Книга: Гонка за Нобелем. История о космологии, амбициях и высшей научной награде
Назад: К вопросу о спектре
Дальше: Опровержение творения

Некоторые любят погорячее

Существуют ли какие-то следы, некое подобие археологических источников, с помощью которых космологи смогли бы изучить историю Вселенной? В 1948 году, когда была постулирована теория стационарной Вселенной, Джордж (Георгий) Гамов и его аспирант Ральф Альфер открыли необычные космические часы, впрочем больше напоминавшие термометр, чем хронометр. Это было ядро изотопа водорода под названием дейтрон, которое позволило ученым заглянуть в прошлое, а именно в период между одной секундой и примерно 20 минутами после гипотетического Большого взрыва, который стал самым хорошо изученным этапом в космологической истории.
Гамов предположил, что понимание того, как сформировались самые легкие атомы в периодической таблице Менделеева (помните школьные уроки химии?), может пролить свет на события ранней Вселенной. Если Большой взрыв действительно был, то оставшиеся от него следы должны быть самыми легкими, самыми маленькими и самыми простыми по строению атомами, состоящими из минимального количества протонов и нейтронов. Эти легкие атомы были единственными «реликтами», возраст которых могли установить космические археологи. Гамов и Альфер показали, что относительное изобилие химических элементов может служить своего рода времязависимым термометром, который был наиболее чувствителен в период горячей Вселенной сразу после Большого взрыва.
В 1932 году американский физик Гарольд Юри открыл дейтерий (лат. deuterium — второй), чье название указывает на то, что ядро состоит из двух частиц. (Ядро атома водорода содержит один протон, дейтерий по химическому составу идентичен «разновидности» водорода, изотопу, ядро которого содержит протон и нейтрон.) Дейтрон, как называется ядро дейтерия, фактически представляет собой половину ядра гелия. Следовательно, кулинарный рецепт приготовления ядра гелия мог бы звучать так: «Возьмите два дейтрона и запекайте их при температуре в несколько миллиардов градусов в течение минуты». Тепловое излучение этой раскаленной печи, состоящее из частиц света (фотонов), способно прижать два дейтрона друг к другу достаточно сильно, чтобы преодолеть силу электрического отталкивания между двумя положительно заряженными протонами. (Конечно, реальный процесс образования гелия немного сложнее, но суть его такова.) Однако в этом кулинарном рецепте есть два критических условия. При малейшем превышении определенного порога температуры — примерно в 10 млрд градусов Цельсия — основной ингредиент, дейтрон, распадается на части. Следовательно, чтобы создать ядро гелия, температура должна быть выше нескольких миллиардов градусов, но ниже 10 млрд градусов. И вторая сложность: нестабильность нейтрона. Если он не связан с протоном в течение примерно десяти минут, происходит его радиоактивный распад.

 

 

Таким образом, чтобы во Вселенной осталось хоть сколько-нибудь дейтерия, строительного материала для гелия, а также свободных нейтронов, необходимых для формирования новых дейтронов, ее температура должна была упасть ниже магического порога в 10 млрд градусов за довольно короткое время — менее чем за 600 секунд. Благодаря неустойчивости нейтронов дейтерий стал для ученых температурозависимыми «часами» — термохронометром. Но что могло вызвать такое быстрое охлаждение от бесконечных температур до этой высокой, но все же конечной температуры? Расширение Вселенной. При расширении все охлаждается — например, вы сталкиваетесь с этим, когда распыляете аэрозоль. Когда выпускается содержимое баллончика, газ внутри него становится менее плотным и металлическая поверхность охлаждается.
Пока снижение температуры Вселенной не преодолело планку в 10 млрд градусов, кишащие в раскаленной плазме фотоны мгновенно разбивали любые образующиеся дейтроны, таким образом обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Как только Вселенная немного остыла, началось стремительное образование гелия. Но строительный ядерный бум продлился недолго. Через 20 минут после того, как началось охлаждение с бесконечных температур, все было кончено: Вселенная стала слишком холодной, чтобы сплавлять дейтроны в ядра гелия, и процесс, показанный на рис. 14, подошел к концу. С тех пор количество первозданного гелия в космосе оставалось неизменным. Только представьте: за отрезок времени короче одного эпизода сериала «Теория Большого взрыва» образовались почти все легкие элементы во Вселенной!
Три самых легких ядра — дейтроны и ядра водорода и гелия — стали древними артефактами, с помощью которых можно было протестировать модель Большого взрыва. В 1949 году Гамов и Альфер предсказали, что на каждое ядро гелия должно приходиться 12 ядер водорода плюс небольшое количество остаточного дейтерия (который в то время астрономы не умели обнаруживать). Наблюдения за звездами в Млечном Пути в значительной степени согласовывались с этим прогнозом. Ободренные этим подтверждением, Гамов и Альфер пошли еще дальше и предположили, что все элементы, даже углерод, основа жизни, могли быть образованы в первые несколько минут после Большого взрыва в огненном шаре ранней Вселенной.
Позже Альфер и его коллега Роберт Херман выдвинули предположение, что процесс охлаждения Вселенной продолжается по сей день. При этом тепло, оставшееся от первоначального огненного шара, и сегодня подогревает космос до температуры в 5 кельвинов — на пять градусов выше абсолютного нуля по шкале Цельсия. Мы можем увидеть это тепло в виде микроволнового фонового излучения, равномерно заполняющего всю Вселенную.

 

 

Идея, что Вселенная превратилась из некогда кипящей и бурлящей точки сингулярности — состояния материи и энергии, с которого все началось, — в ледяную ванну из света, окружающего нас повсюду, была слишком нелепа, чтобы воспринимать ее всерьез. На самом деле только один космолог воспринял эту идею как вызов: Фред Хойл. И он сделал все, чтобы ее опровергнуть.
Назад: К вопросу о спектре
Дальше: Опровержение творения