Глава 8. Укрощение сложности
В телесериале «Американцы», сюжет которого разворачивается в годы холодной войны в Вашингтоне 1980-х, почту и засекреченные документы в офисе ФБР разносит робот. Удивительно, что в то время уже существовало автономное транспортное средство. Оно появилось десятью годами ранее и называлось «почтамобиль».
Чтобы он мог передвигаться, технические специалисты прокладывали ему маршрут специальными веществами, излучающими ультрафиолет, от почтового офиса вдоль ковровых дорожек до кабинетов. С помощью датчиков робот очень медленно (со скоростью меньше 1,5 км/ч) ехал и останавливался возле соответствующих меток. Почтамобиль стоил от $10 до $12 тыс. (сегодня это эквивалентно $50 тыс.), а за дополнительную плату его оснащали датчиком, позволяющим определять препятствия на пути. Без датчика он предупреждал о своем появлении звуковым сигналом. С работой по доставке почты, которая у человека занимала два часа, робот справлялся за двадцать минут, потому что не тратил времени на разговоры.
Работа робота требовала тщательной подготовки. Для обеспечения его функционирования требовались несложные, но иногда затратные перестановки в офисе: робот мог ориентироваться только в условиях соблюдения абсолютного порядка.
Даже в наши дни во всем мире к установке автоматизированных рельсовых систем предъявляется большой набор требований. Например, в копенгагенском метро нет машинистов, потому что поезда ходят в тщательно подготовленных условиях; об окружающей обстановке робота информирует небольшое число датчиков.
Такие ограничения свойственны большинству машин и оборудования: они разработаны для функционирования в четко определенных условиях. В отличие от производственного оборудования, появление почтовых роботов не осталось незамеченным, потому что их относительно просто установить во многих офисах. Но для работы им необходима была строго контролируемая и стандартизированная среда, поскольку техника не выносит неопределенности.
Больше «если»
Любые машины программируют преимущественно по стандартной логике «если, то». «Если» описывает сценарий, окружающие условия или информацию. «То» сообщает машине, что делать после каждого «если» (а также «если нет» и «иначе»): «Если химический след не обнаружен, то необходимо остановиться». Почтовый робот не видел, что находилось вокруг, и мог функционировать только в среде с доступным ему количеством «если».
Будь у него способность различать ситуации – обрабатывать больше «если», – то, даже не меняя действий, заключавшихся в остановке и следовании к другой точке, он мог бы использоваться и в других целях. Современный Roomba – робот-пылесос компании iRobot – умеет это делать и свободно передвигается в помещении, датчики не дают ему упасть с лестницы или застрять в углу, а дополнительно он оснащен модулем памяти для последовательной уборки.
На улице робот должен двигаться медленно, чтобы не поскользнуться на мокрой или скользкой поверхности. Появляются две возможные ситуации (или два состояния) – сухая и влажная. Если движения робота зависят от света и темноты, появления рядом человека, наличия срочной корреспонденции, если белку переехать можно, а кошку нельзя, а еще есть другие факторы, причем одни зависят от других (можно переехать белку, только когда темно, но не когда светло), то количество ситуаций «если» возрастает непомерно.
Для повышения качества прогнозов машины должны различать больше «если». В этом случае почтовый робот умел бы реагировать на разные ситуации. Прогностическая машина позволяет роботу определить следующее: когда темно и сыро, в двадцати метрах сзади бежит человек, а впереди – кошка, скорость нужно снизить, но, когда темно и сыро, человек стоит в двадцати метрах сзади, а впереди белка, этого можно не делать. Благодаря прогностической машине робот может двигаться не только по размеченному пути. Новые почтамобили функционируют в более сложной обстановке, а подорожали несущественно.
Роботы-доставщики уже распространены повсеместно. Склады оборудованы автономными системами доставки, которые прогнозируют обстановку и соответственно реагируют. Вереницы роботов Kiva транспортируют продукты по гигантским центрам Amazon. Стартапы экспериментируют с роботами-доставщиками, по тротуарам и улицам развозящими посылки (или пиццу) из компании и обратно.
Такая услуга стала возможной благодаря тому, что роботы используют для прогнозирования среды данные высокотехнологичных датчиков, а затем получают инструкции о действиях. Вообще это не считается прогнозированием, но по сути все же это так. И чем дешевле прогноз, тем совершеннее роботы.
Больше «то»
Джордж Стиглер, лауреат Нобелевской премии по экономике, как-то заметил: «Люди, которые никогда не опаздывали на самолет, слишком много времени провели в аэропортах». Логика данного утверждения своеобразна, и встречный аргумент перевешивает ее: работать и отдыхать в аэропорту можно не хуже, чем в любом другом месте, зато не нужно переживать, что опоздаешь на самолет. Поэтому в аэропортах и появились залы ожидания. Их придумали авиакомпании, чтобы обеспечить пассажиров (по крайней мере, состоятельных или своих постоянных клиентов) удобным и тихим пространством для ожидания, потому что большинство приезжает в аэропорт пораньше. Те, кто постоянно опаздывает, бывают в залах мимоходом, в ожидании отложенного рейса или оплакивая пропущенный вылет на Бали.
В зале ожидания удобно скоротать время, если не удалось приехать в определенный час (как это чаще всего и бывает).
Предположим, ваш вылет в 10:00. Авиакомпания рекомендует прибыть в аэропорт за час до этого времени. Значит, вы успеете, если приедете к 9:00. Во сколько же выходить из дому?
Обычно дорога в аэропорт занимает полчаса, то есть из дома нужно выйти в 8:30, но это без учета пробок. По дороге в нью-йоркский аэропорт Ла Гуардия, куда мы отправились после встречи по поводу этой книги, чтобы улететь в Торонто, возникли такие пробки, что последние полтора километра пришлось идти пешком вдоль шоссе. Это еще плюс полчаса (или больше, если не любите рисковать). Значит, отправляться в аэропорт надо в 8:00, и вы всегда будете выходить в это время, если не знаете обстановку на дорогах. И в итоге минимум полчаса проведете в зале ожидания.
Приложения вроде Waze очень точно рассчитывают время: они отслеживают автомобильные пробки в режиме реального времени и учитывают обычную ситуацию на маршруте для прогнозирования и обновления кратчайшего пути. Добавьте к нему Google Now, а возможные задержки вылета, исходя из прецедентов в прошлом и местоположения самолетов, рассчитают другие приложения. Все они вместе дают надежный прогноз, предоставляющий свободу выбора: «если пробок нет, выходить позже и сразу идти на посадку» или «если вылет задерживается, можно выйти из дома позднее».
Точный прогноз в результате снижения или устранения ключевого источника неопределенности избавляет от необходимости ожидания в аэропорту. А самое главное – точный прогноз меняет действия. Вместо жесткого правила выходить за два часа до вылета можно руководствоваться условным правилом – рассчитывать время исходя из информации. Условные правила представляют собой утверждения «если, то» и позволяют больше «то» (выходить раньше, вовремя или позднее) в зависимости от степени точности прогноза. Таким образом, прогностика, кроме создания больше «если», еще и увеличивает количество осуществимых «то».
У почтовых роботов и залов ожидания в аэропортах есть кое-что общее: и то и другое является неидеальным решением проблемы неопределенности и пострадает с ростом точности прогнозов.
Больше «если» и «то»
Точные прогнозы позволяют предсказывать больше и чаще, снижая неопределенность. Каждый прогноз обладает косвенным воздействием: он делает возможным выбор, который вы раньше не рассматривали. И для этого не нужно подробно программировать «если» и «то». Прогностическую машину можно обучать на примерах. Вуаля! Проблемы, не считавшиеся раньше прогностическими, теперь решаются. А раньше мы постоянно шли на компромиссы, даже не осознавая этого.
Компромиссы – ключевой аспект принятия решений человеком. Лауреат Нобелевской премии по экономике Герберт Саймон назвал их разумной достаточностью. Тогда как в классических экономических моделях решения принимают гиперрациональные существа, Саймон в своей работе признал и подчеркнул, что людям не под силу справиться со сложностью. Они склоняются к разумной достаточности и делают все возможное для достижения цели. Думать трудно, поэтому люди все упрощают.
Саймон был разносторонне одаренным ученым. Кроме Нобелевской премии он получил премию Тьюринга, часто называемую Нобелевской премией по информатике, за вклад в ИИ. Его работы по экономике и информатике взаимосвязаны. В продолжение своей мысли в докладе 1976 года после вручения премии Тьюринга ученый подчеркнул, что у компьютеров «ограниченные ресурсы обработки; за конечное количество шагов в конечный период времени они выполняют конечное число процессов». Саймон признал, что компьютеры, как и люди, склонны к разумной достаточности.
Почтовые роботы и залы ожидания в аэропортах – примеры разумной достаточности при отсутствии точного прогноза. И такие примеры повсюду. Только опыт и время позволят представить все возможности качественной прогностики. Большинству неочевидно, что залы ожидания решают проблему неточных прогнозов и в эпоху совершенных прогностических машин станут не нужны. Мы так привыкли к разумной достаточности, что даже не рассматриваем прогнозирование в некоторых решениях.
В приведенном примере с переводом специалисты считали автоматический языковой перевод лингвистической, а не прогностической проблемой. С точки зрения лингвистики следует взять словарь и переводить одно слово за другим с учетом грамматических правил. Это было разумной достаточностью и давало плохой результат из-за слишком многих «если». Перевод стали считать прогностической проблемой, когда исследователи обнаружили, что его можно осуществлять не словами, а предложениями или целыми абзацами.
Перевод с помощью прогностических машин включает в себя прогнозирование вероятного эквивалента на другом языке. Статистика позволяет компьютеру выбрать лучший вариант перевода, прогнозируя «если»: какое предложение, вероятнее всего, использовал бы профессиональный переводчик из соответствующих данных. Что самое интересное, для этого не нужны лингвистические правила. Фредерик Йелинек сказал: «Каждый раз, когда я увольняю лингвиста, работа распознавателя речи улучшается». Очевидно, лингвисты и переводчики этому не обрадуются. Прочие прогностические задачи – в том числе распознавание образов, шопинг и разговор – относятся к категории сложных, но разрешимых с помощью машинного обучения.
Точный прогноз для сложных решений снижает риски. Например, недавно ИИ нашлось практическое применение в рентгенологии. Работа рентгенолога заключается в основном в изучении рентгенограммы пациента для выявления причины возникшего недомогания. Таким образом рентгенологи прогнозируют аномалии развития какого-либо процесса или внутреннего органа.
ИИ все чаще способен выполнять прогностическую функцию на уровне физиологии человека – и делает это лучше, что поможет рентгенологам и другим врачам принимать более оправданные решения относительно системы лечения. Важнейшим показателем эффективности служит точность диагноза: сможет ли машина прогнозировать заболевание у больных людей и отсутствие болезней у здоровых.
Следует учитывать все факторы таких решений. Предположим, что врачи подозревают опухоль и должны решить, каким способом выяснить, злокачественная она или нет. Один из вариантов – медицинская визуализация. Есть еще инвазивные методы, такие как биопсия. Ее преимущества заключаются в высокой вероятности постановки верного диагноза. Но из-за инвазивного характера самого метода как врачи, так и пациенты стремятся его избежать, если вероятность злокачественной опухоли невелика. Как правило, биопсию проводят только при высокой вероятности серьезного диагноза. Это гарантия своевременного лечения смертельно опасного заболевания, но она дорого обходится.
Решение сделать биопсию зависит от стоимости, степени инвазивности самой процедуры и уровня риска, если время на лечение будет упущено. Опираясь на эти факторы, врач решает, стоит ли биопсия физических и финансовых издержек.
При условии точного диагноза по снимку пациенты смогут избежать биопсии и предпринимать действия, которые в его отсутствие могут стать слишком рискованными. Теперь больше не нужно идти на компромисс: с развитием ИИ снижается потребность в разумной достаточности и появляется больше «если» и «то». Сложность выше, а риски ниже. Процесс принятия решений преображается благодаря новым вариантам выбора.
Выводы
• Улучшенный прогноз позволяет принимающим решения людям и машинам использовать больше «если» и «то». Это чаще приводит к положительному исходу. Скажем, в случае навигации, описанной на примере почтового робота, прогностические машины освобождают автономные транспортные средства от ограничений функционирования, ранее возможного только в контролируемой среде. Для нее характерен немногочисленный набор «если» (или состояний). Прогностические машины позволяют автономному транспорту работать в неконтролируемой среде, такой как городские улицы, потому что вместо программирования всех возможных «если» машина учится прогнозировать, что сделал бы человек-оператор в любой конкретной ситуации. Аналогичным образом пример с залом ожидания аэропорта иллюстрирует, как с точностью прогнозов возрастает количество «то» (то есть «выходить в X, Y или Z часов», в зависимости от прогноза, сколько времени займет дорога до аэропорта в конкретное время и конкретный день), в отличие от необходимости прибавлять время «на всякий случай», а затем лишний час ждать в аэропорту.
• При отсутствии качественного прогноза мы склонны к разумной достаточности – выбираем приемлемые решения с учетом доступной информации.
• Всегда рассчитывать дорогу в аэропорт с запасом и, как правило, ждать после прибытия туда, потому что приехали раньше, – пример разумной достаточности. Это не оптимальное, но приемлемое решение с учетом имеющейся информации. Почтовые роботы и залы ожидания в аэропортах появились как следствие разумной достаточности. Прогностические машины снизят потребность в ней, а следовательно, средства реже будут вкладываться в решения вроде почтовых роботов и залов ожидания.
• Мы настолько привыкли к разумной достаточности в деловой и социальной жизни, что с трудом представляем себе все изменения, возможные в результате развития прогностических машин, способных учитывать больше «если» и «то» и, следовательно, принимать более сложные решения в более сложной обстановке. Большинству неочевидно, что залы ожидания являются решением проблемы неточных прогнозов и в эпоху совершенных прогностических машин станут не нужны. Еще один пример – биопсия, широко распространенная вследствие низкой точности прогнозов медицинской визуализации. С ростом надежности прогностических машин ИИ заметно повлияет на работу людей, связанных с проведением биопсии, потому что эта процедура, как и залы ожидания, была ответной мерой на неточные прогнозы. И то и другое представляет собой решение по управлению рисками. А прогностические машины предоставят для этого новые, более совершенные способы.