянули веревки) и закончил работу за два часа (примечание 4.1). Два важных устройства, обеспечивших необходимые механические преимущества для этих двух операций и позволивших людям успешно завершить многие сложные задачи по перемещению и подъему, – это наклонные насыпи и рычаги, которые появились даже не во времена древних империй, а многими-многими веками ранее. Как иначе строители Стоунхенджа управлялись с камнями весом в 40 тонн?
Примечание 4.1. Подъем Александрийского столпа
Большой кусок красного гранита, который стал Александрийским столпом, был добыт в Виролахти в Финляндии, с помощью катков доставлен на специально построенную баржу, способную перевезти 1100 тонн. Колонна едва не упала в воду при погрузке, но ее все же доставили за 190 км к набережной Невы в Санкт-Петербурге, переместили на подложку из дерева, подняли на 10,5 метра по насыпи и установили на платформе под правильным углом к пьедесталу в центре Дворцовой площади. Леса из толстых досок, поднимавшиеся над памятником, были 47 метров в высоту, веревочные блоки свисали с пяти двойных дубовых балок. Монферран создал модель лесов в масштабе 1 к 12, чтобы плотникам было чем руководствоваться в процессе их постройки (Luknatskii 1936). Подъем сопровождали 60 вертикальных воротов, установленных на лесах в два ряда. Роль храповиков исполняли железные барабаны, закрепленные на деревянной раме, (верхние блоки свисали с деревянных балок); 522 веревки, каждая испытана на подъем 75 килограммов (в три раза больше актуальной нагрузки) были прикреплены к колонне. Общая масса монолита со всеми устройствами составила 757 тонн.
Столп подняли 30 августа 1832 года, эту задачу выполнили 1700 солдат под командованием 75 офицеров, за которыми наблюдали прорабы, координировавшие скорость движения в зависимости от натяжения веревок. Ассистенты Монферрана стояли по углам лесов в компании 100 моряков, которые следили за блоками и веревками, не давали им запутаться. 60 рабочих находились прямо на башне, а плотники, каменщики и другие мастеровые оставались в резерве. Общее количество задействованных людей превысило 2400, и подъем был завершен всего за 105 минут. Достоин упоминания тот факт, что столп встал прямо без какого-либо крепления к пьедесталу: 25,45 м высотой, слегка конический (3,6 м диаметр снизу и 3,13 м на вершине), он держится на месте исключительно благодаря массе.
В этой главе я сначала оценю виды, мощности и ограничения всех традиционных первичных движителей – мускулов человека и животных, ветра и воды – и наряду с ними потребление древесного топлива, большей частью дров и древесного угля, хотя в лишенных лесов регионах в ход шли и солома, и высушенный навоз. После этого я в деталях рассмотрю использование первичных движителей и видов топлива в важнейших сегментах традиционной экономики: приготовление пищи, получение тепла и света, наземный и водный транспорт, строительство, цветная и черная металлургия.
Назад: Пределы традиционного земледелия
Дальше: Первичные движители