Книга: Энергия и цивилизация
Назад: Господство зерновых
Дальше: Постоянство и инновации

Маршруты интенсификации

Попытка добиться более высоких урожаев не имела шансов на успех без трех важных шагов вперед.
Первый сводился к частичной замене человеческого труда на труд животных. При выращивании риса только самые изнурительные работы вроде обработки поля мотыгой заменялись глубокой вспашкой с помощью буйволов. В растениеводстве на сухих землях труд животных заменил человеческий и ускорил выполнение значительно большего количества полевых и не только полевых работ, освободив тем самым людей для иных, более продуктивных видов деятельности или для отдыха. Подобная смена первичных движителей сделала куда больше, чем ускорила и облегчила работу, она улучшила ее качество, во вспашке ли, в посеве или обмолоте зерна. Второй шаг – ирригация и использование удобрений, и он если не совсем убрал, то ослабил два серьезных ограничения продуктивности сельского хозяйства – нехватку воды и питательных веществ. Третий – выращивание большего разнообразия культур, с помощью севооборота или параллельно, – сделал традиционное сельское хозяйство одновременно более надежным и более продуктивным.
Следующие высказывания китайских крестьян говорят о том, насколько важны эти два фактора: «Будет ли урожай – зависит от воды; насколько большим он будет – от удобрений» и «Сажай просо вслед за просом, и в конечном итоге ты будешь плакать». Использование тягловых животных было фундаментальным энергетическим усовершенствованием, последствия которого вышли далеко за пределы обработки земли и уборки урожая. Тягловые животные стали незаменимым источником удобрений, питательных веществ в навозе и одновременно первичным движителем, позволяющим доставить эти вещества к растениям. Во многих местах они также помогли улучшить ирригацию. Более мощные первичные движители, лучшее обеспечение водой и питательными веществами также позволили эффективнее использовать севооборот и выращивание нескольких культур одновременно. И в свою очередь все это дало возможность содержать большее количество более сильных животных, что запустило весь цикл из трех шагов заново, и так раз за разом.

Тягловые животные

Одомашнивание дало нам много рабочих животных с разными характеристиками, с весом, отличающимся на порядок, от 100 кг для маленьких ослов до более 1000 кг для крупнейших лошадей. Индийский бык весил менее 400 кг, итальянские животные кианской породы и романьола – в два раза больше (Bartosiewicz et al. 1997; Lenstra and Bradley 1999). Большинство лошадей в Азии и Европе были не более чем пони, меньше четырнадцати ладоней высотой и весом меньше азиатского вола. Ладонь, традиционная английская единица измерения, равна 4 дюймам (10,16 см), рост животного измерялся от земли до холки, места на позвоночнике между лопатками. Римские лошади не превышали 11–13 ладоней, самые тяжелые европейские животные – бельгийские брабантской породы, французские булонской и першероны, шотландские клейдесдальской, английские саффолской и ширской, немецкие рейнской и русские тяжеловозы – достигали и даже превышали величину в 17 ладоней и весили около тонны, а иногда и больше (Silver 1976; Oklahoma State University 2015). Азиатский буйвол весил от 250 до 700 кг (Cockrill 1974; Borghese 2005).
В традиционном сельском хозяйстве животных использовали для выполнения различных работ, но, безо всяких сомнений, во вспашку они вносили наибольший вклад (Leser 1931). В общем тягловая сила работающих животных, грубо говоря, пропорциональна их весу; другие переменные, влияющие на их продуктивность, включают пол, возраст, здоровье, опыт, эффективность упряжи, а также особенности почвы и территории. Поскольку все эти переменные могут значительно варьироваться, предпочтительно определять полезную мощность широко распространенных видов в терминах типичных характеристик (Hopfen 1969; Cockrill 1974;
Goe and Dowell 1980). Типичная тяга составляет 15 % от веса животного, но для лошадей она достигает и 35 % при кратковременных нагрузках (около 2 кВт) и даже больше, если речь идет о нескольких секундах предельного напряжения (Collins and Caine 1926). Комбинация большой массы и сравнительно высокой скорости определяет лошадей как лучших тягловых животных, но большинство лошадей не в состоянии работать с мощностью в лошадиную силу (745 Вт), обычно они выдают от 500 до 850 Вт (примечание 3.4, рис. 3.3).
Примечание 3.4. Типичные массы, тяга, рабочие скорости и мощность одомашненных животных
Примечание: значения мощности округлены до ближайших 50 Вт.
Источники: базируется на Hopfen (1969), Rouse (1970), Cockrill (1974) и Goe and Dowell (1980).
Реальные потребности тяги варьируются в зависимости от задачи (пределами тяжелой и легкой работы можно поставить глубокую вспашку и боронение) и от типа почвы (больше в случае тяжелой глины, меньше в случае песка). Неглубокая вспашка (с одним лемехом) и выкашивание травы требуют постоянной тяги в 80-120 кг, глубокая вспашка – 120–170 кг, а тяга в 200 кг требовалась для механической жатки и сноповязалки. Даже средняя пара лошадей могла выполнить все эти задачи, но пара волов не годилась для глубокой вспашки или жатвы с помощью жатки. Механические императивы указывают на то, что маленькие животные лучше: при прочих равных их линия движения меньше расходится с направлением тяги, и результатом становится более высокая эффективность, а при вспашке более низкая линия тяги уменьшает выпирание плуга вверх, для пахаря куда легче вести такой плуг. Более легкие животные часто более проворны, и они могут компенсировать малый вес упорством и выносливостью.
Тягловой потенциал можно перевести в эффективную работоспособность только с помощью хорошей упряжи (Lefebvre des Noëttes 1924; Haudricourt and Delamarre 1955; Needham 1965; Spruytte 1983; Weller 1999; Gans 2004). Тяга должна быть передана на рабочую точку – на лемех плуга или на край жатки – устройством, которое обеспечивает эффективную передачу и одновременно контроль человека за движением животного. Подобная вещь может выглядеть простой, но потребовалось много времени, чтобы она появилась. Крупный рогатый скот, первую тягловую силу, взнуздывали с помощью ярма, прямого или изогнутого куска дерева, который крепили к рогам или шее животного.

 

Рисунок 3.3. Сравнение тягловой мощности животных, показывающее чистое превосходство лошадей. Основано на данных из Hopfen (1969), Rouse (1970) и Cockrill (1974)

 

Старейшая месопотамская упряжь (лучше всего подходила для сильных животных с короткой шеей, позже широко использовалась в Испании и Латинской Америке) представляла собой двойное ярмо для головы, закреплявшееся разными способами (рис. 3.4). Это примитивное устройство состояло всего лишь из длинной балки, привязи на которой могли придушить животное во время более тяжелого труда, а угол тяги был слишком велик. Более того, чтобы избежать удушения вола или коровы, нужно было подобрать животных одинакового роста, и приходилось запрягать пару, даже когда одно животное могло справиться с легкой работой. Более удобное одиночное головное ярмо использовалось в нескольких регионах
Европы (восточный балтийский регион, юго-западная Германия). Одиночное нашейное ярмо, присоединенное к двум жердям или веревкам и вальку, было распространено в Восточной Азии и в Центральной Европе (рис. 3.4). Африка, Средний Восток и Южная Азия предпочитали двойное нашейное ярмо.

 

Рисунок 3.4. Головное ярмо было первой и очень неэффективной упряжью для работающих волов. Шейное ярмо стало доминирующим способом запрягать животных во всем Старом Свете. Взято из Hopfen (1963) и иллюстрации поздней династии Мин (1637)

 

Лошади – самые мощные тягловые животные. В отличие от крупного рогатого скота, у которого масса тела почти равномерно распределена между передней половиной тела и задней, у лошади перед значительно тяжелее зада (соотношение около 3 к 2), и поэтому она может куда лучше использовать инерцию (Smythe 1967).
За исключением тяжелых, сырых почв лошади могут работать в поле с постоянной скоростью около 1 м/с, то есть на 30–50 % быстрее, чем волы. Максимальная двухчасовая тяга для пары тяжелых лошадей может быть в два раза больше, чем у пары лучших быков. Самые большие лошади на коротких отрезках могут развивать мощность более 2 кВт, то есть около трех стандартных лошадиных сил. Однако горбатый рогатый скот предпочтительнее в тропиках благодаря более эффективной тепловой регуляции, и он менее восприимчив к заражению клещами. Водяной буйвол процветает в сырых тропиках и перерабатывает грубые корма более эффективно, чем европейские породы, а еще может пастись на водных растениях, целиком погруженных в водоем.
Старейшие существующие изображения работающих лошадей не показывают их на полях, они демонстрируют нам, как животные тянут легкие церемониальные или боевые колесницы. На протяжении большей части античности тягловых лошадей запрягали с помощью наспинного ярма (Weller 1999). Подобное ярмо из дерева или металла помещалось на спину животного сразу за холкой и удерживалось на месте грудной привязью, которая крепилась на обеих сторонах ярма с помощью подпруги (ремень, бегущий через спину и под брюхом). Неточная реконструкция римской упряжи (Lefebvre des NoSttes 1924) привела к ошибочному, но многие десятилетия широко распространенному заключению, что это было очень неэффективное устройство, поскольку оно душило животное, так как нагрудный ремень имел тенденцию задираться (примечание 3.5).
Примечание 3.5. Сравнение разных видов упряжи и тягловой мощности
Десятилетиями во многих текстах появлялось заявление, что античная упряжь не годилась для выполнения тяжелой полевой работы из-за слишком высокой точки тяги и удушающего эффекта, создаваемого горловым ремнем. Это заключение базировалось на экспериментах с реконструированной упряжью, проведенных в 1910 году французским офицером Ришаром Лефевромде Нётте (1856–1936), которые он описал в своей книге «La Force Motrice a travers les Ages». Полученные им результаты были приняты не только учеными классической эпохи, но и тремя ведущими учеными двадцатого века, занимавшимися техническими инновациями (Joseph Needham, 1965; Lynn White 1978; Jean Gimpel 1997).
Но эти эксперименты базировались на ошибочной реконструкции: новые опыты, проведенные Жаном Спратом в 70-х годах с правильно воссозданным спинным ярмом (помещалось прямо за лопатками и пристегивалось грудными ремнями) не показали никакого удушающего эффекта. Такая упряжь хорошо работала, когда две лошади тащили груз почти в тонну (Spruytte 1977). Так была опровергнута гипотеза, что «классические культуры «блокировались» неудачной системой упряжи для животных» (Raepsaet 2008, 581). Но в своих тестах Спрат использовал легкую повозку девятнадцатого века (куда легче, чем римская телега) и поэтому, даже если игнорировать разницу в размерах лошадей, его эксперименты не полностью воспроизводят условия, существовавшие два тысячелетия назад. В любом случае, поскольку Кодекс Феодосия (439 год) накладывал лимит веса (500 кг) на движимые лошадьми телеги, то «выглядит определенным, что римляне осознавали мучение, причиняемое лошадям, когда они тащили тяжелые грузы» (Gans 2004,179).
Подгрудная упряжь, появившаяся в Китае не позже чем при ранней династии Хань, определяла точку тяги слишком далеко от самых мощных грудных мышц животного (рис. 3.5). Тем не менее такая форма распространилась по Евразии, достигла Италии уже в V веке, вероятнее всего, с пришедшими остготами, и Северной Европы на 300 лет позже. Но понадобилось другое китайское изобретение, чтобы превратить лошадей в превосходных рабочих животных. Хомутовая упряжь была впервые использована в Китае в I веке до н. э. в виде мягкой подкладки под твердое ярмо, постепенно она превратилась в единый компонент. К V веку н. э. ее простой вариант появился на фресках в Дуньхуане, а филологические свидетельства дают нам понять, что к IX веку хомут добрался до Европы, где распространился повсюду примерно за три столетия и оставался в основном неизменным еще семьсот лет, до момента, когда животных начали заменять машины. Однако хомут кое-где применяется на работающих лошадях в Китае, но их становится все меньше и меньше.

 

Рисунок 3.5. Подгрудная упряжь, воспроизведена по иллюстрации из Encyclopedic (Diderot and D'Alembert 1769–1772). Она использовалась для легких работ вплоть до XX века

 

Стандартная хомутовая упряжь состоит из единой овальной деревянной (позже также металлической) рамы (то есть собственно хомута), сделанной так, чтобы она удобно ложилась на плечи лошади, часто с подушечкой-подкладкой. Тягловые веревки соединяются с хомутом прямо над лопатками лошади (рис. 3.6). Движения животного контролируются с помощью узды, металлический мундштук вставляется лошади в рот и крепится к поводьям и оголовью. Хомут обеспечивал желаемый, то есть малый угол тяги и позволял прилагать значительное усилие с помощью мощных грудных и плечевых мускулов животного. Он также позволял эффективно связывать лошадей в один или два ряда для исключительно тяжелых работ.
Эффективная упряжь была не единственным условием превосходной работоспособности лошадей, и поэтому ее введение не стало причиной сельскохозяйственной революции (Gans 2004). Занятых на тяжелых работах лошадей кормили зерном, которое обходилось недешево, и они нуждались в сравнительно дорогой упряжи и подковах, в то время как более слабых и медленных волов можно было содержать только на соломе и мякине и запрягать в ярмо. Подковы представляли собой узкие U-образные пластинки металла, прилегающие к краю копыта и прибиваемые гвоздями, которые входят в лишенную чувствительности роговую стенку копыта (рис. 3.6). Их использование предотвращает быстрое стирание мягкой ткани копыта, а также улучшает сцепление с почвой и увеличивает прочность копыта. Все это было особенно важно в холодном и сыром климате западной и северной Европы. Греки не знали подков, они обували на копыта своих лошадей кожаные сандалии, набитые соломой. Римляне делали подковы, но их soleae ferreae прикреплялись зажимами и шнуровкой, а подковы с гвоздями широко распространились только к IX веку.
Вальки, прикрепленные к постромкам и связанные друг с другом, а затем пристегнутые к полевым инструментам, уравновешивали натяжение при неравномерной тяге. Они облегчали задачу управления животными и позволяли запрячь четное или нечетное их количество. Лошади также отличались лучшей выносливостью (работая 8-10 часов в день по сравнению с 4–6 для крупного рогатого скота) и жили дольше, и хотя те и другие начинали работать в возрасте 3–4 лет, волы проживали часто только 8-10 лет, а лошади обычно 15–20. И в завершение, анатомия лошадиной ноги дает животному уникальную возможность на самом деле полностью исключать энергетические затраты в стоячем положении. У лошади есть очень мощная поддерживающая связка, идущая позади берцовой кости, и пара сухожилий (поверхностный и глубокий пальцевые сгибатели), которые могут «запирать» ногу без участия мускулов. Это позволяет животному отдыхать, даже дремать стоя, почти не затрачивая энергию, и тратить очень мало энергии на выпасе (Smythe 1967). Все другие млекопитающие расходуют на 10 % больше энергии в стоячем положении по сравнению с лежачим.
Даже более мелкие и плохо запряженные животные обеспечивают серьезную поддержку (Esmay and Hall 1968; Rogin 1931; Slicher van Bath 1963). Крестьянин, работающий мотыгой, потратит как минимум 100 часов, а в случае с тяжелой почвой и 200, чтобы подготовить гектар земли для посадки злаков. Даже с простым деревянным плугом, запряженным в пару волов, он может выполнить эту задачу всего за 30 часов. Культивация, завязанная исключительно на силу человека, никогда не может достичь масштабов, которые обеспечивает вспашка с помощью животных.
Помимо того, что он ускоряет вспахивание земли и сбор урожая, труд животных также помогает поднимать большие объемы оросительной воды из более глубоких колодцев. Животные могут приводить в движение такие обрабатывающие пищу машины, как мельницы, дробилки и прессы, со скоростями, недоступными для человеческих мышц. Освобождение от долгих часов утомительного труда ничуть не менее важно, чем более высокая эффективность, но большее количество труда животных требует больших объемов возделываемой земли для выращивания фуража. Это без труда решалось в Северной Америке и в некоторых частях Европы, где на корм для лошадей иногда отводилось до одной трети обрабатываемых земель.

 

Рисунок 3.6. Компоненты типичного хомута XIX века (основано на Talleen 1977 и Villiers 1976) и разнообразие подков середины XVIII века (Dideror and D'Alembert 1769–1772). Формы (слева направо) показывают типичные английские, испанские, германские, турецкие и французские подковы

 

Ничего удивительного, что в Китае и других плотно населенных странах Азии бык оставался предпочитаемым тягловым животным. Поскольку быки жвачные, их можно содержать только на грубых кормах вроде соломы и на обычной траве. И во время работы рогатый скот не требуется кормить зерном: концентрированная пища может поступать к ним в виде остатков от обработки растений, например, отруби и жмых от масличных культур. По моей оценке, в традиционном сельском хозяйстве Китая выращивание корма для тягловых животных требовало только 5 % от ежегодно засеваемых земель. В Индии фуражные растения тоже традиционно занимали 5 % обрабатываемых территорий, но большая часть фуража уходила молочным животным, и еще часть – на кормление священных коров (Harris 1966; Heston 1971). Корм для работающих буйволов, вероятно, занимал менее чем 3 % от всех полей. В наиболее плотно населенных регионах индийского субконтинента крупный рогатый скот выживал на комбинации подножного корма и фуража из побочных продуктов земледелия, от рисовой соломы и горчичного жмыха до нарубленных банановых листьев (OdencPhal 1972).
Индийские и китайские тягловые животные были очень удачной энергетической сделкой. Многие из них совершенно не конкурировали за урожай с людьми, а другим требовался для прокорма участок земли, пригодный максимум на то, чтобы вырастить пищу на одного человека в год. Но полезный ежегодный труд животных равнялся труду от трех до пяти крестьян, работающих 300 дней в году. Средняя лошадь XIX века в Европе или Америке могла не обеспечить столь высокий сравнительный возврат, но она тоже предоставляла энергетическое преимущество (примечание 3.6). Ее годовой полезный труд был эквивалентен труду шести крестьян, и земля, использованная для прокорма животных (работающих и неработающих), могла произвести пищи примерно для шести человек. Даже если тягловую лошадь XIX века рассматривать исключительно как заменитель утомительного человеческого труда, то оно того стоило, но сильное, хорошо накормленное животное могло выполнять задачи за пределами человеческих способностей и выносливости.
Примечание 3.6. Энергетические затраты, эффективность и производительность тягловой лошади
Взрослая лошадь весом в 500 кг требует около 70 МДж перевариваемой энергии в день, чтобы поддерживать собственный вес (Subcommittee on Horse Nutrition 1978). Если ее корм содержит много зерна, то это может подразумевать только 80 МДж валового потребления энергии; если в корме много хуже перевариваемого сена, тогда эта величина может подниматься до 100 МДж. В зависимости от трудовых задач потребности в пище во время периодов работы увеличиваются в 1,5–1,9 раза. Удалось выяснить (Brody 1945), что першерон в 500 кг, работающий с мощностью 500 Вт, потреблял около 10 МДж/ч.
Если взять 6 часов работы и 18 часов отдыха (при 3,75 МДж/ч), то всего получится около 125 МДж/сутки.
Ничего удивительного, что традиционные рекомендации по кормлению совпадают: в начале XX века американским фермерам советовали давать рабочим лошадям 4,5 кг овса и 4,5 кг сена в день (Bailey 1908), что соответствует 120 МДж/сутки. Со средней мощностью в 500 Вт лошадь будет выдавать 11 МДж полезной работы за шесть часов, в то время как средний мужчина сможет обеспечить менее 2 МДж, к тому же он не в силах работать с постоянным значением выше 80 Вт и выдерживает только краткие периоды выше 150 Вт, а лошадь может постоянно работать при 500 Вт и выдавать кратковременную тягу до 1 КВт – усилие, которое потребует напряжения дюжины мужчин.
Лошади могли таскать бревна и выкорчевывать пни, когда люди превращали леса в поля, вспахивать богатую почву прерий плугами, тащить тяжелые повозки. Конечно, существовали дополнительные затраты энергии при использовании труда животных помимо содержания размножающегося стада и обеспечения достаточного корма во время полевых работ. Эти дополнительные затраты прежде всего возникали при изготовлении упряжи и подков и при строительстве конюшен. Но были и дополнительные преимущества: лошади давали не только навоз, но и молоко, мясо и кожу. Навоз играл важную роль во всех традиционных сельскохозяйственных культурах как источник редких питательных веществ и органического материала. В по большей части вегетарианских обществах мясо (включая конину в континентальной Европе) и молоко были ценными источниками отличного белка. Кожа использовалась при изготовлении огромного количества нужных для земледелия инструментов, одежды и обуви. И конечно, животные воспроизводили сами себя.

Орошение

Потребность растений в воде зависит от многих генетических, агрономических и экологических переменных, но общая сезонная потребность в среднем в 1000 раз превосходит массу собранного зерна. До 1500 тонн воды нужно, чтобы вырастить 1 тонну пшеницы, и по меньшей мере 900 тонн необходимо для каждой тонны риса. Около 600 тонн хватит для тонны кукурузы как С4-растения, злака, максимально эффективно использующего воду (Doorenbos et al. 1979; Bos 2009). Это значит, что для жатвы пшеницы между 1 и 2 т/га общая потребность на протяжении четырех месяцев сезона роста будет 15–30 см. По контрасту, годовые осадки в пустынных и полупустынных регионах Среднего Востока варьируются почти от нуля до менее 25 см.
В таких регионах требуется орошение, когда поля засеваются за пределами досягаемости сезонных паводков, насыщающих влагой почву долин и позволяющих вызреть одному урожаю; или когда из-за роста населения приходится выращивать вторую культуру во время сезона с низким уровнем воды. Ирригация также необходима для того, чтобы справляться с сезонной нехваткой воды. Подобное особенно значимо на большей части северных территорий муссонной Азии, в Пенджабе или на Северо-Китайской равнине. И конечно, выращивание риса предполагает собственный режим затопления и осушения полей.
Орошение с помощью гравитации – каналы, пруды, резервуары, дамбы – не требует подъема воды и поэтому характеризуется самыми низкими энергетическими затратами. Но в речных долинах с минимальным градиентом потока и на широких равнинах всегда было необходимо поднимать большие объемы поверхностной или подземной воды. Обычно приходилось одолевать низкие насыпи, но часто требовалось справиться с крутыми берегами или стенками глубокого колодца. Неизбежная неэффективность, отягченная грубым сочетанием движущихся частей и дефицитом смазочных материалов, усложняла задачу. Ирригация, движимая мускулами человека, была тяжелой ношей даже там, где утомительная работа считалась нормой. Много творческой энергии ушло на то, чтобы придумать механические устройства, использующие труд животных или силу водяного потока, чтобы облегчить эту задачу, и просто для того, чтобы хоть как-то поднять воду на нужную высоту.
Впечатляющее количество разных механических приспособлений было изобретено для поднятия оросительной воды (Ewbank 1870; Molenaar 1956; Oleson 1984, 2008; Mays 2010). Простейшие – черпаки, ведра или корзины из плотной ткани или плетеные – применялись для подъема воды менее чем на метр. Одно ведро, подвешенное на веревке к треноге, было немного более эффективным. Оба эти предмета использовались в Восточной Азии и на Ближнем Востоке, но старейшим методом подъема воды, который применяли повсеместно, был «журавль», называемый у арабов shaduf. Его очертания можно видеть на вавилонских цилиндрических печатях от 2000 года до н. э., его широко использовали в древнем Египте, он достиг Китая около 500 года до н. э. и в конечном итоге распространился по всему Старому Свету. «Журавль» в основе своей – длинный шест, опирающийся на перекладину как рычаг, его было легко изготовить и ремонтировать (рис. 3.7).
Ведро на веревке свисало с более длинного плеча «журавля», а к более короткому крепился либо камень, либо кусок сухой земли. Эффективная высота подъема составляла обычно 1–3 метра, но последовательное развертывание нескольких таких устройств (от 2 до 4 уровней) было обычным делом на Ближнем Востоке. Один человек мог поднять около 3 м3/ч на высоту 2–2,5 метра. Вытягивание веревки очень утомительно, но поворачивание архимедова винта (римская cochlea, арабский tanbur), чтобы вращалась деревянная спираль внутри цилиндра, было еще более трудным и обеспечивало только небольшой подъем (25–30 см). Колеса с лопатками обычно использовались в Азии. Китайские водяные лестницы («драконий хребет», long gu che) действовали как ленточные водоподъемники на деревянных квадратных платформах с маленькими дощечками, цеплявшими зубчатые колеса, и формировали бесконечную цепь, поднимая воду по деревянному желобу (рис. 3.8). В ведущее колесо был вставлен горизонтальный шест, приводимый в движение двумя или более работниками. Некоторые лестницы приводились в движение ручными рычагами или с помощью шагавших по кругу животных.

 

Рисунок 3.7. Гравюра XIX века, изображающая египетского крестьянина, который использует shaduf

 

Все приведенные ниже устройства всегда получали энергию либо от животных, либо от текущей воды. Подъемник из веревки и ведра, широко распространенный в Индии (monte или charsa), работал с помощью одной или двух пар волов, шагавших вниз по уклону, одновременно поднимая кожаный мех, прикрепленный к длинной веревке. Бесконечная цепь из глиняных горшков на двух петлях веревки, движущаяся сверху вниз через деревянный барабан, чтобы зачерпнуть воду снизу и вылить в желоб сверху, использовалась уже древними греками. Это устройство было известно под арабским названием saqiya и широко распространено в Средиземноморье. Когда энергию ему давало единственное животное с завязанными глазами, ходящее по кругу, оно обеспечивало подъем воды из колодцев глубиной менее 10 метров со скоростью ниже 8 м3/ч. Улучшенная египетская версия, zawafa, доставляла воду с большей производительностью (до 12 м3/ч из колодца в 6 метров глубиной).

 

Рисунок 3.8. Древняя китайская машина «драконий хребет» действовала благодаря крестьянам, которые держались за шест и переступали по ступицам, прикрепленным к оси. Взято из иллюстрации поздней династии Мин

 

Noria, другое устройство, широко использовавшееся как в мусульманских странах, так и в Китае (hung che), включало глиняные сосуды, бамбуковые трубки или металлические ведра, прикрепленные к ободу единственного колеса. Через шестерни колесо приводилось в движение ходящими по кругу животными, а колесо с лопаточками – водным потоком. Необходимость поднимать ведра еще на один радиус колеса выше уровня приемного желоба оборачивалась значительным снижением эффективности. Этот недостаток был устранен в египетской tabliya. Улучшенное устройство, приводимое в движение волами, представляло собой двустороннее цельнометаллическое колесо, которое зачерпывало воду на внешнем краю и выливало ее в центре в уходящий вбок желоб. Сравнение типичных потребностей в мощности, параметров подъема и часовой производительности традиционных водоподъемников четко показывает пределы производительности человека (примечание 3.7, рис. 3.9).
Примечание 3.7. Потребности в мощности, параметры подъема и часовая производительность традиционных водоподъемников
Примечание: энергетические затраты рассчитаны, исходя из средней потребляемой мощности в 60 Вт для человека и 350 Вт для тягловых животных.
Источники: скомпилировано и рассчитано по данным из Molenaar (1956), Forbes (1965), Needham and co-workers (1965) и Mays (2010).
Энергетические затраты в случае ирригации с помощью человека были запредельно высокими. Работник мог сжать гектар пшеницы косой за восемь часов, но ему бы потребовалось три месяца (8 ч/сут.), чтобы поднять половину воды, нужной для этого гектара, всего на один метр из прилегающего канала или ручья. Из-за больших вариаций реакции разных злаков на полив нельзя делать обобщения по поводу энергоотдачи традиционного орошения. Большая разница существует не только между видами растений, она зависит от времени, когда доступна вода (арахис, например, мало чувствителен к временной нехватке воды, а кукуруза сильно уязвима). Реалистичные примеры показывают, что энергоотдача может быть десятикратной или даже выше (примечание 3.8).

 

Рисунок 3.9. Сравнение подъема, объемов и требований к мощности доиндустриальных водоподъемных устройств и машин. Основано на данных из Molenaar (1956), Forbes (1965) и Needham and co-workers (1965)

 

Примечание 3.8. Энергоотдача при орошении пшеницы
Единственный конкретный расчет демонстрирует значительную энергоотдачу традиционной ирригации. Полевые исследования показали, что урожай озимой пшеницы падает вдвое, если нехватка годовых осадков в 20 % концентрируется в критическом периоде цветения (Doorenbos et al. 1979). Хорошая жатва времен поздней династии Цин в 1,5 т/га могла таким образом снизиться на 150 кг на типичном маленьком поле в 0,2 га. Предположив, что нехватка 10 см дождя требует при орошении 200 т воды, и учитывая, что орошение обычного поля с помощью гребней и борозд имело эффективность в 50 % (из-за испарения и утечки), реальный объем воды из канала должен быть в два раза больше. Подъем 400 тонн воды менее чем на один метр с помощью водяной лестницы, движимой двумя крестьянами, потребовал бы около 80 часов и около 65 МДж дополнительной энергии пищи, в то время как увеличенный урожай пшеницы мог содержать (после вычитания примерно 10 % семян для посева и потерь при хранении) около 2 ГДж пригодной к употреблению энергии. Поэтому водяная лестница могла обеспечить в 30 раз больше энергии пищи, чем ушло на работу с ней.
По контрасту, для некоторых проектов инков возврат энергии мог быть низким. При орошении с помощью ирригации не нужно поднимать воду, но выкапывание длинных и широких каналов (главные русла до 10–20 метров шириной) простыми инструментами в каменистой породе требовало большого объема труда. Главный оросительный канал между Парку и Пикуй тянулся на 700 км, чтобы поливать пастбища и поля (Murra 1980), и испанцы-конкистадоры были поражены, увидев тщательно прорытые каналы, ведущие к отдельным полям кукурузы. Все главные ирригационные проекты требовали тщательного планирования и контроля работ, чтобы сохранить нужный уклон, а также большого количества работников. Вознаграждение – то есть дополнительная энергия от политых злаков, превосходящая огромные вложения труда, – было очевидным образом отложено на много лет, даже десятилетий. Только мощная центральная власть имела возможность перемещать ресурсы между разными частями страны, чтобы предпринимать такие программы общественного строительства. Во многих случаях рациональное водопользование, ведущее к более высоким урожаям, включало орошение полей, но некоторые сельскохозяйственные общества были вынуждены осуществлять и противоположный процесс.
Во многих регионах постоянное земледелие было бы немыслимым без отведения лишней воды. Император Ю (2205–2198 гг. до н. э.), один из семи великих мудрецов доконфуцианской эпохи, занял место в китайской истории в первую очередь благодаря умелому плану и героической деятельности по длительному отводу паводковых вод (Wu 1982). Майя и сменявшие друг друга обитатели Мексиканского нагорья практиковали продвинутые формы земледелия, включавшие водопользование от простого террасирования и весеннего полива до сложных дренажных систем и расположенных на возвышенности полей (Sanders, Parsons and Santley 1979; Flannery 1982; Mays and Gorochovich 2010). Уникальная разновидность культуры дренирования эволюционировала за много столетий в китайской провинции Гуандун (Ruddle and Zhong 1988). Интенсивно возделываемые дамбы здесь перемежались прудами, населенными несколькими разновидностями карпа. Использование органических отходов в качестве удобрений – человеческих и свиных экскрементов, травы, водорослей, ила из прудов – обеспечивало высокие урожаи сахарного тростника, риса, многочисленных овощей и фруктов, рост шелковицы для шелкового червя и размножение рыбы в больших количествах.

Внесение удобрений

Атмосферный CO2, а также содержащиеся в воде углерод и водород формируют основу растительной ткани в виде углеводов. Но и другие элементы абсолютно необходимы для фотосинтеза, и в зависимости от того, в каком количестве они нужны, они делятся на макроэлементы и микроэлементы. Последние более разнообразны, в их число входят в первую очередь железо, медь, сера, кремний и кальций. Макроэлементов всего три: азот, фосфор и калий (N, Р и К), при этом азот – наиболее важный, он содержится во всех энзимах и белках, и именно его скорее всего будет не хватать в постоянно возделываемой почве (Smil 2001; Barker and Pilbeam 2007). Урожай пшеницы в 1 т/га (типичен для Франции или США около 1800 г) забирает из почвы по 1 кг кальция и магния (Са и Mg), 2,5 кг серы (S), 4 кг калия, 4,8 кг фосфора и 20 кг азота (Laloux et al. 1980).
Дождь, пыль, выветривание и органические останки в большинстве случаев восполняют потерю фосфора, калия и микроэлементов. Но постоянное выращивание растений без внесения удобрений вызывает дефицит азота, а поскольку именно от азота во многом зависит размер зерна и содержание в нем белка, то эта нехватка приведет к задержке роста, малым и низкокачественным урожаям. В рамках традиционного земледелия проблему можно решить лишь тремя способами: прямо вносить в почву все части растений, которые не нужны, то есть вспахивать, оставив на поле солому и стебли, не пошедшие на фураж; вносить в почву различные органические материалы, чаще всего (обычно подвергшиеся гниению) мочу и фекалии человека и животных; культивируя бобовые, чтобы увеличить содержание азота в почве для дальнейшей посадки других растений (Smil 2001; Berklian 2008).
Солома злаковых являлась главным потенциальным источником азота, но ее прямое использование было ограничено. В отличие от современных растений с короткими стеблями, традиционно выращиваемые разновидности приносили больше соломы, с соотношением солома/зерно как 2 к 1. Вспашка через такую растительную массу вызвала бы сложности у большинства животных, но такая ситуация почти никогда не возникала. Только небольшая часть растительного материала возвращалась прямо в почву, поскольку он требовался в качестве корма для скота, для изготовления подстилок и крыш, а также как топливо. Но в богатых деревом регионах солому и стебли часто просто сжигали на полях, почти полностью теряя содержащийся в них азот.
Переработка урины и экскрементов за столетия была доведено до совершенства в Европе и Восточной Азии. В китайских городах использовалась большая часть (70–80 %) отходов человеческой жизнедеятельности. Схожим образом, почти все выделения в Эдо (современный Токио) в 1650-х шли в дело. Но полезность таких отходов ограничена их доступностью и низким содержанием питательных веществ, а практика их переработки влечет за собой много однообразного, тяжелого труда. Даже до потерь, неизбежных при хранении и разных операциях, биологические отходы человека дают в год всего 3,3 кг азота на душу населения. Сбор, хранение и доставка материала на окружающие город поля сформировали масштабную и довольно пахучую индустрию, которая существовала даже в Европе большую часть XIX века, до того, как появилась канализация. По оценкам исследователей (Barles 2007), в 1869 году Париж выдавал каждый год около 4,2 Мт азота, около 40 % из лошадиного навоза и 25 % из человеческих фекалий. В конце XIX века около половины городских отбросов собиралось и промышленным образом перерабатывалось, чтобы получать сульфат аммония (Barles and Lestel 2007).
Использование много более изобильных отходов от животных, для чего требовалась чистка конюшен и стойл, жидкая ферментация или компостирование смешанных отходов перед тем, как отправить их на поля, и сама доставка – все это отнимало еще больше времени. И поскольку в большинстве разновидностей навоза содержалось всего 0,5 % азота, а в процессе переработки некоторое количество еще и терялось, то требовались огромные объемы этого материала, чтобы повысить урожаи. Во Фландрии XVIII века в среднем вносили по Ют/га, иногда до 40 т/га навоза, человеческих отходов, жмыха и пепла, а типичное значение для предреволюционной Франции составляло 20 т/га (Slicher and Bath 1963; Chorley 1981). Детальные подсчеты для Китая 1920-х показывают среднюю величину по стране выше 10 т/га, а для маленьких ферм на юго-западе – почти 30 т/га (Buck 1937).
В качестве удобрения в традиционном земледелии использовались все подходящие органические материалы. De agri cultura Катона упоминает голубиный, козий, овечий, коровий «и все другие виды помета», а также компосты из соломы, мякины, стеблей бобов, шелухи, диких растений и дубовых листьев. Римляне знали, что ротация злаковых культур с бобовыми (они полагались на люпины, бобы и вику) помогает увеличить урожай. Азиатская практика применения органики была даже более эклектичной, использовались как материалы с высоким содержанием азота (жмых масличных, остатки рыбы), так и почти его лишенные (ил из каналов и прудов). По мере того как росли города, пищевые отходы, в первую очередь растительные, становились новым источником удобрений.
Природным материалом с максимальным содержанием азота (около 15 % в лучших залежах) является гуано, птичий помет, сохранившийся в сухом климате островов у побережья Перу. Испанцы-завоеватели были впечатлены тем, как этот материал использовали инки (Murra 1980). Импорт в США начался в 1824 году, в Англию в 1840-м, в 1850-е он быстро вырос, но к 1872 году экспорт из самых богатых месторождений, с островов Чинча, закончился (Smil 2001). После этого чилийские нитраты стали самым важным источником азота для всего мира, по мере того как сельское хозяйство проходящих стадию индустриализации стран начало получать топливо, металлические инструменты, машины и неорганические удобрения (процесс описан в деталях в главе 5).
Фактический состав удобрений сильно варьировался в зависимости от доли навоза (очень высокой с животными в загонах, пренебрежимо малой в случае со свободно пасущимися), отношения к использованию человеческих отходов (от запрета до рутинного применения) и интенсивности земледелия. Любые теоретические оценки содержания азота отстоят очень далеко от его конечного вклада в урожай. Причина в высоких потерях (большей частью через испарение аммиака и выщелачивание в грунтовые воды) в процессе выделения, собирания, компостирования, доставки и окончательного потребления азота растениями (Smil 2001). Эти потери, обычно в две трети от изначального содержания азота, только увеличивались при необходимости использовать громадное количество органических отходов. Вследствие этого во всех интенсивных традиционных сельскохозяйственных обществах много тяжелого труда неизбежно посвящалось собиранию, ферментированию, транспортировке и внесению органических отходов.
«Зеленый навоз» эффективно применялся в Европе со времен античных греков и римлян, и широко использовался в Восточной Азии. Практика эта в основном опиралась на азотфиксирующие бобовые растения, изначально на вику (Astragalus, Vicia) и клевер (Trifolium, Melilotus), позже на люцерну (Medicago sativa). Бобовые могут фиксировать до 100–300 кг азота на гектар в год, и когда они ротируются с другими культурами (обычно сажаются в качестве зимнего растения в более мягком климате), они добавляют за три-четыре месяца, после которых начинается вспашка, 30–60 кг азота в почву, достаточно, чтобы посаженные следом зерновые или масличные дали хороший урожай.
Более высокая плотность популяции обычно вынуждает сажать съедобные растения даже в зимние месяцы. Эта практика неизбежно уменьшает содержание азота в почве и снижает урожаи. В краткой перспективе она может обеспечить энергетическое преимущество, поскольку дает добавочное количество углеводов и жиров. Но в долгой перспективе внесение достаточного количества азота в почву – настолько важная задача, что интенсивное сельское хозяйство не может существовать без азотфиксирующих бобовых, и приходится сажать их вместо съедобных растений. Эта желаемая практика, повторяемая каждый год или при более долгой последовательности севооборота, представляет, возможно, лучший пример энергетической оптимизации в традиционном земледелии. Ничего удивительного, что она формирует ядро всех традиционных систем сельского хозяйства, опирающихся на сложный севооборот, но только между 1750-м и 1880-м годами стандартный севооборот, включающий бобовые несъедобные растения (например, норфолкская четырехлетняя последовательность пшеницы, репы, ячменя и клевера) широко распространился по Европе и по меньшей мере утроил скорость симбиотической фиксации азота, что обеспечило надежный рост урожая съедобных растений (Campbell and Overton 1993).
Исследователи (Chorley 1981, 92) признают этот поворот по-настоящему эпохальным и называют его сельскохозяйственной революцией:
«Хотя продвижение вперед совершалось на широком фронте и стало результатом многих небольших изменений, был один невероятно значимый прорыв: всеобщее признание важности бобовых и последующее увеличение поставок азота. Ничего фантастического не будет в предположении, что эта обычно не замечаемая инновация по важности была сравнима с паровой машиной в экономическом развитии Европы в период индустриализации».
Другие ученые (Wrigley 2002) показывают сравнительные данные в сельском хозяйстве Англии в 1300 и 1800 годах, или документируют (Muldrew 2011) то, как изменения, начавшиеся с 1650-х, обеспечивали все более разнообразный и питательный рацион и как эти улучшения в питании работника привели к лучшей продуктивности, постоянной занятости и росту благосостояния людей.

Разнообразие культурных растений

Современное земледелие характеризуется доминированием монокультур, ежегодной посадкой одних и тех же злаков, и это отражает региональную специализацию включенного в коммерческую систему сельского хозяйства. Но повторяющееся культивирование одного вида имеет высокие энергетические и экологические издержки. Требуются удобрения для возмещения израсходованных питательных веществ, химикалии для истребления паразитов, которые процветают благодаря изобилию одинаковой пищи. Пропашные культуры, такие как кукуруза, оставляют большую часть почвы под дождем, пока не разрастутся, что ведет к значительной эрозии, когда их сажают на склонах. Постоянная культивация риса на затапливаемых почвах, в которых не так много кислорода, постепенно снижает их качество.
Долгий опыт научил многих земледельцев древности, какие угрозы несет выращивание монокультуры. И по контрасту, ротация злаковых и бобовых или возобновляет азот в почве или по меньшей мере облегчает использование ресурсов этой самой почвы. Культивация разнообразных зерновых, клубней, масличных и волокнистых растений снижает риск общего неурожая, уменьшает вероятность появления неистребимых паразитов, предотвращает эрозию и поддерживает лучшее качество почвы (Lowrance et al. 1984; USDA 2014). Схему севооборота можно выбрать так, чтобы она соответствовала климату и почве, а также удовлетворяла особым пищевым предпочтениям; севооборот крайне желателен с агрономической точки зрения, но там, где в течение одного года выращивается более одного вида растений, такая практика, очевидно, требует большего труда. В регионах с сухими сезонами необходимо орошение, а при интенсивном возделывании нескольких культур, когда три или даже четыре разных вида выращиваются каждый год на одном и том же поле, не обойтись без значительного объема удобрений. Там, где два или более растения занимают одно и то же поле в одно и то же время (уплотнение культур), трудовые затраты могут быть еще выше. Но главное преимущество такого вида земледелия – возможность кормить большее количество людей с того же участка земли.
Разнообразие традиционных культур и вариантов севооборота неисчислимо. Например, исследование китайского сельского хозяйства (Buck 1937) дало нам изумительную цифру в 547 систем земледелия в 168 локациях. Но очевидны несколько ключевых общих моментов. Ничто не может быть более заметным, чем уже упомянутая почти глобальная практика связывания бобовых со злаковыми. Помимо вклада в плодородие почвы и высокого содержания белка, некоторые бобовые, в первую очередь соя и арахис, также дают пригодное в пищу масло, игравшее важную роль в традиционном питании. Жмых, компактные блоки из семян, остающиеся после того, как масло выжато, становился либо высокопротеиновым кормом для домашних животных, либо отличным органическим удобрением.
Второй общий момент мы уже отмечали: ротация «зеленого навоза» и пищевых культур занимает важное место в любом интенсивном традиционном земледелии. Третий признак – севооборот отражает желание получать и волокна наряду с углеводами (зерна, клубни) и масличными культурами. Вследствие этого традиционное китайское сельское хозяйство включало многочисленные схемы ротации пшеницы, риса и ячменя с соевыми бобами и арахисом и кунжута с хлопком и джутом. Помимо основных злаков (пшеница, рожь, ячмень, овес) и бобовых (горох, чечевица, бобы), европейские крестьяне культивировали лен и коноплю, чтобы получать волокна. В число культурных растений майя входили три основы земледелия Нового Света – кукуруза, бобы и тыква, – но также клубни (сладкий картофель, маниок, мексиканская репа), агава и хлопок для волокон (Atwood 2009).
Назад: Господство зерновых
Дальше: Постоянство и инновации