Книга: Складки на ткани пространства-времени
Назад: После того как вышла эта книга
Дальше: Авторство иллюстраций

Приложение

Астрономы зарегистрировали волны Эйнштейна от столкновения нейтронных звезд.
17 августа 2017 г. усовершенствованная лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) зарегистрировала слабые колебания пространственно-временного континуума, вызванные парой стремительно вращающихся по общей орбите нейтронных звезд непосредственно перед их столкновением. Более того, наземные и космические телескопы обнаружили затухающее свечение радиоактивного огненного шара – результата космической катастрофы – во всех диапазонах частот электромагнитного спектра.
Слухи о событии с участием нейтронных звезд ходили с 18 августа, после твита Крэйга Уилера из Техасского университета в Остине: «Новая LIGO. Источник с оптическим послесвечением. Готовьтесь услышать нечто!» 27 сентября коллаборация LIGO – Virgo объявила о регистрации GW170814 – сигнала гравитационной волны вследствие очередного слияния черных дыр, вызвав подозрения, что предшествующие слухи были всего лишь пиаром: поскольку свет при столкновении ЧД не излучается, никакого послесвечения в оптическом диапазоне ожидать не приходится.
Только в понедельник, 16 октября, – через 13 дней после присуждения Нобелевской премии по физике 2017 г. отцам-основателям LIGO Райнеру Вайсу, Бэрри Бэришу и Кипу Торну – астрономы и физики наконец раскрыли тщательно охраняемую тайну на большой пресс-конференции в Национальном пресс-клубе в Вашингтоне.
Итак, в четверг 17 августа в 12:41:04 по всемирному времени LIGO приняла пятый подтвержденный сигнал гравитационной волны, получивший обозначение GW170817. Его длительность, однако, была намного большей, чем у предыдущих четырех: вместо доли секунды, как при более ранних регистрациях, колебания пространственно-временного континуума продолжались ошеломительные 90 секунд, а их частота увеличилась от нескольких десятков герц до примерно килогерца – максимальной для LIGO.
Именно такой гравитационно-волновой сигнал могли испустить вращающиеся по тесной орбите нейтронные звезды массами около 1,2 и 1,6 солнечной. Постепенно они разогнались до заметной доли скорости света, совершая несколько сот оборотов в секунду. Волны Эйнштейна, излучаемые ускоряющимися массами, уносили энергию орбитального движения системы, и вскоре две нейтронные звезды столкнулись. Из данных LIGO следует, что столкновение произошло примерно в 140 млн св. лет от Земли.
Открытие первой двойной системы нейтронных звезд Расселом Халсом и Джо Тейлором в 1974 г. невероятно воодушевило физиков, занимавшихся в те годы разработкой первых прототипов лазерных интерферометров по типу LIGO, в частности Вайсса и Торна (см. главу 8). Как мы узнали из главы 6, очень медленное уменьшение орбитального периода двойной звезды идеально соответствует предсказанной Эйнштейном потере энергии вследствие излучения гравитационных волн. Примерно через 300 млн лет две нейтронные звезды бинарной системы Халса – Тейлора столкнутся и сольются.
Если эта двойная нейтронная звезда сольется через 300 млн лет, то другие – возможно, уже завтра. Энергетический выброс гравитационных волн, порожденных столкновением, сумеют зарегистрировать здесь, на Земле, чрезвычайно чувствительные инструменты. Можно сказать, астрономы 40 лет ждали события, подобного GW170817.
Менее чем через 2 с после гравитационно-волнового события, в 12:41:06 по всемирному времени, космический гамма-телескоп НАСА «Ферми» обнаружил гамма-всплеск – короткую мощную «вспышку» самого мощного электромагнитного излучения в природе. Гамма-обсерватория Европейского космического агентства INTEGRAL подтвердила всплеск. Считается, что короткие гамма-всплески вызываются столкновениями нейтронных звезд (см. главу 14). Естественно, возник вопрос, не мог ли GRB170817А иметь отношение к событию LIGO, наблюдавшемуся на 1,7 с раньше?
Сначала у астрономов были сомнения. Гамма-всплески обычно происходят на расстояниях в миллиарды световых лет. GRB170817А показался «Ферми» столь же ярким, что и остальные гамма-всплески, следовательно, если эта вспышка продолжительностью 2 секунды действительно имела место всего в 140 млн св. лет отсюда, то была необыкновенно тусклой. Более того, было бы невероятным совпадением, если бы джет самого близкого в истории наблюдений короткого гамма-всплеска был направлен в сторону Земли.
Вопрос был бы снят, если бы удалось обнаружить оптическое послесвечение гамма-всплеска. К сожалению, астрономы не могли точно указать источник гамма-излучения в небе. Диаметр «окна ошибок» телескопа «Ферми» составляет несколько десятков градусов (диаметр полной Луны – всего 0,5°), а спутник НАСА Swift, которому иногда удается зафиксировать событие Fermi своим более точным рентгеновским телескопом, не увидел никакого излучения в рентгеновском диапазоне сразу после всплеска.
Хорошо, что обсерватории волн Эйнштейна предоставили более точную локализацию. Событие наблюдалось обоими детекторами LIGO – в Хэнфорде, штат Вашингтон, и его близнецом в Ливингстоне, штат Луизиана. Крохотной разницы во времени прибытия волны (всего 2 мс) оказалось достаточно, чтобы проследить путь гравитационных волн вплоть до длинной узкой, в форме банана, полосы в небе, пересекающей окно ошибок «Ферми». Однако этот «банан», хотя и чрезвычайно узкий (благодаря продолжительности события), был и очень длинным.
А как же третий детектор гравитационных волн, в Италии? Virgo функционировал с 1 августа, когда присоединился ко второму научному запуску LIGO. Различия во времени получения сигнала тремя детекторами позволяют намного точнее вычислить положение источника. Именно это и было проделано тремя днями раньше в отношении слияния черных дыр GW170814. Не дадут ли ответ наблюдения GW170817 детектором Virgo?
Как ни странно, Virgo «не сработал» на GW170817. 90-секундный сигнал волны Эйнштейна от сливающихся нейтронных звезд поступил за 22 с до регистрации LIGO в Ливингстоне, но практически не отразился на потоке данных Virgo, хотя амплитуда была достаточной для аппаратуры итальянской лаборатории.
Причина скоро стала ясна. Лазерные интерферометры, такие как LIGO и Virgo, могут регистрировать гравитационные волны практически с любого направления. Однако в силу конструкции на местном горизонте этих инструментов имеются четыре области неба, в которых чувствительность прибора намного ниже средней. Центры каждой из этих областей являются настоящими слепыми зонами, и оказалось, что источник колебаний пространственно-временного континуума практически совпадал с одной из слепых зон Virgo.
Тем не менее, объединив данные LIGO и Virgo, астрономы смогли выделить значительно меньшую вытянутую часть неба, всего около 28 кв. град., врезающуюся в область пересечения узкого «банана» LIGO и окна ошибок «Ферми».
Охота началась. За минувшие годы коллаборация LIGO – Virgo заключила примерно с 70 командами астрономов по всему миру официальное соглашение об обмене подобной информацией со строгим запретом дальнейшего распространения (см. главу 14). Получив новейшие координаты зоны поиска GW170817, все они направили свои инструменты на вероятное «место преступления» в южной части созвездия Девы и восточной – Гидры.
Первым «попал в яблочко» метровый телескоп Henrietta Swope обсерватории Лас-Кампанас на севере Чили. Успех принесла мудрая стратегия. Данные LIGO позволили прикинуть расстояние до источника сигнала, а в зоне поиска в данном диапазоне расстояний находится лишь несколько десятков галактик. Пользуясь данными обзора сверхновых Swope Supernova Survey, астрономы быстро проверили эти галактики в порядке уменьшения вероятности в поисках кратковременного оптического излучения.
Около 23:00 по всемирному времени они обнаружили удивительно яркое световое пятно (достаточно яркое, чтобы астрономы-любители увидели его в большие телескопы) примерно в 7000 св. лет к северо-востоку от ядра галактики NGC 4993. Судя по красному смещению галактики, которая находится в созвездии Гидры, до нее 130 млн св. лет. Без сомнения, это было оптическое проявление как столкновения нейтронных звезд, породившего сигнал гравитационной волны, так и короткого гамма-всплеска.
В следующие дни и недели послесвечение наблюдали десятки наземных телескопов и космических обсерваторий, в том числе космический телескоп «Хаббл», Джемини, обсерватория Кека, VLT Европейской южной обсерватории, ALMA, рентгеновская обсерватория Чандра (зафиксировавшая рентгеновское излучение примерно через 9 дней после события) и радиообсерватория «Очень большая антенная решетка» (через 16 дней). GW170817, безусловно, самое наблюдаемое астрономическое событие в истории.
Соавторами статьи с описанием дальнейших наблюдений (ее неофициальное название – «многоканальная статья») стали около 3600 физиков и астрономов из более чем 900 организаций. По некоторым оценкам, в списке авторов – ошеломляющие 15 % астрономов мира. И это только одна из многих статей о GW170817, появившаяся в интернете 16 октября, в журналах Physical Review Letters, The Astrophysical Journal, Science, Nature и многих других.
Наблюдаемая «килонова», по сути, представляет собой раскаленный огненный шар, остаток катастрофического столкновения нейтронных звезд. Частицы горячего плотного ядерного вещества выбрасываются в космос во всех направлениях со скоростями, достигающими 20–30 % скорости света. Освободившись от громадной силы притяжения нейтронных звезд, остатки расширяются, стремительно теряя сверхвысокую плотность. Нейтроны начинают распадаться с образованием протонов, и в возникающей термоядерной топке те и другие частицы сливаются в ядра тяжелых атомов, многие из которых очень радиоактивны. Остается невероятно горячая оболочка, насыщенная некоторыми из самых тяжелых элементов периодической таблицы.
Спектральные наблюдения при помощи спектрографа X-Shooter обсерватории VLT и других инструментов обнаружили присутствие так называемых редкоземельных элементов (лантаноидов). Без сомнения, появились и намного более тяжелые элементы. Наблюдения подтвердили теорию, согласно которой большинство элементов тяжелее железа образуются вследствие распада ядерной материи после столкновений нейтронных звезд, а не взрывов сверхновых. Очевидно, открыв послесвечение GW170817, ученые в буквальном смысле нашли золотую жилу – возможно, до нескольких земных масс драгоценного металла.
Осталось и несколько загадок. Одна из них – природа сигнала гамма-излучения, наблюдаемого «Ферми». Может быть, релятивистская струя гамма-всплеска была направлена не под прямым углом к нашей планете и мы наблюдали событие сбоку. По мнению многих астрономов, это самое вероятное объяснение слабости всплеска. Оно объясняет и задержку рентгеновских (наблюдаемых лишь через 9 дней) и радиоволн, зарегистрированных не ранее начала сентября.
Дальнейшие наблюдения за местом космической катастрофы могли бы пролить свет на еще одну, пока не раскрытую, тайну – дальнейшей судьбы двух нейтронных звезд. Бесспорно, несколько процентов их совокупной массы было выброшено в космос, но что произошло с остальной? Слились ли две компактные звезды в свермассивную нейтронную звезду в несколько солнечных масс или коллапсировали в ЧД звездной массы?
К сожалению, данные LIGO не дают уверенного ответа. Финальная стадия слияния не наблюдалась. В предыдущих случаях столкновений черных дыр LIGO регистрировали отзвуки «фазы затухания», краткого периода, когда амплитуда волн Эйнштейна быстро снижалась до нуля. Характеристики затухания позволяли оценить конечную массу объединенной черной дыры.
Однако в случае GW170817 частота волны непосредственно перед слиянием двух нейтронных звезд стала слишком большой для наблюдения LIGO, и сигнал был потерян. Поэтому у астрономов отсутствуют надежные данные, чтобы судить о свойствах возникшего в результате слияния объекта.
Тем не менее практически нет сомнений, что при столкновении возникла новая ЧД. Если бы возникла сверхмассивная нейтронная звезда, она была бы экстремально горячей и мы бы регистрировали рентгеновское излучение. Возможно, две нейтронные звезды сначала слились в сверхмассивный объект около 2,8 солнечных масс, удерживаемый силами невероятно быстрого вращения вокруг своей оси, но через долю секунды коллапсировавший в черную дыру.
В общем, наблюдения GW170817, сами по себе впечатляющие, могут оказаться пресловутой «верхушкой айсберга» будущего раскрытия тайн гамма-всплесков, эволюции двойных звездных систем, синтеза тяжелых элементов, общего принципа относительности, поведения материи в экстремальной среде и свойств нейтронных звезд. Физиков особенно интересуют свойства этих сверхплотных звездных остатков, в которых сотня тысяч тонн материи упакованы в 1 куб. мм. Мы никогда не сможем воспроизвести такие немыслимые условия в лаборатории на Земле.
В принципе, подробное исследование сигналов гравитационных волн, таких как GW170817, могло бы дать больше информации, особенно если бы удалось в деталях наблюдать еще и высокочастотные волны финальных стадий слияния. По мере сближения двух нейтронных звезд взаимные приливные силы будут растягивать и сжимать их. Величина возникающих деформаций поведает физикам о внутренней структуре звезды, характере изменения ее плотности в зависимости от глубины и т. д. На основе наблюдений GW170817 это так называемое уравнение состояния пока не было выведено. Однако пока все данные согласуются с результатами ядерных экспериментов в лабораториях Земли.
Более того, тот факт, что вследствие слияния возник столь массивный, релятивистски расширяющийся огненный шар, накладывает определенные ограничения на приливные деформации двух нейтронных звезд. Более компактные звезды могут теснее сблизиться, прежде чем сольются. Вследствие этого они испытывают более мощное соударение и выбрасывают больше массы. Из оценки массы выброса (возможно, около 5 % массы Солнца) следует, что нейтронные звезды имеют самое большее 27 км в диаметре. В то же время, судя по другому комплексу данных, они не могут быть меньше 22 км.
Это еще не все. Как свидетельствует почти одновременное поступление гамма-лучей и гравитационных волн, колебания пространственно-временного континуума распространяются со скоростью света с точностью до одной квадриллионной – что подтверждает теорию относительности Эйнштейна. Независимые измерения расстояния до родительской галактики, в которой произошло событие (на основе наблюдаемой амплитуды волн Эйнштейна), в сочетании со скоростью удаления NGC4993 дают значение скорости расширения Вселенной, превосходно согласующееся с существующими измерениями. Путем дальнейших наблюдений астрономы надеются значительно повысить точность этой оценки.
Осенью 2018 г. обе LIGO и Virgo начнут очередной научный запуск с использованием еще более чувствительной аппаратуры. Вскоре после этого будет введен в эксплуатацию японский детектор KAGRA (см. главу 16). Лет через двадцать измерения гравитационных волн могут стать столь же обыденными, как и наблюдения рентгеновского излучения в последние 40 лет.
Назад: После того как вышла эта книга
Дальше: Авторство иллюстраций