Книга: Она смеется, как мать
Назад: Часть II. Своенравная ДНК
Дальше: Глава 6 Спящие ветви

Глава 5
Пьяная походка

В 1901 г. Уильям Бэтсон отправил в Королевское общество срочное сообщение о «явлениях наследственности». Эти явления, объяснял Бэтсон, убедительно свидетельствуют в пользу заново открытой и лишь сейчас оцененной по достоинству работы Грегора Менделя. Бэтсон вместе с другими учеными подтвердил наблюдаемые Менделем закономерности. По мнению исследователя, эти закономерности настолько достоверные и важные, что заслуживают высочайшего научного титула: их следует назвать законом Менделя.
Научные законы описывают некоторые закономерности во Вселенной обычно с помощью короткого изящного уравнения. Исаак Ньютон открыл законы движения, получившие его имя. Имя Роберта Бойля увековечено в законе Бойля, связывающем объем и давление газа. Работа Менделя позволяет выразить наследственность тоже количественно. У родителей есть равные шансы передать потомкам одну из двух копий какого-то определенного гена. Закон Менделя гласит, что доминантные и рецессивные признаки будут проявляться у потомков в соотношении «три к одному». И неважно, идет ли речь о морщинистой форме горошин или фенилкетонурии у людей. Значения будут одинаковы.
Безусловно, открытие Менделя – одно из важнейших в науке. Но эта закономерность на самом деле не представляет собой универсальный закон. Законы движения Ньютона будут так же верны в далекой галактике, как и здесь, на Земле. Они выполнялись 13 млрд лет назад, в младенчестве Вселенной, и выполняются до сих пор. У закона Менделя более узкие рамки. Он работает лишь там, где существует жизнь, – т. е., насколько нам известно, только на нашей планете. При этом, когда около 4 млрд лет назад жизнь появилась в виде одноклеточных микроорганизмов, закон Менделя еще не существовал. Микроорганизмы совсем не похожи на горох и людей, и поэтому у них нет ни доминантных, ни рецессивных признаков.
Закону Менделя пришлось ждать пару миллиардов лет, пока не появилась новая форма жизни, давшая начало растениям, грибам и животным, в том числе и нам. Другими словами, закон Менделя имеет больше общего с нашими селезенками или сетчатками, чем с законом Бойля. Он появился в ходе эволюции жизни. На Земле обустроилось множество разных видов наследственности, каждая из которых возникла в результате естественного отбора и счастливой случайности.
__________
По всей видимости, жизнь появилась, как только первые, простые химические вещества начали усложняться. На самых ранних этапах существования Земли на ней уже были аминокислоты, азотистые основания и другие молекулярные кирпичики. Состоящие из этих компонентов короткие цепочки скопились рядышком, возможно, на дне моря они были окружены пленочкой липидов или заперты в пузырьки, похожие на клетки. В этих замкнутых пространствах химические процессы ускорились настолько, что смогли преодолеть барьер, отделяющий живое от неживого.
Скорее всего, первые живые организмы были непохожи на те, что мы видим сейчас. В наше время животные, растения, бактерии – т. е. все клеточные формы жизни – хранят свою генетическую информацию в виде ДНК. Однако ДНК не самый лучший кандидат на роль первой молекулы наследственности, так как она слишком беспомощна и требовательна.
Чтобы клетка могла считывать хранящуюся в ДНК информацию, ей необходимы множество белков и РНК. Когда клетка делится, армия других молекул создает копию ее ДНК. Едва появившаяся на Земле жизнь должна была быть устроена проще.
По одной из версий, жизнь начиналась без ДНК и белков. Она полагалась только на молекулы РНК. Первичная клетка могла содержать несколько разных типов коротких РНК, которые помогали копировать друг друга.
Эксперименты, проведенные с РНК, показывают, как это могло происходить. Одна молекула РНК способна захватывать азотистые основания и соединять их вместе, используя вторую молекулу РНК как образец. Вторая молекула может делать то же самое по отношению к третьей. Если последняя в этом ряду РНК помогает копировать первую, то круг замыкается. У таких древних РНК два типа наследственных признаков: от предков они получают собственно генетическую информацию, а также определенную форму, которая позволяет им создавать новые молекулы.
Такая первая наследственность была довольно неточной. Иногда новые молекулы РНК содержали некоторые отличия от образца. Часто эта ошибка оказывалась фатальной, поскольку нарушалась способность молекулы РНК создавать свои копии. Но в некоторых случаях эти изменения ускоряли происходящие химические процессы. Клетки, которые размножались быстрее, обгоняли своих медлительных соперников.
Жизнь на основе РНК могла существовать в океане или приливно-отливной зоне, там же могли находиться и свободные аминокислоты. По мере того как РНК эволюционировала, она принимала все более сложные формы, и некоторые из этих структур, возможно, начали соединять аминокислоты в короткие цепочки, которые мы сейчас называем пептидами. Пептиды могли выполнять работу внутри клеток. Со временем короткие пептиды превратились в крупные, сложноустроенные белки.
Кроме того, основанная на РНК жизнь могла в процессе эволюции создать также и молекулу ДНК. Двухцепочечная молекула ДНК более стабильна, чем одноцепочечная РНК, и менее подвержена повреждениям. Когда первые организмы с ДНК копировали свои гены, они допускали меньше ошибок. Такая новообретенная точность могла способствовать созданию более сложных форм, поскольку снизился риск летальных мутаций.
Как только жизнь, основанная на ДНК, укрепилась, она заполнила всю планету. Примерно 3,5 млрд лет назад микроорганизмы разделились на две эволюционные ветви: бактерии и археи. Их почти невозможно отличить друг от друга под микроскопом, но у них есть очень важные различия в биохимических процессах. Например, бактерии и археи используют разные молекулы для построения клеточных стенок и разные молекулы для работы с генами.
Однако обе эти линии микроорганизмов оказались удивительно гибки, приспособившись жить в каждом уголке земли, где есть вода и энергия. Микроорганизмы адаптировались для жизни на поверхности океана, где они улавливают солнечный свет, на морском дне, где потребляют серу и железо, глубоко в земле, где используют энергию радиоактивного распада… По оценкам ученых, на Земле проживает около миллиона миллиардов миллиардов микроорганизмов, которые образуют триллион разных видов.
И ни у кого из них не соблюдается закон Менделя.
Типичный микроорганизм, скажем, кишечная палочка (Escherichia coli), обитающая в вашем кишечнике, имеет только одну хромосому: длинную кольцевую молекулу ДНК. На ней расположено несколько тысяч генов. Если E. coli может получать глюкозу или другой сахар из вашего завтрака, она может и расти, пока не будет готова к делению. Тогда кольцевая ДНК изящно расплетается на две нити. На каждой из них строится вторая, в итоге создаются две почти идентичные хромосомы. Затем клетка делится надвое. Она растаскивает обе хромосомы по своим противоположным сторонам, а затем посередине выстраивает стенку. Каждая новая кишечная палочка оказывается почти идеальной копией своего родителя и наследует одну хромосому, а также около половины молекул родительской клетки.
Мы, люди, имеем возможность познакомиться со своими родителями. Микроорганизмам такого шанса никогда не представится, потому что их родители исчезают, или же, говоря другими словами, разделяются на дочерние клетки. Законы Менделя описывают, как наследственные факторы от двух родителей объединяются при образовании потомка. Для микроорганизмов это бессмысленно.
Их наследственность отличается от нашей в еще одном важном аспекте. Микроорганизмы способны получать гены разными способами. Они могут унаследовать копию генов от своих предков, так же как это делаем мы. Это называется вертикальной передачей. Кроме того, они в состоянии получать гены от других, неродственных микроорганизмов – благодаря горизонтальному переносу генов.
Именно благодаря горизонтальному переносу генов стало возможным определить, из чего они сделаны. В 1920-х гг. исследователи выяснили, что если убить опасный штамм бактерий и смешать его с безвредным, то безвредный трансформируется в опасный. Более того, когда трансформированные бактерии делились, их потомки сохраняли опасные свойства. Позже микробиолог Освальд Эвери с коллегами занялся поиском этого таинственного «трансформирующего агента» и выделил из бактериальных клеток разные виды молекул. Проведя многочисленные эксперименты, он пришел к выводу, что вещество, которое он искал, – это ДНК.
Оказалось, что бактерии из опыта Эвери поглощали свободную ДНК извне, встраивали ее в свою хромосому и таким образом трансформировались. Они получали гены, которые могли использовать, чтобы вызывать заболевание у хозяина. Дальнейшие исследования выявили, что горизонтальное наследование происходит и другими способами. Некоторые бактерии помимо своей основной хромосомы несут маленькие колечки ДНК, называемые плазмидами. У тех есть свои собственные гены. Бактерии могут иногда прикрепляться к другим бактериям и создавать трубки для передачи плазмид. Такая плазмида может свободно плавать в цитоплазме нового владельца, а может встраиваться в его хромосому.
Горизонтальный перенос генов, наверное, кажется удивительным, но он происходит вокруг нас. И даже внутри нас. В эксперименте 2004 г., проведенном группой датских исследователей, было показано, как бактерия Enterococcus faecium использует горизонтальный перенос в наших собственных организмах. За несколько тысяч лет эта бактерия эволюционировала в разные штаммы; некоторые заселяют кишечник и кожу человека, а другие выбирают местом жительства иных животных. Большинство штаммов этого энтерококка безвредны, но есть такие, которые вызывают смертельные инфекции в крови и мочевом пузыре.
Обычно подобную инфекцию лечат антибиотиками. Было время, когда этот подход работал. Но уже в начале 2000-х гг. E. faecium превратился во врачебный кошмар. Все чаще доктора стали замечать, что бактерии несут гены, защищающие их от лекарств. Когда к пациенту попадал такой устойчивый штамм, бактерии бесконтрольно размножались, передавая ген устойчивости вертикально своим потомкам.
В 2004 г. полдюжины смельчаков согласились выпить молоко из двух чашек. В первой был миллиард Enterococcus faecium. Эти бактерии были выделены из человека, и их можно было легко убить с помощью антибиотика ванкомицина. Через три часа шестеро добровольцев выпили и вторую чашку, где находился еще один миллиард E. faecium, полученных из кур. У этих бактерий были гены, делающие их устойчивыми к ванкомицину.
Питье молока было частью эксперимента, проводимого Датским национальным центром по контролю инфекций и антимикробных препаратов. В течение следующего месяца ученые брали на анализ стул шести испытуемых и исследовали его на наличие двух штаммов E. faecium. Куриный штамм быстро поредел и через несколько дней исчез. Человеческий же, лучше приспособленный к новому хозяину, сохранялся дольше.
Однако у трех из шести испытуемых ученые заметили изменения в человеческом штамме. У бактерий из поколения в поколение передавался новый ген, которого не было в начале эксперимента. Они унаследовали от куриного штамма ген устойчивости к ванкомицину.
Микроорганизмы могут горизонтально принимать гены даже от своих злейших врагов – вирусов. Вирусы – это гены, окруженные белковой оболочкой, и у них особая форма наследственности, не такая как у клеток. Вирус не воспроизводится сам, копируя свои гены, и не делится на два. Вместо этого он внедряется в клетку-хозяина. Например, бактериофаги – вирусы, атакующие бактерий, обычно прикрепляются к клеточной стенке хозяина и впрыскивают внутрь нить ДНК, как будто выдавливают из шприца спагетти. У бактерий есть несколько способов распознать и уничтожить вирусную ДНК. Но ни один из них не идеален. Если вирусные гены выживают в клетке, они начинают ею командовать. Бактерия делает белки по инструкции, записанной в вирусных генах. Эти белки заставляют клетку создавать новые вирусы, комплектуя их новыми копиями вирусных генов.
Когда речь заходит о вирусах, наследственность становится почти абстракцией. У них нет никаких материальных основ, связующих их с предками, поскольку каждый атом, входящий в новую вирусную частицу, происходит из хозяйской клетки, которая изготавливает вирусы. Для них наследственность – это невидимая ниточка информации, связывающая вирус с его потомками.
Когда гены упаковываются в новые вирусы, иной раз происходит сбой. Внутрь вирусной оболочки может попасть ген от бактерии-хозяина. Такой новый вирус, покидая бактерию, будет нести ее ген вместе со своими, и впоследствии он способен проникнуть в нового хозяина. Иногда эти бактериальные гены встраиваются в хромосому этого нового хозяина. Таким образом вирусы могут выступать в роли стихийных транспортных средств, перенося гены бактерий от одной клетки к другой, а случается даже, что и между разными видами.
__________
Когда ученые стали исследовать микроорганизмы подробнее, то обнаружили еще более странную форму наследственности. Одна из наиболее необычных разновидностей бактериальной наследственности была открыта в начале 2000-х гг. в процессе изучения защиты микроорганизмов от вирусов.
Оказывается, многие виды бактерий могут научиться распознавать новый вирус, а в дальнейшем быстро и прицельно его уничтожать. У позвоночных животных, таких как мы с вами, есть похожая способность. Когда нас атакуют вирусы гриппа или ОРВИ, наша иммунная система создает антитела, которые уничтожают эти вирусы при повторном заражении. Бактерии не могут использовать иммунную систему, состоящую из миллиардов клеток: они состоят из единственной клетки, которая должна сама заботиться о себе. И они справляются с этой задачей, используя молекулярную систему CRISPR-Cas.
Когда вирус атакует бактерию, он обычно прикрепляется к своей жертве и вводит внутрь нить ДНК. Многие микроорганизмы могут отрезать кусочек этой чужеродной ДНК и вставлять его в определенное место собственной ДНК, которое называется CRISPR (clustered regularly interspaced short palindromic repeats – короткие палиндромные кластерные повторы).
Если бактерия выживает после первой атаки этого вируса, то теперь у нее есть защита от следующей. Она готовится к ней, синтезируя короткие молекулы РНК, которые соответствуют кусочку вирусной ДНК, полученной во время первой атаки. Белок под названием Cas окружает эти молекулы РНК, и они вместе плавают в клетке.
Если тот же вид вируса попытается ввести свою ДНК в клетку, система CRISPR-Cas будет прикрепляться ко всем поступающим ДНК. Белок Cas разъединяет нити вирусной ДНК и разрезает их на кусочки. Нашинкованный на безобидные фрагменты вирус уже не может причинить вред бактерии.
В ходе сражения с разными вирусами микроорганизм может накопить образцы ДНК от многих врагов. И когда он делится, то передает накопленное потомкам. Когда бактерия копирует свою хромосому, она копирует участок CRISPR вместе со всей остальной ДНК. Барьер Августа Вейсмана может предотвратить влияние жизненного опыта животного на его половые клетки. Но для бактерий такого барьера не существует. В каком-то смысле соматическая и зародышевая часть у них слиты в единую клетку.
Некоторые исследователи считают, что система CRISPR – это самый что ни на есть пример наследования по Ламарку. Конечно, бактерии, воюющие с вирусами, сильно отличаются от тянущихся к листьям жирафов, которых представлял себе Ламарк, и поэтому такое сравнение может свестись к дискуссии о терминах. Но совершенно точно можно утверждать, что с обнаружением системы CRISPR ученые открыли еще один путь наследственности в обход закона Менделя.
__________
Около 1,8 млрд лет назад на Земле появилась новая форма жизни. Новые клетки были намного крупнее бактерий и архей. Свою ДНК они с особой осторожностью спрятали внутри мешочка, который стал называться ядром. Клетки синтезировали огромное количество клеточного топлива с помощью специальных капсул – митохондрий. Мы с вами вместе со многими другими видами тоже относимся к данной форме жизни.
Эти монстры среди микроорганизмов получили название «эукариоты». Их потомки дали начало группе простейших – хищников микромира, которые охотились на свою одноклеточную добычу в почвах и водах. Эукариоты эволюционировали и теперь представляют всю многоклеточную жизнь на Земле, включая грибы, растения и нас, животных. Помимо ядра и большого размера у эукариот есть еще много черт, отличающих их от бактерий и архей. И одна из них наиболее важна для наследственности: эукариоты передают свои гены потомкам уникальным способом, тем самым, который отражен в законе Менделя.
У бактерий и архей хромосома всего одна, а у эукариот хромосомы парные. У разных видов разное количество этих пар. У нас, людей, 23 пары, а у гороха – всего семь. У дрожжей – 16. У некоторых бабочек – 134.
Когда наши соматические клетки делятся, они копируют все хромосомы, создавая дополнительную пару к каждой. Затем ядро распадается, хромосомы растягиваются поровну по разным сторонам клетки, и она разделяется посередине. В каждой новой клетке, таким образом, получаются свои 23 пары. Данный способ деления называется «митоз», и по сути он похож на то, что происходит у бактерий: это деление одной клетки на две одинаковые.
Митоз у нас происходит для роста и обновления тела. Однако для создания половых клеток нам нужно, чтобы в сперматозоиде или яйцеклетке был не двойной, а одинарный набор хромосом. Проще всего было бы разделить пары хромосом в соматической клетке и выделить по одному набору на каждую половую. Но в нашем организме так не бывает. Вместо этого запускается чрезвычайно причудливый процесс, который получил название «мейоз».
У мужчин мейоз осуществляется в извитых семенных канальцах, расположенных в семенниках. В стенках канальцев находятся предшественники сперматозоидов – клетки, несущие две копии каждой хромосомы: одну от матери мужчины, другую от отца. Когда эти клетки начинают делиться, вся ДНК удваивается, так что теперь у них есть по четыре копии каждой хромосомы. Однако вместо того, чтобы разделиться, хромосомы остаются вместе. Материнская и отцовская копия каждой хромосомы выстраиваются рядом друг с другом. Специальные белки «садятся» на них и делают разрезы в строго одних и тех же местах этих расположенных рядом хромосом.
Когда клетка исправляет такие нанесенные самой себе разрезы, происходит очень важный обмен. Фрагмент ДНК с одной хромосомы может встать на то же место, но в соседнюю хромосому, и наоборот. Эта молекулярная операция выполняется не очень быстро. В общей сложности клетке нужно три недели, чтобы закончить мейоз. Как только обмен участками произошел, хромосомы расходятся. Затем клетка делится два раза, образуя в итоге четыре сперматозоида. Любая из этих четырех клеток несет одну копию каждой из 23 хромосом. Но в каждом сперматозоиде набор ДНК различен.
Одна из причин этих различий кроется в том, как разойдутся пары хромосом. Сперматозоид может содержать хромосому 1, полученную от отца, хромосому 2, полученную от матери, и т. д. В другом сперматозоиде будет иная комбинация. Кроме того, некоторые сперматозоиды окажутся гибридными. Хромосома 1, например, из-за мейоза может иметь одни участки, полученные от отца, а другие – от матери.
Основные биологические принципы мейоза у женщин точно такие же, но сроки очень отличаются. Первый этап начинается, когда девочка еще находится в утробе матери. Группа клеток внутри эмбриона получает новое назначение – эти клетки становятся предшественницами яйцеклеток. Они мигрируют туда, где позже сформируются яичники. На седьмом месяце развития плода в этих клетках-предшественницах начинается мейоз: хромосомы удваиваются, сцепляются парами и обмениваются участками ДНК. Но затем хромосомы как бы застывают, останавливая мейоз на полпути. Они остаются в таком состоянии годами, пока девочка не достигнет периода полового созревания и у нее не начнутся овуляции.
В течение каждого овуляторного цикла одна яйцеклетка запускает продолжение мейоза и завершает свое деление. Так же как и у мужчин, в результате мейоза у женщин образуются четыре новые клетки, каждая из которых содержит 23 хромосомы. Но только одна из них станет зрелой яйцеклеткой. Остальные три редуцируются до маленьких полярных телец.
Сейчас ученые понимают, как мейоз обеспечил закономерности, которые Мендель наблюдал у себя в саду. Когда Мендель скрещивал, например, высокие и низкие растения, полученные гибриды оказывались высокими. Но когда он скрестил гибриды между собой, то увидел, что четверть потомков – низкорослые. Недавно ученые выяснили, какой ген отвечает за эти различия. Ген le кодирует белок, который запускает рост у гороха. У низких растений было две копии мутантной формы данного гена. Белок у этих растений работал неправильно, и их рост тормозился. Гибриды же обладали одной работающей копией гена, и этого хватало, чтобы вырасти нормально.
Когда гибридные особи вырастали, перед образованием пыльцевого зерна и семязачатка некоторые их клетки делились мейозом. Хромосомы в этих клетках удваивались, менялись фрагментами между соответствующими участками и разделялись на четыре набора. С каким вариантом гена le попадет в пыльцевое зерно хромосома – нормальным или мутантным, – определялось случайным образом. В итоге оба варианта гена были в половине всех половых клеток.
Биолог Лоренс Херст как-то написал, что процесс мейоза «напоминает пьяную походку возвращающегося с вечеринки человека: шаг назад, два шага вперед». Однако этот странный процесс лежит в основе одной из самых изящных закономерностей в наследственности.
__________
Впервые ученые увидели хромосомы в середине XIX в., но мейоз оставался неизвестным еще несколько десятилетий. В начале 1900-х гг. бельгийский священник Франс Альфонс Янсенс окрашивал яйцеклетки саламандр таким способом, что можно было наблюдать их хромосомы в микроскоп. Процесс окраски заставал клетки на разных стадиях мейоза, подобно стоп-кадру в фильме. Это выглядело так, как если бы хромосомы взаимодействовали друг с другом, а потом разошлись.
В кратком отчете о своем открытии, опубликованном в 1909 г., Янсенс не пытался делать глубоких выводов о наследственности. Но он чувствовал, что увиденное может оказаться важным. Исследователь вопрошал: «Не слишком ли мы самонадеянны? Время покажет».
Долго ждать не пришлось. Пока Янсенс наблюдал за клетками саламандры в Бельгии, в Нью-Йорке Томас Морган, как уже говорилось, скрещивал белоглазых мух. Американский исследователь со своими коллегами первым открыл, что наследственные факторы, отвечающие за белый или красный цвет глаз, находятся в хромосоме. (Сегодня мы бы сказали, что ген цвета глаз – это фрагмент ДНК в хромосоме.) Кроме того, группа Моргана обнаружила, что на той же хромосоме расположен еще один наследственный фактор, вызывающий у мух укорочение крыльев.
Это была X-хромосома, и Морган с коллегами смогли изучать данные факторы с помощью скрещивания мух. Они воспользовались той особенностью полов, что у самцов только одна X-хромосома, а у самок – две. Скрещивая мух, Морган и его студенты получили самок одновременно с белыми глазами и короткими крыльями. При этом фактор белых глаз был на одной X-хромосоме, а коротких крыльев – на другой. Затем полученных мух скрестили с самцами – обладателями красных глаз и нормальных крыльев.
У сыновей этих самок была только одна X-хромосома, которую они унаследовали от матерей. Ученых не удивило, что у некоторых сыновей были белые глаза и нормальные крылья, а у других – красные глаза и короткие крылья. Кроме этого Морган и его ученики увидели нечто необычное: несколько сыновей было с белыми глазами и короткими крыльями, а еще несколько – с красными глазами и нормальными крыльями. X-хромосомы их матерей обменялись своими наследственными факторами, создав новую комбинацию признаков.
В более поздних исследованиях группа Моргана показала, что можно разделить два фактора, находящихся на одной хромосоме. Исследователи вывели мух, у которых на одной и той же X-хромосоме находились факторы, отвечающие за короткие крылья и желтое тело. У сыновей, получивших данную хромосому, должны были проявиться обе эти черты. Однако, когда Морган скрестил этих мух между собой, некоторые сыновья получили желтое тело и нормальные крылья. А у некоторых было обычное тело с короткими крыльями.
Морган не сразу разобрался в полученных результатах. К счастью, он случайно наткнулся на отчет Янсенса и увидел, что Янсенс, сам того не ожидая, нашел физическое объяснение его результатам. Морган с коллегами быстро создали новую гипотезу, объединяющую обе группы результатов. Они уверенно предположили, что на каждой хромосоме присутствует набор факторов, расположенных линейно, как бусины на нити. В процессе образования яйцеклеток у самок их X-хромосомы перекрещиваются и обмениваются участками друг с другом.
Соединение и расщепление признаков происходило довольно редко. Однако Морган и его студенты заметили, что это случалось с поразительной регулярностью. Какой-то определенный признак всегда образует новую комбинацию с другим у 1 % всех потомков, а новую комбинацию с третьим – у 2 %. Ученик Моргана Алфред Стёртевант понял, что причина такой загадочной закономерности кроется в расположении этих генов на хромосоме.
Когда во время мейоза хромосома разрезается на фрагменты, гены, находящиеся рядом, скорее всего окажутся в одном сегменте. А те, что далеко отстоят друг от друга, с большей вероятностью попадут в разные. Это происходит подобно тому, как если бы кто-то решил разодрать словарь – слово «мейоз» скорее оказалось бы в том же фрагменте, что и «митоз», а не в том, где объясняется «хромосома». Догадка Стёртеванта привела его к построению генетических карт, которые показывали, насколько далеко расположены гены относительно друг друга на хромосоме. Теперь наследственность обрела свою географию.
__________
Принципы наследственности, открытые группой Моргана на мухах, вновь и вновь оказывались верными и для других видов. Мейоз не был исключением. Мы, люди, наряду с другими животными тоже оказались его продуктами. Колышущиеся приливами скользкие водоросли, шелестящие на ветру заросли бамбука, вздымающиеся из-под земли грибы-веселки – у них у всех происходит мейоз. Хотя ученые пока не пришли к единому мнению о том, зачем он возник, уже есть множество доказательств, что он позволяет эволюции работать лучше.
Смотрите, что делает мейоз у одной из моргановских мух-дрозофил. Как и у других мух, у нее есть определенный набор признаков, скажем, короткие крылья, сильная иммунная система и способность откладывать множество яиц. Предположим, что гены, отвечающие за эти признаки (один плохой и два хороших), находятся на одной хромосоме. Без мейоза муха передавала бы эти три гена в одной связке, так как они лежат на одной хромосоме. Более того, если на этой хромосоме возникнет новая вредная мутация, то и она будет передаваться потомкам вместе с остальными генами. Через поколения потомство этой мухи будет страдать от бремени вредных мутаций.
Дайте мухе мейоз – и все изменится. Ее потомки более не обречены наследовать определенную комбинацию генетических вариантов на каждой хромосоме. Мейоз перемешает аллели и образует новые комбинации. Некоторые потомки мухи унаследуют маленькие крылья и слабую иммунную систему. Зато у других благодаря мейозу крылья окажутся мощными, а иммунная система – сильной. Эти здоровые мухи смогут размножиться, и их потомки будут поддерживать популяцию в следующих поколениях. В итоге в популяции сохранятся комбинации лучших аллелей, а вредные мутации канут в небытие.
Биолог из Гарварда Майкл Десай проверил эту идею, сравнив между собой разные дрожжи. Он выбрал эти одноклеточные грибы за их гибкость в отношении размножения. Дрожжи могут клонировать себя бесполым путем или размножаться половым. Для клонирования дрожжевая клетка выращивает почку, которая выпирает из ее клеточной стенки. Материнская клетка удваивает свои хромосомы и отправляет копии в почку, которая затем может оторваться, чтобы стать самостоятельной клеткой.
Иногда дрожжи переходят к половому размножению. У той линии, что использовал Десай, есть два типа спаривания, они называются a и α. При каждом из них выделяются химические вещества, привлекающие клетки с другим типом спаривания. Клетки a и α типа приближаются друг к другу и сливаются вместе. Объединенная клетка, содержащая двойной набор хромосом, может размножаться почкованием, давая новые клетки. Когда пища вокруг заканчивается, клетка отвечает на это тем, что запускает мейоз между a и α наборами хромосом.
Материнская дрожжевая клетка соединяет парные хромосомы разных наборов вместе и перемешивает их ДНК. Затем разделяет хромосомы и образует споры. Покрытые плотной оболочкой, они могут перенести смешанные гены в лучшие условия, где дрожжи смогут снова расти.
В своем эксперименте Десай позволил части дрожжей размножаться половым путем один раз в 90 поколений. Остальные же могли только клонировать себя. Десай сравнил произошедшие у дрожжей эволюционные изменения, заставив их конкурировать за еду с начальной популяцией в пробирках с питательной средой. Иногда у дрожжевой клетки появлялись новые мутации, дававшие ей преимущество, тогда такая клетка оставляла больше потомков. Десай следил за эволюционной судьбой каждой группы дрожжей на протяжении тысячи поколений.
Различия между половыми и бесполыми дрожжами были яркими. Иногда среди клеток, которые могли только клонировать себя, появлялась удачная мутация, позволявшая им размножаться быстрее. Однако вместе с этой полезной мутацией клоны получали и весь набор вредных. Те дрожжи, которым Десай позволял запускать половое размножение, отделяли полезные мутации от вредных благодаря мейозу. По мере того как появлялись новые полезные мутации, мейоз собирал их вместе, создавая еще более приспособленные дрожжи. В конце эксперимента дрожжи с половым размножением эволюционировали гораздо лучше, чем дрожжи с бесполым.
__________
Эта древняя способность создавать новые комбинации отвечает на некоторые типичные вопросы о наследственности. Когда Грейс родила нашу вторую дочь Веронику, мы, наблюдая за ее ростом, удивлялись, как же она непохожа на свою старшую сестру Шарлотту. У них были одни и те же родители, они унаследовали свою ДНК из одних и тех же двух геномов. Они выросли в одном доме, ели одну и ту же пищу. И при этом Шарлотта и Вероника оказались отнюдь не клонами друг друга. У Шарлотты бледная кожа, веснушки, зеленоватые глаза и волосы пшеничного цвета. У Вероники кожа более темного оттенка, а глаза – цвета красного дерева. Шарлотта выросла до 152 см – это довольно средний рост. Вероника оказалась выше среднего, поэтому многие думают, что она на пару лет старше, чем в действительности. В детстве Шарлотта при знакомстве с новыми людьми вела себя сдержано, как бы оценивая их. Вероника, стоявшая рядом, всегда с жаром выкрикивала свое имя. Когда Шарлотте исполнилось 12 лет, ее страстно увлекли галактики и темная материя. Веронику не интересовало, из чего состоит Вселенная. Она предпочитала петь и читать Джейн Остин.
Вероятно, частично различия между дочерьми связаны с их жизненным опытом. Но свою роль сыграл и мейоз. Мы с Грейс дали каждому нашему ребенку разные комбинации генов, унаследованных нами от наших родителей. Уникальное сочетание аллелей, которое в конечном счете получили наши дети, оказало и уникальное влияние на то, как они росли.
Однако работу мейоза интуитивно не всегда легко понять. Родители передают своим детям по одной из каждой пары хромосом. Какая именно это будет хромосома, определяется случайно. Статистика говорит, что ДНК у любой пары родных братьев и сестер должна совпадать на 50 %. Зато у однояйцевых близнецов ДНК идентична на 100 %, потому что они развиваются из одной оплодотворенной яйцеклетки. Двоюродные братья и сестры, у которых общие дедушка и бабушка, будут генетически идентичны в среднем на 12,5 %.
Все это действительно так, но только в среднем. Столь же верно утверждение, что если вы бросите пару кубиков, то выпавшая сумма будет примерно равной семи. Однако в каком-то отдельном броске у вас могут выпасть две единицы. После того как мейоз перемешает ДНК между парными хромосомами, может случиться так, что в яйцеклетках окажется больше ДНК от отца женщины, чем от ее матери; иной же раз картина обратная. Братья и сестры, появившиеся из этих яйцеклеток, получат больше ДНК от маминого отца, чем от ее матери. А для других детей может быть все наоборот. Таким образом, мейоз делает одних братьев и сестер генетически более близкими, чем других.
Когда у ученых появилась возможность прочитывать последовательность ДНК, они применили ее для сравнения генетической схожести обычных людей. В 2006 г. генетик Питер Вишер из Квинслендского института медицинских исследований (Австралия) и его коллеги исследовали 4401 пару братьев и/или сестер, изучив несколько сотен генетических маркеров у каждого. Часто у братьев и сестер было несколько одинаковых сегментов хромосом, которые они унаследовали от одного из родителей. Ученые обнаружили, что в среднем у братьев и сестер примерно половина всей ДНК состоит из одинаковых участков. Однако различие между многими парами не было равным точно 50 %. Максимальное значение общей ДНК, которое зарегистрировали исследователи, оказалось 61,7 %, минимальное – 37,4 %. Другими словами, среди всего разнообразия наследования братья и сестры в ряде пар были ближе к однояйцевым близнецам, а в некоторых других – к кузенам и кузинам.
__________
Первые эукариоты, у которых появилась наследственность, подчиняющаяся закону Менделя, передали ее своим потомкам. В большинстве родословных она сохраняется и по сию пору. Уже примерно 2 млрд лет тарантулы используют мейоз, чтобы соединить хромосомы и перемешать аллели. То же делают колибри, розы и бледные поганки. Однако при всех стойких преимуществах мейоза в определенных обстоятельствах он может затухать и исчезать.
К примеру, у некоторых видов растений процесс мейоза нарушается. Их яйцеклетки-семязачатки образуются из клеток-предшественниц без перемешивания ДНК и последующего расхождения хромосом. Наоборот, такие растения часто образуют семязачатки с помощью обычного деления. Материнская клетка с парными хромосомами делится на две дочерние с точно такими же парными хромосомами.
Хотя эти растения в процессе эволюции отказались от мейоза, они все еще цепляются за пережитки своей прошлой жизни, в которой было половое размножение. У некоторых из них семязачаток может сформироваться, только если на цветок попала пыльца и принесла с собой правильные молекулярные сигналы. Все, что нужно от пыльцевого зерна, – именно эти сигналы. Мужская ДНК здесь не используется.
Ястребинка, которую Мендель выбрал для изучения после гороха, оказалась одним из таких странных растений. У гороха мейоз происходит стабильно, давая соотношение доминантных и рецессивных признаков у потомства, равное трем к одному. Было ошибкой для поиска такого же соотношения выбрать ястребинку – растение, эволюционно отошедшее от подобного способа наследования. Когда Мендель нанес пыльцу на цветок ястребинки, он запустил процесс образования семян, которые содержали полностью материнскую ДНК, а ДНК из пыльцы в них не было. И только когда генетики научились отслеживать передачу генов от одного поколения ястребинки к другому, они осознали великое невезение Менделя.
Растения, как и другие эукариоты, утрачивают мейоз, когда его эволюционная польза перестает перевешивать затраты на него. В определенных ситуациях организмы смогут размножаться более эффективно, если будут просто удваивать свою ДНК, а не объединяться с противоположным полом, разрывая связи между своими генами.
Есть и другие способы нарушить закон Менделя. Иногда отдельные гены обманывают наследственность ради своей эволюционной выгоды.
Такие молекулярные хакеры стали известны в 1920-х гг., когда были обнаружены мухи, приносящие в потомстве преимущественно дочерей. Однажды советский биолог Сергей Гершензон отправился в лес, чтобы отловить вид мух Drosophila obscura. Он принес их в московский Институт экспериментальной биологии и подобрал для их содержания питательную смесь из изюма, картофеля и воды. Некоторые из пойманных самок уже несли оплодотворенные яйца, которые затем отложили в большом количестве. Гершензон выбрал нескольких потомков для дальнейшего разведения, а именно – чтобы вывести на их основе экспериментальные линии для изучения наследования тех или иных признаков.
Гершензон заметил, что у двух из этих линий было что-то особенное. Обычно кладка яиц Drosophila obscura содержит примерно равное соотношение самцов и самок. Однако в двух линиях самки производили на свет больше дочерей, чем сыновей. А иногда сыновей вообще не было. По словам Гершензона, это соотношение оказалось настолько выраженным, что «по-видимому, его нельзя было объяснить случайными причинами».
В поисках истинной причины исследователь провел серию экспериментов со скрещиванием. Особенность рождать больше дочерей может передаваться как простой признак, имеющий свою генетическую основу. В результате Гершензон выяснил, что определяющий ген находится на X-хромосоме. Но при этом ученый не понимал, как именно этот ген сдвигает соотношение полов в сторону дочерей. Гершензон осознал, что, каким бы ни был этот особенный способ, он находит лазейку в законе Менделя.
Обычно у мух вероятность родиться самцом или самкой составляет 50 %, потому что сперматозоид имеет 50 %-ный шанс получить как X-, так и Y-хромосому. В результате нормальный аллель гена, лежащий на X-хромосоме самца дрозофилы, унаследует примерно половина его потомков. Для мух Гершензона расчеты получались другие. Если у самца появляется та самая таинственная мутация, которую открыл Гершензон, то большинство потомков – да едва ли не все – получат его X-хромосому и почти никто не унаследует Y-хромосому. Эти мухи могут передать ген, отвечающий за рождение дочерей, своим потомкам и дальше. В целом вероятность для мухи унаследовать мутацию, отвечающую за преимущественное рождение дочерей, будет выше 50 %. В результате мутация закрепляется в популяции.
Гершензон пришел к выводу, что «это и позволяет ему распространяться».
__________
Сначала открытие Гершензона показалось странным исключением из правил наследственности. Но прошло не так много времени, как ученые стали находить и другие случаи, когда гены подправляли вероятности Менделя в свою пользу. Весь комплект подобных исключений получил название генного драйва. Этот генный драйв настолько силен, что вызывает, можно сказать, эпидемию распространения аллеля гена сквозь поколения, пока он не начнет преобладать в популяции. Сегодня в списке генных драйвов уже много пунктов, причем не только у мух, но и у растений, грибов, млекопитающих и, возможно, даже у людей.
Иногда генный драйв осуществляется с помощью токсинов. Сперматозоид несет ген, кодирующий токсин, который может попадать к другим сперматозоидам. Эти другие сперматозоиды от него гибнут – если только у них нет противоядия, которое кодируется тем же элементом генного драйва. В каких-то случаях ген, подверженный драйву, ждет, пока эмбрионы мужского пола не начнут развиваться, а потом включается и убивает их.
Генный драйв может нарушать закон Менделя и у самок. В процессе своего развития клетка-предшественница яйцеклетки делится на четыре. Одна станет яйцеклеткой, три других – полярными тельцами, для них это репродуктивный тупик. Каждая копия обычного аллеля гена имеет равные шансы попасть как в яйцеклетку, так и в любое из полярных телец. У некоторых аллелей появилась способность управлять этой вероятностью. Они скорее окажутся в яйцеклетке и таким образом передадутся следующим поколениям дочерей.
Существует столь много доказательств мощного генного драйва у эукариот, что логично ожидать того же и у людей. Однако свидетельства такого нарушения законов Менделя у нас очень неоднозначные. Это неудивительно, потому что генный драйв сложно исследовать на нашем виде. Ученые могут скрещивать мух или грибы, отслеживая каждый шаг в размножении и развитии, чтобы заметить проявление генного драйва. Когда речь идет о человеке, генетики должны стараться извлечь максимум из той информации, которую предоставляют уже произошедшие события.
Самым заметным признаком наличия у людей генного драйва мог бы быть человеческий вариант мушиного наблюдения Гершензона: семьи, в которых рождаются одни дочери. Однако относительно небольшое количество детей в человеческих семействах не позволяет уверенно судить, является ли рождение только дочерей следствием генного драйва. То, что у нас с Грейс две дочери, вовсе не означает отсутствия сыновей, если бы мы родили десятерых детей.
Для поиска генного драйва можно объединить в одно большое исследование тысячи семей – вместо того чтобы рассматривать их по отдельности. Даже если одна семья относительно мала, ее добавляют к множеству других, которое велико настолько, что в нем получится отличить случайность от драйва в передаче генов. Некоторые из таких массивов данных содержат информацию и о генетических маркерах. Это позволяет искать определенные маркеры, которые передаются от родителей детям чаще, чем можно было бы ожидать, если основываться только на менделевских принципах.
Поскольку эта концепция существует, ученые активно стараются получить четкое представление о генном драйве у нашего вида. В недавних работах отыскалось несколько перспективных генов. Но, когда исследователи попытались воспроизвести результаты на другой группе людей, этот эффект не выявился. Может быть, следует подождать, пока мы не получим аккуратные и подробные последовательности ДНК, и лишь потом начать поиск тех признаков, по которым удастся установить, насколько сильно генный драйв бушует среди людей.
Возможно, генный драйв атаковал наших предков, но был преодолен. Он недальновиден в своих победах. Аллель может быстро распространяться по популяции, но по ходу дела подвергать вид значительным рискам. Если аллель убивает сперматозоиды с Y-хромосомой, то в такой популяции будет мало самцов. Все больше самок не вступит в контакт с самцами и умрет, не оставив потомства. Популяция сначала уменьшится, а потом и вовсе исчезнет. Иногда достаточно всего нескольких десятков поколений, чтобы генный драйв довел популяцию до вымирания.
Хотя теоретически он способен приводить к такому исходу, никто этого в природе не наблюдал. Многие драйвы не ведут к полному уничтожению, потому что организмы вырабатывают защиту против них. У животных и растений в процессе эволюции появились специальные молекулы РНК, которые взаимодействуют с генами, подверженными драйву, и мешают синтезировать белки, которые они кодируют. Генный драйв мог быть нарушен мутацией, и тогда дальнейшая защита уже не понадобилась бы. В защитных генах, возможно, накапливались свои мутации. И даже спустя миллионы лет все еще можно распознать остатки этих защитных систем.
Оказывается, наш собственный геном полон следов этой борьбы. Даже если генный драйв не проявляется сейчас, в прошлом он сыграл важную роль в нашей истории. И до сих пор мы передаем по наследству шрамы, оставшиеся от того древнего сражения. То, что открыл Мендель, было не законом, а, скорее, полем битвы.
Назад: Часть II. Своенравная ДНК
Дальше: Глава 6 Спящие ветви