Предисловие. Машинный интеллект
Если следующая ситуация вам пока в новинку, скоро вы к ней привыкнете. Ребенок в соседней комнате делает уроки, вы слышите, как он говорит: «Назови столицу Делавэра». Вы погружаетесь в размышления: «Балтимор?.. Нет, это первое, что пришло в голову… Уилмингтон?.. Нет, не столица». Не успели вы продолжить, как «Алекса» дает правильный ответ: «Столица Делавэра – Довер». «Алекса» – искусственный интеллект компании Amazon.сom, она обрабатывает вербальный запрос и молниеносно выдает результат. В глазах ребенка «Алекса» как источник информации заменила всезнающих родителей.
ИИ – повсюду. В наших телефонах, автомобилях, больницах, банках, без него не обходятся покупки, знакомства и электронные СМИ. Понятно, что руководители и вице-президенты компаний, менеджеры, начальники отделов, предприниматели, инвесторы, коучи и политики стремятся узнать о нем как можно больше: они понимают, что скоро ИИ коренным образом изменит всю их деятельность.
Мы наблюдали за преимуществами ИИ втроем: мы – экономисты, добившиеся профессиональных успехов на ниве последнего технологического достижения современности – интернета. Много лет занимаясь исследованиями и научившись отделять зерна от плевел, выявляя истинное значение технологий для руководителей, мы организовали «Лабораторию созидательного разрушения» (ЛСР) – программу для ранних этапов развития бизнеса, повышающую вероятность успеха наукоемких стартапов. Изначально ЛСР предназначалась для любых стартапов, но к 2015 году большинство самых интересных начинаний основывались на ИИ. В сентябре 2017-го ЛСР третий год подряд подтвердила высокую эффективность ИИ-стартапов по сравнению с остальными разработками.
В результате немало стартап-лидеров регулярно приезжали в Торонто для участия в ЛСР. Например, один из основных разработчиков ИИ, лежащего в основе «Алексы», Уильям Танстолл-Пидоу, каждые восемь недель прилетал из Кембриджа в Англию для участия в программе. Как и Барни Пелл из Сан-Франциско, ранее возглавлявший в НАСА команду из 85 человек, которая запустила в космос первый ИИ.
Такого успеха в своей сфере ЛСР добилась отчасти благодаря расположению в Торонто, где зарождалось и развивалось большинство ключевых разработок в области так называемого машинного обучения, способствовавших недавнему всплеску интереса к ИИ. Специалисты, ранее занятые на кафедре IT-наук Университета Торонто, ныне возглавляют команды ведущих мировых компаний ИИ, в том числе в Facebook, Apple и проекте Илона Маска Open AI.
Близость к практическому применению ИИ заставила нас сосредоточиться на том, как данные технологии влияют на стратегии бизнеса. Как вы скоро узнаете, ИИ – это прогностическая технология, а поскольку решения принимаются на основе прогнозов, экономика предоставляет идеальную схему для понимания вариантов выбора, лежащих в основе принятия любого решения. Итак, благодаря везению и некоторым усилиям мы оказались в нужном месте в нужное время, чтобы наладить связь между техническими специалистами и представителями сферы бизнеса. Результатом стала эта книга.
Первоначально ее основная идея заключалась в том, что новая волна ИИ принесла нам не в полной мере разум, а лишь его критическую составляющую – прогнозирование. Когда ребенок произнес запрос, «Алекса» преобразовала звуки в слова и спрогнозировала, какая информация им соответствует. «Алекса» «не знает» столицу Делавэра, но способна спрогнозировать, что в ответ на такой запрос люди получат конкретный ответ: «Довер».
Каждый стартап в нашей лаборатории базируется на преимуществах улучшенного прогнозирования. Компания Deep Genomics сделала шаг вперед в медицине, предполагая, какие процессы начнутся в клетке после изменений в последовательности ДНК. Компания Chisel усовершенствовала правовую практику прогнозом, какая именно часть документа подлежит редактированию. Компания Validere повысила эффективность нефтедобычи, рассчитав процент содержания влаги в поступающем на переработку и хранение сырье. Все это – лишь малый перечень всех возможностей применения, которые появятся в бизнесе в ближайшем будущем.
Если вы плохо представляете, что значит ИИ для вас, мы поможем вам понять все его возможности и сориентироваться в преимуществах технологии, даже если вы ни разу не программировали свёрточную нейронную сеть и не изучали байесовскую статистику.
Руководителям бизнеса мы объясним влияние ИИ на управление и принятие решений. Студентам и недавним выпускникам дадим пищу для размышлений о перспективах развития трудовой деятельности и карьеры. Финансовым аналитикам и венчурным инвесторам предложим схему, на основании которой они разработают инвестиционные декларации. Политикам предоставим примерный план изменений общества с помощью ИИ, обсудим, какие меры можно предпринять, с тем чтобы перемены оказались к лучшему.
Экономика представляет собой надежную основу для понимания неопределенности и ее роли в принятии решений. Поскольку качественное прогнозирование снижает неопределенность, мы объясним в терминах экономики значение ИИ для принятия решений по развитию бизнеса, что, в свою очередь, даст представление о том, какие инструменты с наибольшей вероятностью помогут максимизировать прибыль от рабочих бизнес-процессов. Это приведет нас к схеме разработки новых стратегий – например, изменения масштаба и диапазона бизнеса для применения новых экономических реалий, проистекающих из удешевления прогнозов. И, наконец, мы изложим основные плюсы и минусы влияния ИИ на трудовую деятельность, концентрацию корпоративной власти, конфиденциальность и геополитику.
Какие прогнозы важны для вашего бизнеса? Как дальнейшее развитие ИИ повлияет на предположения, из которых вы исходите? Как изменятся рабочие места в вашей сфере деятельности с развитием прогностических технологий, что уже происходило с появлением ПК и интернета? ИИ – это новая и еще не до конца понятая технология, но существуют надежные инструменты экономики по оценке возможных последствий удешевления прогностики, хотя приводимые нами примеры, без сомнения, когда-нибудь устареют, в отличие от предложенной схемы. Идеи сохранят свою эффективность и с развитием технологий, и с повышением точности и сложности прогнозов.
Наша книга не предлагает рецептов успеха в экономике ИИ – напротив, мы подчеркиваем его преимущества и недостатки. Чем больше данных, тем меньше конфиденциальность; чем выше скорость, тем ниже точность; чем больше независимости – тем слабее контроль. Мы не предлагаем рекомендаций для выработки оптимальной бизнес-стратегии: это ваша забота. Лучшая стратегия для компании, карьеры или страны зависит от вашей оценки соотношения плюсов и минусов. Мы разработали схему определения ключевых преимуществ и недостатков, а также способы оценки всех «за» и «против» для оптимального решения какой-либо задачи. Разумеется, даже располагая нашей схемой, вы заметите, что все меняется очень быстро и вам придется действовать, не обладая исчерпывающей информацией, но, как правило, это все же лучше пассивности.