Книга: Складки на ткани пространства-времени
Назад: 3 Теория Эйнштейна проходит проверку
Дальше: 5 Как живут звезды

4
А есть ли волны: дискуссия с переходом в потасовку

Филипу Моррисону не на что было надеяться, кроме трости.
В понедельник 10 июня 1974 г. десятки физиков собрались в Массачусетском технологическом институте (MIT) на Пятую Кембриджскую конференцию по релятивизму. Приглашенные лекторы, обсуждения, стендовые доклады, вопросы и ответы – ничего особенного. Обычное собрание ученых.
Все изменилось, когда речь зашла о гравитационных волнах. Два видных участника конференции – Джо Вебер и Дик Гарвин начали дискуссию, переросшую сначала в спор, затем в выкрики и оскорбления. Наконец они вскочили и с яростью кинулись друг на друга у всех на виду, скрипя зубами и сжимая кулаки. Что стряслось?
Моррисон, профессор физики MIT, был ведущим заседания. Его призывы: «Джентльмены, джентльмены!» – пропали втуне. В любой момент могла начаться потасовка, как между завсегдатаями бара. Что оставалось делать пострадавшему от полиомиелита Моррисону? Словно волшебник, воздевающий магический посох, он вскинул трость и разделил вояк. Кровь не пролилась.
Произошло следующее. Джо Вебер заявил, что обнаружил гравитационные волны. Дик Гарвин ему не поверил, и по веским причинам. Фактически едва ли хоть кто-нибудь поверил Веберу. В те времена физики сомневались в самом существовании гравитационных волн. Неудивительно, что страсти накалились.
_________
Сомнения по поводу гравитационных волн впервые высказал в 1916 г. сам Альберт Эйнштейн. Не каждое предсказание в ОТО столь однозначно и убедительно, как хотелось бы. Бесспорно, перигелий Меркурия должен смещаться быстрее, чем предполагает теория Ньютона. Свет звезд должен отклоняться искривлением пространственно-временного континуума. Время должно замедляться в сильных гравитационных полях. Сделать эти предсказания нетрудно. Другие менее очевидны, и существование гравитационных волн – одно из них. По крайней мере так считал Эйнштейн.
В математическом выражении уравнения поля ОТО аналогичны уравнениям электродинамики Максвелла. В 1860-х гг. шотландский физик Джеймс Клерк Максвелл впервые предположил, что электричество и магнетизм – две стороны одной медали и что свет – это электромагнитная волна. Полтора века спустя его уравнения остаются достаточно популярными, чтобы печататься на футболках (хотя носят их, вероятно, только студенты-физики). Это относится и к эйнштейновским уравнениям поля.
Что значит «аналогичны»?
Теория электродинамики Максвелла доступна для понимания. Возьмите электрический заряд, придайте ему ускорение, и он создаст электромагнитную волну. Следствия мы наблюдаем повсеместно в форме света, радиоволн и т. д. Могут возникнуть наивные ожидания – найти нечто подобное в ОТО: возьмем «гравитационный заряд» (массивный объект), придадим ему ускорение, и он породит гравитационную волну. Звучит логично. Безусловно, что-то подобное виделось Эйнштейну в конце 1915 г., когда он вывел окончательную версию уравнений поля.
Однако между электромагнетизмом и гравитацией существует большая разница. И электрические, и магнитные заряды могут быть как положительными, так и отрицательными. Они могут притягиваться или отталкиваться. Напротив, масса всегда положительна. Отрицательной массы не существует, гравитация – всегда притяжение, она не может быть силой отталкивания.
В 1916 г. это заставило Эйнштейна сделать вывод, что «не существует гравитационных волн, аналогичных световым волнам», как он написал немецкому математику Карлу Шварцшильду. В его сложной аргументации присутствовали скаляры, тензорные плотности, диполи и унимодулярные системы координат (вам необязательно знать, что все это значит; я упомянул термины только для того, чтобы подчеркнуть, что ОТО – сложная вещь).
Позднее в том же году Эйнштейн изменил мнение после предложения лейденского ученого Виллема де Ситтера использовать для расчетов другую систему координат. Разница оказалась огромной. Да, заключил Эйнштейн, гравитационные волны существуют. И распространяются со скоростью света – так же, как электромагнитные волны Максвелла. В июне Эйнштейн представил новые результаты в Прусской академии наук в Берлине. «Приближенное интегрирование уравнений гравитационного поля» – возможно, звучит скучно, но это эпохальная статья – первая в истории публикация, посвященная гравитационным волнам.
И она ошибочна.
Осенью 1917 г. финский физик Гуннар Нордстрём указал на важную ошибку в работе Эйнштейна (если вам интересно, она связана с производной псевдотензора). Из-за нее Эйнштейн промахнулся, выводя формулы гравитационных волн в 1916 г. Знаковой следует считать его статью от января 1918 г. с простым названием «О гравитационных волнах». «Мне пришлось вернуться к этой теме, – писал Эйнштейн в первом абзаце, – поскольку мое первое представление недостаточно ясно и, более того, запятнано прискорбной ошибкой в расчетах». Всегда полезно признавать свои заблуждения, особенно в науке.
Нельзя сказать, что статья 1918 г. убедила всех и каждого. Особенно активным критиком идеи гравитационных волн был Артур Стэнли Эддингтон – один из самых горячих сторонников Эйнштейна и первых популяризаторов ОТО, сам видный астрофизик.
Эддингтон считал гравитационные волны математическим вывертом теории, не имеющим никакого физического смысла. Он не согласился и с выводом Эйнштейна, что такие волны должны иметь скорость света, и в 1922 г. произнес знаменитые слова, что «гравитационные волны распространяются со скоростью мысли» – остроумный намек, что они не более чем игра воображения.
В 1920–1930-х гг. идея гравитационных волн практически никого не интересовала. Даже если они существуют, то слишком слабы, чтобы их можно было обнаружить. Казалось невозможным когда-либо подтвердить или опровергнуть это предсказание. Большинство ученых о нем забыли.
Эйнштейн вернулся к этой теме только в 1936 г. Он уже жил в США и занимал должность в принстонском Институте перспективных исследований. Великое место, великие люди, великие умы. Ему особенно нравилось работать с Натаном Розеном, по возрасту годившимся Эйнштейну в сыновья. Вместе они размышляли над идеями ОТО, квантовой механики, ЧД – и гравитационных волн. И пришли к поразительному выводу, что последние все-таки не существуют. Очевидно, Эддингтон был прав. Вскоре они подали в ведущий на тот момент профессиональный физический журнал Physical Review статью «Существуют ли гравитационные волны?», где отвечали на заданный в заголовке вопрос отрицательно, объясняя причины такого вывода.
Конечно, Эйнштейн и Розен заблуждались, – спросите тысячи ученых из международных научных сообществ LIGO и Virgo, заявивших о первой в истории регистрации гравитационных волн в феврале 2016 г. Хорошо, что статья так и не была опубликована. Джон Тейт, редактор Physical Review, отослал рукопись рецензенту, высказавшемуся против публикации и написавшему: «Насколько я могу судить… возражения Эйнштейна и Розена [против гравитационных волн] не существуют».
Оценка научных статей анонимными рецензентами-коллегами – обычная современная практика, особенно в физике. Но в те времена это было новинкой даже для Physical Review, о которой Эйнштейн не подозревал. Европейские журналы просто печатали присылаемые статьи. Он пришел в ярость, получив отказ, и никогда больше не публиковался в Physical Review. Статью он предложил в филадельфийский Journal of the Franklin Institute, имевший гораздо меньший тираж и не прибегавший к практике рецензирования, где ее охотно приняли.
Все изменилось осенью 1936 г. Натан Розен принял предложение работать в Советском Союзе, и ассистентом Эйнштейна стал польский физик Леопольд Инфельд. Космолог Говард Робертсон объяснил Инфельду заблуждение Эйнштейна и Розена. (Робертсон, кстати, и был рецензентом статьи в Physical Review.) К тому моменту, когда Инфельд сообщил своему руководителю о проблеме, Эйнштейн и сам обнаружил ошибку. Даже Натан Розен в далеком Киеве заметил эту проблему, имевшую сложный для непосвященных математический характер.
Статья в конце концов вышла в январе 1937 г. в Journal of the Franklin Institute в значительной переработке. Эйнштейн изменил и название. Как и публикация 1918 г. (тоже исправленный вариант более ранней статьи), она стала называться «О гравитационных волнах». Вот ее смысл: мы не можем доказать, что эти неуловимые волны не существуют, но и в их существовании мы не уверены.
К тому моменту ОТО было почти 25 лет. Но ученые продолжали оспаривать существование предсказанного теорией феномена. Это положение сохранялось следующие 20 лет. Когда Эйнштейн умер в 1955 г., физическая реальность гравитационных волн по-прежнему вызывала серьезную полемику, а их свойства оставались практически неизвестными. Например, менее чем через три месяца после смерти Эйнштейна Розен заявил, что гравитационные волны не могут переносить энергию – завуалированный способ сказать, что они не имеют реального физического существования. Но через полтора года мнения начали меняться, особенно после того, как физики-теоретики Феликс Пирани и Ричард Фейнман и космолог Герман Бонди доказали, что они все-таки могут переносить энергию. Гравитационные волны стали считаться реальным физическим феноменом. Оставалась лишь одна проблема – как их обнаружить.
_________
Прежде чем продолжить, важно создать отчетливое представление о гравитационных волнах. Уверен, вы слышали фразу «рябь пространства-времени». Возможно, вы также видели компьютерную анимацию слияния ЧД, когда двухмерная плоскость покрывается спиральными складками. Я попытаюсь по-другому описать таинственные волны Эйнштейна. («Волны Эйнштейна» не научный термин. Но мне нравится это выражение, и я позволяю себе использовать его в качестве синонима понятия «гравитационные волны».)
Первое и самое важное: ничто не идет «волнами» или «рябью» сквозь пространство, как в случае водяных, звуковых и даже световых волн. Нет, речь здесь о пространственно-временном континууме как таковом. Чтобы мысленно увидеть это, давайте сначала рассмотрим одномерное «пространство» – прямую линию. Представьте туго натянутую скакалку. Можно пустить волну по ней, равномерно поднимая и опуская один из концов, но для понимания волн Эйнштейна этот образ совершенно не подходит. Помните, что речь идет о волнах самого пространства (и в самом пространстве). В случае одномерного пространства мы должны представить волны в пределах этого единственного измерения.
Резиновая скакалка обладает определенной эластичностью. Ее можно немного растянуть в одном месте и немного сжать в другом, так что общая длина не изменится. Она остается одномерной прямой линией, но в ней распространяются продольные волны. Мысленно нанесите на скакалку деления с шагом в один миллиметр. При распространении в скакалке продольной волны вы увидите, что деления сначала отдаляются друг от друга, а затем сближаются. Это правильная визуализация одномерной гравитационной волны: пространство попеременно растягивается и сжимается.
Теперь перейдем к двухмерному пространству, например к листу бумаги или миллиметровки. Принцип тот же. Гравитационную волну в двухмерном пространстве следует изображать не выгибанием листа складками, как это часто делается. Нет, попытаемся представить распространение волн в двухмерной плоскости. При этом квадратики миллиметровки растягиваются в одних местах и сжимаются в других. (Точнее, в один момент времени данный квадрат увеличивается в определенном направлении, в другой момент уменьшается.) Перпендикулярно направлению волны пространство попеременно растягивается и сжимается, как если бы в плоскости распространялись области повышенной и пониженной «плотности пространства».
А волны Эйнштейна в трехмерном пространстве? Незачем напрягать воображение, представляя возмущение гипотетического четвертого измерения. Это всего лишь волнообразное изменение «плотности пространства». Мысленно рисуем трехмерную миллиметровку, состоящую из кубиков, и наблюдаем, как их стороны удлиняются и укорачиваются перпендикулярно направлению волны по мере ее прохождения.
Волны в трехмерном пространстве являются, разумеется, трехмерными. Популярные схемы и фильмы, изображающие их в двух измерениях, создают ложное впечатление, что две вращающиеся по орбите ЧД испускают гравитационные волны только в горизонтальной плоскости. В действительности волны распространяются во всех направлениях. В одном направлении они могут быть сильнее, чем в другом, но избегайте видеть их только в плоскости орбиты.
Итак, вот правильная визуализация волн Эйнштейна. В сущности, картина почти не отличается от волн плотности, распространяющихся по сосуду с желе, если его встряхнуть, где желе представляет безвоздушное пространство.
В зависимости от источника гравитационные волны могут сильно различаться частотами и амплитудами. (Если вы забыли, что такое частота, длина, амплитуда и скорость волны, вернитесь к главе 2.) Представьте две ЧД, взаимно обращающиеся очень близко друг к другу. Допустим, они совершают 100 оборотов в секунду (эта величина близка к реальности). Из теории Эйнштейна следует, что они излучают гравитационные волны с частотой 200 Гц – мимо наблюдателя, находящегося на некотором расстоянии, за каждую секунду проходит 200 «гребней волны». Поскольку гравитационные волны движутся со скоростью света (300 000 км/с), соответствующая длина волны составляет 1500 км.
Что касается амплитуды, то в случае гравитационной волны это мера интенсивности, показывающая, насколько растягивается и сжимается пространственно-временной континуум. В этом отношении важно понять две вещи. Во-первых, амплитуда уменьшается с расстоянием. Вблизи орбиты ЧД возмущение пространственно-временного континуума сильнее, чем вдали от нее. Фактически амплитуда обратно пропорциональна расстоянию. Проще говоря, волны, уйдя в 5 раз дальше, становятся в 5 раз слабее.
(Это может показаться странным. Ведь сила гравитации или яркость источника света уменьшается пропорционально квадрату расстояния. Если разнести две планеты в 5 раз дальше, их взаимное притяжение уменьшится в 25 раз. Увеличьте расстояние до звезды в 10 раз, и она станет в 100 раз бледнее. Однако в этих случаях мы рассматриваем энергию гравитационного поля или световой волны. В отношении волн Эйнштейна речь идет об амплитуде, действительно обратно пропорциональной расстоянию.)
Кроме того, нужно понять, что амплитуда гравитационных волн непостижимо мала. Я сравнил безвоздушное пространство с сосудом с желе. Но лучше было бы сравнить его с бетонным блоком. Если слегка качнуть банку с желе, все оно начнет колыхаться. Даже ударив по бетонному блоку кувалдой, вы едва ли заметите распространяющуюся в массиве бетона волну. Дело в том, что бетон гораздо плотнее желе. Пространственно-временной континуум обладает исключительной жесткостью. Его трудно деформировать, изогнуть, растянуть или сжать. Нужно очень много энергии, чтобы вызвать даже самое слабое возмущение.
Итак, вот характеристики сигнала гравитационной волны двух взаимно обращающихся ЧД. Скорость равна скорости света, частота 200 Гц, соответствующая длина волны 1500 км, амплитуда обратно пропорциональна расстоянию между наблюдателем и парой ЧД, но в любом случае чрезвычайно мала.
Что изменится в случае намного более массивных ЧД? Если бы они также совершали по орбите 100 оборотов в секунду, то частота (и, конечно, длина) волны была бы точно такой же, но амплитуда увеличилась бы благодаря большим массам.
Однако амплитуда зависит еще и от ускорения движения ЧД по орбите. Если сильнее их сблизить, так, что они начнут вращаться быстрее, амплитуда еще больше возрастет. Увеличится и частота: при меньшем расстоянии между ними ЧД будут иметь меньший период обращения. Таким образом, если ЧД сближаются по спирали, как амплитуда, так и частота сигнала гравитационной волны нарастают. Именно это обнаружили детекторы LIGO в сентябре 2015 г., когда впервые зарегистрировали волны Эйнштейна.
Я мог бы еще о многом рассказать, но приберегу это для следующих глав. Пора вернуться к более увлекательным историям – в данном случае о том, как двое ученых едва не подрались в полном конференц-зале.
_________
Джозеф Вебер знал о драках все. Во Вторую мировую войну он был капитан-лейтенантом ВМС США и в мае 1942 г. чудом не утонул на «Лексингтоне», превращенном японцами в месиво горящей стали. Джо готовился праздновать 33-летие – он родился за 12 дней до момента, когда Артур Эддингтон вглядывался в облака над островом Принсипи.
После войны Вебер работал инженером-электриком в Мэрилендском университете в Колледж-Парке к северо-востоку от Вашингтона, получил степень доктора философии в области микроволновой спектроскопии и разработал фундаментальные основы лазеров и квантовых генераторов СВЧ-диапазона. Это были первые шаги к открытиям, которые принесут другим ученым Нобелевскую премию по физике за 1964 г.
Вебер заинтересовался релятивизмом и гравитацией в середине 1950-х гг., проведя годовой творческий отпуск в общении с гуру физики Джоном Арчибальдом Уилером в Принстоне и Лейдене. Искривленный пространственно-временной континуум, ЧД, замедление времени, гравитационные волны – интересно! Он поставил себе целью узнать об этом все, что сможет, и в 1961 г. опубликовал маленькую книгу «Общая теория относительности и гравитационные волны» (General Relativity and Gravitational Waves).
К тому времени, однако, он успел обнародовать идею, сделавшую его знаменитым – по мнению некоторых, печально знаменитым. Джо Вебер решил начать охоту за волнами Эйнштейна. Их теория обсуждалась долгие годы. Пора засучить рукава, создать инструменты и попытаться обнаружить волны экспериментально.
План был прост: мерить ежеминутное, периодическое изменение размера какого-либо объекта на Земле. Рано или поздно проходящая гравитационная волна растянет и сожмет пространство и все, что в нем находится. Бетонный блок действительно испытает крохотное увеличение и уменьшение в ответ на прохождение гравитационных волн. Изменение размера будет исчезающе малым, следовательно, его будет чрезвычайно трудно измерить. Более того, воспользоваться линейкой не удастся, поскольку и линейка увеличится и уменьшится.
Вебер нашел решение – собственные частоты.
Большинство предметов имеют определенную собственную частоту, при которой колебания резонируют и усиливаются. Пожилые обитатели Такомы – города в штате Вашингтон к югу от Сиэтла, помнят, как в ноябре 1940 г. рухнул огромный, только что построенный подвесной мост, соединивший город с полуостровом Китсап. Очевидно, частота собственных колебаний моста совпала с преобладающими частотами сильных порывов ветра в проливе Такома-Нэрроуз. Конструкция начала резонировать, раскачиваться и изгибаться, пока не развалилась. Посмотрите на YouTube киносъемку обрушения моста – это впечатляет.
Итак, вот план Вебера. Берем в качестве детектора большой алюминиевый цилиндр. Подвергаем его точной механической обработке, чтобы он имел нужную нам собственную частоту. Подвешиваем на стальной проволоке, чтобы изолировать от колебаний окружающего пространства. С той же целью помещаем конструкцию в вакуумный сосуд. Подключаем к цилиндру пьезоэлектрические датчики. Ждем.
Если гравитационные волны существуют, то имеют широкий диапазон частот. Взрывы сверхновых, столкновения звезд, совершающие орбитальное движение ЧД – у каждого астрофизического события своя характерная частота. Достигнув Земли, они вызовут очень слабые колебания алюминиевого цилиндра. Остается надеяться, что частота некоторых волн Эйнштейна совпадет с собственной частотой цилиндра, вызвав в нем резонанс. Тогда его колебания станут более сильными, возможно даже измеряемыми. Более того, спустя секунды после прохождения волны цилиндр будет продолжать вибрировать, как камертон после удара. Пьезоэлектрические датчики зарегистрируют быстрое растягивание и сжатие образца, превращая малейшие изменения его длины в электрический сигнал.
В начале 1960-х гг. Вебер и его ученик Боб Форвард создали и испытали устройства, которые назвали «резонансными детекторами гравитационных волн» или «резонансными антеннами» и даже просто «антеннами Вебера». Как и следовало ожидать, они то и дело регистрировали слабые сигналы – нечто, выделяющееся из неизбежного фонового шума. Сверхновая в отдаленной галактике? Сталкивающиеся нейтронные звезды в нашей области космического пространства? Неизвестный энергетический процесс в центре Млечного Пути? Что это было, неведомо.
(Впервые услышав о сотрудничестве Вебера с Робертом Л. Форвардом, я подумал: «Забавно, он тезка автора «Драконьего яйца» (научно-фантастического романа 1980 г. о жизни на поверхности нейтронной звезды)». Оказалось, это один и тот же человек. Он ушел из Мэрилендского университета в 1962 г.)
Эксперименты Вебера стали привлекать серьезное внимание в 1968 г., когда он использовал два одинаковых детектора – один в кампусе Университета Мэриленда в Колледж-Парке, второй почти в 1000 км на восток, в Аргоннской национальной лаборатории возле Чикаго. Он стремился исключить ложноположительные результаты. Грузовик, проехавший по Балтимор-авеню, мог вызвать вибрацию антенны в Колледж-Парке, но не в Чикаго. Гравитационные волны от взрыва сверхновой или столкновения звезд должны были регистрироваться в обоих местах одновременно – по крайней мере с интервалом в долю секунды, с учетом скорости волн и в зависимости от направления, в котором находится их источник.
Каждая из двух алюминиевых антенн имела длину 1,5 м, диаметр около 65 см и вес 1400 кг. Их собственная частота составляла 1660 Гц – разумный выбор, если пытаться обнаружить волны Эйнштейна, вызванные столкновением нейтронных звезд. (Мы поговорим о нейтронных звездах в главе 5.) Оставалось дождаться одновременной регистрации двух сигналов – так называемого совпадения.
Веберу не пришлось долго ждать. С 30 декабря 1968 г. по 21 марта 1969 г. было зафиксировано не менее 17 совпадений. Очевидно, это не могло быть случайностью. В начале июня он впервые сообщил о результатах на конференции по релятивизму в Цинциннати (штат Огайо) и удостоился оваций. Вскоре после этого, 16 июня, в Physical Review Letters была опубликована его статья «Доказательство открытия гравитационного излучения» («гравитационное излучение» – ныне вышедший из употребления синоним понятия гравитационных волн).

 

 

Вскоре восторг сменился сомнениями. Во-первых, астрофизиков смущало количество событий. С учетом чувствительности антенн Вебера волны, вызванные столкновением нейтронных звезд, должны были возникать в пределах нескольких сотен св. лет от Земли. В такой маленькой области пространства 17 столкновений за три месяца были совершенно невозможны. Если же волны пришли от гораздо более дальнего источника, например какого-то неизвестного энергетического процесса в центре Млечного Пути, то задействованные энергии оказывались невероятно большими.
Экспериментаторы также прониклись скепсисом. Чтобы результаты эксперимента были признаны научным сообществом, они должны быть воспроизводимыми. Но Владимир Брагинский из МГУ не смог получить результаты Вебера. Энтони Тайсон из Bell Telephone Laboratories в Холмделе, штат Нью-Джерси, ничего не обнаружил. Результат Дэвида Дугласа в Рочестерском университете оказался отрицательным. Рон Древер из Глазго трудился впустую. Вебер же продолжал сообщать о новых удачах своей «гравитационно-волновой лаборатории» в Мэриленде.
Тони Тайсон до сих пор помнит споры с Элом Клогстоном, возглавлявшим лабораторию физических исследований в лабораториях Bell. Когда Тайсон рассказал ему о планах поставить эксперимент для проверки результатов Вебера, Клогстон энтузиазма не выказал главным образом потому, что не увидел никакой выгоды для Тайсона и лаборатории. Если окажется, что Вебер ошибается, это им ничего не даст, если же Вебер окажется прав, то именно он, а не Тайсон получит «нобелевку». Так ради чего стараться? Тем не менее Тайсон начал, без особой огласки, строить очень чувствительные резонансные детекторы. Он объединился с Дэйвом Дугласом, и в 1971 г. они даже начали сотрудничать с Вебером, сравнивая показания приборов в Холмделе и в Рочестере, обмениваясь данными с Мэрилендом, повышая чувствительность оборудования и разрабатывая более совершенное программное обеспечение для анализа результатов.
Скоро Тайсон утвердился во мнении, что Вебер видит то, чего нет. Вебер был блестящим мыслителем и умным инженером, но небрежно подходил к анализу данных и статистике. Он никогда не публиковал алгоритмы, по которым определял и идентифицировал совпадения показаний разных антенн. Если постоянно менять используемые критерии, то обязательно найдешь столько «совпадений», сколько захочешь.
Вебер совершал и глупые ошибки. Он заявил, что получил сигналы из центра Млечного Пути, поскольку они обнаруживались преимущественно, когда центр нашей галактики стоял высоко в небе, а волны Эйнштейна давали бы более сильные сигналы в антеннах при движении в вертикальном, чем в горизонтальном направлении. Это верно, но Тайсону пришлось напомнить ему, что Земля проницаема для гравитационных волн. Вследствие этого сигналы должны иметь такую же силу, когда Млечный Путь достигает предельного положения ниже горизонта, но Вебер о таких сигналах не сообщал.
Затем Вебер утверждал, что обнаружил совпадения собственных измерений с данными из Холмдела и Рочестера – сигналы, правда, едва выделяющиеся из шума, но возникавшие точно в одно и то же время. Но Тайсон и Дуглас впоследствии обнаружили, что Вебер использовал восточное летнее время, тогда как они работали по общемировому, отличающемуся на 4 часа. Какой конфуз!
Для Джо Вебера это был сложный период. Он целыми днями в одиночестве работал в лаборатории и постоянно сталкивался с критикой своих трудов. Летом 1971 г. умерла от сердечного приступа его жена. Но Вебер был упрям и сдаваться не собирался. В марте 1972 г. 52-летний ученый женился на 28-летней Вирджинии Тримбл, астрономе из Калифорнии, и начал брать уроки танцев.
Споры вокруг антенн не утихали. К 1974 г. многие эксперименты Вебера с антеннами проводились по всему миру. Тайсон и Дуглас перешли на четырехтонные инструменты с низкотемпературной электроникой в борьбе с неустранимым шумом измерений, но ничего не нашли. Хайнц Биллинг, Альбрехт Рюдигер и Рональд Шиллинг из Института астрофизики им. Макса Планка в немецком Мюнхене, а также Гвидо Пиццелла и Карл Майшбергер в итальянском Фраскати построили большие антенные детекторы. Никаких результатов. Маленький инструмент, созданный Ричардом Гарвином в Исследовательском центре IBM им. Томаса Дж. Уотсона в Йорктаун-Хайтс (штат Нью-Йорк) весил всего 120 кг и мог обнаруживать только самые мощные гравитационные волны, но и он не зарегистрировал никаких сигналов.
Дик Гарвин был не из тех, кто позволит себя дурачить. В 1952 г., 24-летним, он работал под руководством Эдварда Теллера над водородной бомбой. Блестящий физик и уважаемый правительственный консультант по вопросам национальной безопасности, провел два срока в научно-консультационном комитете при президенте США. К тому же он лучше Вебера умел обращаться с данными.
Тони Тайсон уже спорил с Джо Вебером из-за гравитационных волн на большой конференции в Нью-Йорке в декабре 1972 г. (На 6-м Техасском симпозиуме по релятивистской астрофизике; разумеется, Нью-Йорк находится не в Техасе, но первая конференция этого цикла встреч состоялась именно там, и название прижилось.) Это, однако, был более-менее вежливый научный спор. Несмотря на несогласие по поводу данных, Тайсон и Вебер уважали друг друга. Много лет спустя они даже, можно сказать, подружились.
Конфликт с Гарвином на Кембриджской конференции в июне 1974 г. развивался совершенно иначе, возможно, потому, что Вебер устал защищаться или в глубине души понимал, что что-то не так. Мы об этом уже не узнаем. Как бы то ни было, он воспринял критику Гарвина как личные нападки и был готов ударить в ответ, если бы не вмешательство Фила Моррисона.
Вспоминая об этом случае более 40 лет спустя, Вирджиния Тримбл до сих пор жалеет своего покойного мужа. «Они изгнали его с острова, – сказала она в разговоре со мной, прибегнув к аллюзии на популярное реалити-шоу «Последний герой». – Вы не знаете значения слова «конфликтный», если не прожили 28 лет в браке с Джо Вебером. Это [сообщество физиков] была стая. Гарвин оказался самым непримиримым. Для Джо он стал воплощением зла».
Тримбл, ставшая знаменитым астрофизиком и историком астрономии, никогда не вступала в дебаты по поводу обнаружения гравитационных волн антенными детекторами, и ее карьера не пострадала из-за отношений с Вебером. После смерти мужа она продала их дом в Чеви-Чейз и на вырученные средства учредила премию за астрономический инструментарий имени Джозефа Вебера от Американского астрономического общества. С 2002 г. она вручается людям с такими же, как у Вебера, устремлениями: создать самый лучший прибор, который только можешь представить, и пользоваться им, пока не поймешь, что ты видишь.
После стычки в Кембридже споры Вебера и Гарвина продолжились – не на конференциях, а в разделе «Письма читателей» журнала Physics Today. В июне 1975 г. физик из Принстона Фриман Дайсон написал Веберу письмо, предлагая сдаться. «Великий человек не боится публично признать, что ошибался и передумал, – писал Дайсон. – Вы достаточно сильны, чтобы признать свою ошибку. Если вы это сделаете, ваши враги возрадуются, но друзья возрадуются еще больше». Вебер отказался уступить.
К тому времени большинство ученых были убеждены, что заявления Вебера беспочвенны – не из-за какой-то ошибки в технологии антенного детектирования как таковой, а потому, что гравитационные волны, очевидно, слишком слабы, чтобы измерить их таким способом. До середины 1970-х гг. во многих местах были построены и использовались многочисленные резонансные детекторы разных размеров, форм и массы и из разных материалов. Самые лучшие были чрезвычайно чувствительными, великолепно изолированными от вибрационного шума (например, шума проезжающих грузовиков), криогенными (охлажденными почти до абсолютного нуля, составляющего –273 °С) и имели сверхпроводящие квантовые интерферометры, способные измерить даже самый слабый сигнал. Хотя иногда казалось, что тот или другой что-то обнаружил, данные никогда не казались критикам достаточно убедительными и большинство детекторов постепенно были выведены из эксплуатации. Сам Вебер в конце 1980-х гг. лишился финансирования Национальной научной ассоциации. Частично на собственные средства он поддерживал работу своих антенн вплоть до смерти в сентябре 2000 г. Часть его оборудования до сих пор пылится в маленьких, будто гаражи, зданиях кампуса Мэрилендского университета.
_________
Печальная история! Джо Веберу нельзя не посочувствовать. Такова судьба многих первопроходцев. Нет ничего сложнее, чем открыть новую область научного исследования. Если то, к чему вы стремитесь, легко достижимо, все бы уже это делали. Идя впереди всех, рискуешь потерпеть поражение по той или иной причине.
Один астроном, впоследствии разделивший Нобелевскую премию за работы, связанные с волнами Эйнштейна, не присутствовал на 5-й Кембриджской конференции по релятивизму в июне 1974 г. и даже не знал о полемике вокруг антенн Вебера. Двадцатитрехлетний Рассел Халс наблюдал пульсары в радиообсерватории Аресибо в Пуэрто-Рико, работая над докторской диссертацией. Тем летом он сделал открытие, повлекшее за собой первое (косвенное) доказательство существования гравитационных волн.
Прежде чем мы перейдем к этой истории, вы должны узнать, что такое нейтронные звезды. Прослушайте ускоренный курс астрофизики.
Назад: 3 Теория Эйнштейна проходит проверку
Дальше: 5 Как живут звезды