Книга: Складки на ткани пространства-времени
Назад: 7 Лазерная эпопея
Дальше: 9 О сотворении мира

8
Путь к совершенству

Моя первая встреча с Рэем Вайссом произошла в лифте Конференц-центра штата Вашингтон в Сиэтле в начале января 2015 г. Я приехал на 225-е собрание Американского астрономического общества. Вайсс собирался делать презентацию по истории физики гравитационных волн. Мы вместе спустились на три этажа, обменялись приветствиями, ничего не обсуждая. «Тихий старичок», – подумал я.
Я ошибался. Вайсс был 82-летним старцем, но определенно не тихим, в чем я убедился в тот же день. После презентации я задал ему пару вопросов, и он говорил не переставая. Имена, даты, события, подсказки для моей книги, технические подробности, профессиональные шутки, истории из жизни – он оказался неисчерпаемым источником информации. Во время интервью летом 2016 г. все повторилось. Я попросил уделить мне 45 минут, но мы проговорили почти полтора часа – точнее, он проговорил.
Рэю Вайссу, как никому другому, есть что рассказать о LIGO. Он считается отцом-основателем проекта, если не изобретателем метода лазерной интерферометрии. Кроме того, он яркая личность. Увлеченный, целеустремленный, отзывчивый – все, кому довелось с ним работать, тепло о нем отзываются (вернее, практически все). По мнению многих, проект LIGO не состоялся бы без его выдающихся способностей и неувядаемого энтузиазма.
Вайсс родился в Берлине осенью 1932 г. за считаные недели до того, как Альберт Эйнштейн навсегда покинул столицу Германии. В раннем детстве Райнер некоторое время жил в Праге, в семилетнем возрасте, перед самым началом Второй мировой войны, переехал с семьей в Нью-Йорк (отец Вайсса был врач-еврей.) Рэй оказался одаренным и любознательным ребенком, на все руки мастером. Он мог починить тостер. Мог разобрать часы и снова собрать. Он обшаривал закоулки в поисках выброшенных радиодеталей – вдруг пригодятся. Подростком он занялся маленьким бизнесом, ремонтируя радиоприемники и фонографы одноклассников.
К концу 1940-х гг. Вайсс стал кем-то вроде аудиоинженера. Его приглашали для создания полупрофессиональных акустических систем. Он не купался в золоте, но зарабатывал очень неплохо. Зачем было идти в колледж? Он вспоминает, что хотел больше узнать о методах шумоподавления. Популярные в те времена грампластинки со скоростью воспроизведения 78 об/мин сильно трещали и шипели, и Вайсс не знал, как решить эту проблему. Он надеялся, что обучение проектированию электрических устройств в прославленном Массачусетском технологическом институте в Кембридже окажется полезным.
Оказалось, напрасно. На занятиях по инженерному делу Вайсс томился от скуки – он не узнал ничего нового. Возможно, физика окажется интереснее? В какой-то степени эти ожидания оправдались. Однако он слишком отвлекался на другие стороны жизни, чтобы преуспеть в учебе, – например, безнадежно влюбился в красивую пианистку. «Я следовал за ней до самого Чикаго, – вспоминает он, – но она, видимо, решила, что я слишком влюблен, чтобы быть полезным. В конце концов я вернулся в MIT».
Примерно в 1960 г. физика наконец покорила его. Точнее, экспериментальная физика. Работая над дипломом под руководством профессора Джерролда Захариаса, Вайсс сумел создать нечто вроде первых атомных часов для коммерческого применения. Они стали предшественниками «мистера Часы» – устройства, которое лет через десять облетит земной шар в эксперименте Джозефа Хафеле и Ричарда Китингом. Сам Захариас планировал взять часы Вайсса на Юнгфрауйох, гору в Швейцарских Альпах высотой 3470 м, и измерить эффект гравитационного красного смещения намного точнее Роберта Паунда и Глена Ребки, только что поставивших аналогичный эксперимент в соседнем Гарварде.
Планы, связанные со Швейцарией, остались неосуществленными, но Вайсс серьезно увлекся всем, связанным с гравитацией и точными измерениями, – наилучшая научная база для будущего инициатора проекта LIGO. Два года он строил гравиметры в качестве постдокторанта под руководством знаменитого физика Роберта Дикке в Принстонском университете. Вернувшись в MIT, организовал исследовательскую группу для изучения космологии и гравитации. (О космологии – науке о Вселенной – вы узнаете подробнее из главы 9.) В 1960-е гг. эта область исследования находилась в процессе становления. Теория Большого взрыва стала еще более популярной. В частности, в 1964 г. было открыто реликтовое излучение, которое часто называют послесвечением творения. Для физика было очевидно, что космология и ОТО – две стороны одной медали.
Неудивительно, что сотрудники физического факультета MIT предложили Вайссу читать курс ОТО. Это было в 1967 г., примерно в то время, когда Джоселин Белл открыла первый пульсар. Но Рэй Вайсс был на все руки мастер, а не теоретик. «Математика была далека от меня, – говорит он. – Я, конечно, не мог признаться, что не владею материалом. Это был ужасный год. Все свободное время я изучал релятивизм. Иногда я опережал своих студентов всего на день. Они были намного смекалистее меня».
Тем временем в нескольких сотнях километров к юго-востоку, в университете Мэриленда, Джо Вебер экспериментировал с резонаторными детекторами (вы читали об этом в главе 4). Узнав об этом, студенты Вайсса заинтересовались и задали ему вопрос о регистрации гравитационных волн. Снова темный лес! Однако он нашел изящный способ объяснить им идею при помощи трех далеко разнесенных в пространстве, не испытывающих ускорения «контрольных грузов» и точных часов – о часах он знал все. «Не думайте об измерении изменений расстояния, – сказал он студентам. – Представьте, что меряете изменение времени перемещения света. Вы уже должны понимать, о чем идет речь».
Вайсс не знал, что идея не нова. Два русских исследователя, Михаил Герценштейн и Владислав Пустовойт, опубликовали сходные мысли на несколько лет раньше. Однако статья вышла в советском журнале, о котором в США, вероятно, и не слышали. В те годы одним из немногих американских физиков, поддерживающих тесный контакт с советскими коллегами, был теоретик Кип Торн из Калифорнийского технологического института в Пасадене. В разгар холодной войны Торн регулярно ездил в МГУ для совместной работы с группой прецизионных измерений под руководством Владимира Брагинского, благодаря чему и узнал о публикациях.
Как бы то ни было, Вайсс сформулировал базовые принципы гравитационно-волнового интерферометра в эпохальной статье, вышедшей в 1972 г. в Quarterly Progress Report в MIT. Почти 45 лет спустя ученые, в том числе Торн, высоко ее ценят. В ней описано большинство основных элементов конструкции, детально рассмотрены многие источники шума, с которыми придется столкнуться экспериментаторам, и, главное, возможные пути решения этих проблем. Эта статья очень помогла ученым, уже работавшим над первыми маленькими прототипами интерферометров.
Почему Вайсс сам не построил прототип детектора по рецепту, написанному им в 1972 г.? В действительности построил, но из-за отсутствия денег работа затянулась. Изначально физический факультет MIT получал основное финансирование от министерства обороны. После Второй мировой войны военные нуждались во всех перспективных блестящих ученых и инженерах, которых только могли привлечь. «Не важно, чем они занимаются, просто обеспечьте поток выпускников» – таков был принцип. В начале 1970-х гг., во время безумной, по словам Вайсса, войны во Вьетнаме, эта ситуация стала неудобной для многих людей с левыми взглядами. Они считали, что военные не должны иметь никакого влияния на развитие науки. Новые законы гарантировали, что в будущем министерство обороны сможет поддерживать только научную деятельность, связанную с вопросами национальной безопасности. Космология и гравитация были не сказать чтобы связаны с национальной безопасностью, поэтому Вайсс лишился финансирования от военных, а у MIT было мало как средств, чтобы компенсировать эту потерю, так и заинтересованности. Вскоре администрация института решила распустить его группу. Работа Вайсса над космической миссией по изучению реликтового излучения по-прежнему оплачивалась НАСА, но на программе исследования гравитационных волн был в одночасье поставлен крест (результатом космической миссии стал спутник COBE – Cosmic Background Explorer). Вайссу пришлось обратиться за грантом в Национальный научный фонд (NSF).
В те годы NSF продолжал финансировать эксперименты Джо Вебера с резонансными антеннами. И вот новый интерферометрический метод. Действительно ли он является более плодотворным? В 1974 г. NSF разослал заявку Вайсса на грант различным исследовательским группам для независимой оценки. «Мои идеи обошли весь мир, прежде чем я получил хоть какие-то деньги», – говорит Вайсс. Лишь в конце 1970-х гг. NSF наконец профинансировал строительство его собственного маленького интерферометра-прототипа.
Более ранним прототипом, вдохновленным идеями Вайсса, являлся трехметровый интерферометр в немецком Мюнхене. Его построила группа по изучению гравитационных волн под руководством пионера компьютерной техники физика Хайнца Биллинга из Института астрофизики им. Макса Планка. Биллинг уже строил чувствительные детекторы для проверки идей Джо Вебера и, как и все остальные, ничего не обнаружил. Однако из этого, разумеется, еще не следовало, что волн Эйнштейна не существует. Интерферометрический метод, о котором Биллинг узнал, рецензируя заявку Вайсса на грант от NSF, мог оказаться более перспективным путем к их регистрации. Почему бы не попытаться? Еще одним ранним прототипом стал двухметровый настольный экспериментальный прибор исследовательских лабораторий Хьюза в калифорнийском Малибу. Это было творение бывшего постдока Джо Вебера Боба Форварда.
К тому моменту, когда Вайсс сделал и запустил собственный прототип, Кип Торн в Калтехе способствовал открытию экспериментальной группы. Сам Торн был чистым теоретиком – «думателем», а не «делателем». В 1973 г. Торн совместно с Чарльзом Мизнером и своим бывшим наставником Джоном Арчибальдом Уилером написал учебник по гравитации объемом 1300 страниц, незатейливо озаглавленный «Гравитация». Каждый физик, давший мне интервью за последние пару лет, имеет экземпляр этого пухлого черного тома. Это библия ОТО.
Однако опыта постановки экспериментов Торн практически не имел. Вайсс был обескуражен, прочтя в первом издании «Гравитации» бездоказательное утверждение, будто лазерные интерферометры никогда не станут достаточно чувствительными, чтобы зарегистрировать волны Эйнштейна. Автора, очевидно, следовало просветить. Это произошло памятным вечером 1975 г. в гостиничном номере в центре Вашингтона, округ Колумбия.
Ранее в том году НАСА предложило Вайссу возглавить комитет по применению гравитационной физики в космосе. К тому времени космическое агентство уже включилось в эксперимент Gravity Probe B Фрэнсиса Эверитта, о котором вы читали в главе 3. Вайсс пригласил Торна выступить перед комитетом. «Я встретил его в аэропорту, – вспоминает Вайсс. – Прежде мы не пересекались. Он не забронировал номер в отеле. Мы поселились в одном номере. И всю ночь, часов до четырех, проговорили о гравитационных волнах и экспериментах».
Они были очень разными. Вайсс, которому на тот момент было 42 года, выглядел как типичный профессор физики: свитер и простые ботинки или, может быть, дешевый твидовый пиджак и галстук. Тридцатипятилетний Торн, бывший хиппи из Калифорнии, носил длинные волосы и бороду, серьгу в ухе и сандалии. Но они прекрасно поладили. «Той ночью, – рассказывает Вайсс, – он полностью пересмотрел свое мнение о перспективах лазерной интерферометрии. Он был очень умен».
Кип Торн занялся прогнозированием ожидаемого количества регистраций лазерными интерферометрами разной чувствительности. Насколько часто они должны будут что-то «чувствовать»? Самыми многообещающими источниками возмущений пространственно-временного континуума были бы катастрофические слияния нейтронных звезд или ЧД. В Аресибо Рассел Халс только что открыл первую двойную систему пульсаров. Пройдет еще немного времени, и Джо Тейлор и Джоэл Вайсберг подтвердят, что система теряет энергию в форме гравитационных волн. На данный момент волны из этого источника слишком слабы, чтобы их можно было зарегистрировать на Земле, но со временем они будут усиливаться, а когда две нейтронные звезды столкнутся и сольются, то, согласно предсказанию ОТО, произойдет мощный выброс волн Эйнштейна. При слиянии ЧД прогнозируются волны еще большей амплитуды.
Столкновения нейтронных звезд и ЧД – чрезвычайно редкие явления во Вселенной. Если бы такая катастрофа разразилась в нашей Галактике, даже простая антенна Вебера зарегистрировала бы сигнал возникшей при этом гравитационной волны. К сожалению, это происходит недостаточно часто – до ближайшего события может быть много тысяч лет. Однако чувствительный интерферометр мог бы зарегистрировать выброс волн Эйнштейна при слияниях в других галактиках, удаленных на десятки миллионов световых лет. Если построить достаточно чуткий детектор, можно наблюдать несколько событий в год.
Торн хотел убедить Калифорнийский институт профинансировать реальные эксперименты – не просто теоретические разработки, а прикладные исследования, предполагающие создание прототипа и обретение опыта. Он надеялся преуспеть там, где Джо Вебер потерпел неудачу. Бесспорно, наука именно в этом и заключается – в поиске новых возможностей и преодолении колоссальных трудностей. Впрочем, по мнению вдовы Вебера Вирджинии Тримбл, определенную роль могла сыграть и личная неприязнь. «В конце 1960-х гг. у нас с Кипом были отношения, – рассказала Вирджиния. – Когда Джо женился на мне в 1972 г., Кипу могло показаться, что он похитил его бывшую девушку».
Как бы то ни было, группа Калифорнийского технологического института начала работать. Торн был бы рад пригласить в Пасадену своего советского друга Владимира Брагинского, который был хорошим экспериментатором, и Торн работал с ним с 1968 г. Но мечта оказалась несбыточной в политических реалиях холодной войны, поэтому Торн воспользовался рекомендациями Брагинского и Вайсса и обратился к Рону Древеру из Университета Глазго. Располагая небольшими деньгами и будучи хорошим изобретателем, Древер тоже строил антенны-детекторы, а также экспериментировал с лазерной интерферометрией, работая над собственным прототипом прибора. Один из самых креативных людей в своей сфере деятельности, он фонтанировал остроумными идеями. Начиная с 1979 г. Древер делил свое время между Глазго и Пасаденой. В 1984-м он стал преподавателем Калифорнийского технологического института.
Таким образом, в начале 1980-х гг. в центре внимания гравитационно-волновой физики находилась лазерная интерферометрия. В Глазго строился инструмент с длиной плеч 10 м. Лучше было бы сделать их длиннее, но оборудование должно было уместиться в физической лаборатории университета. В Мюнхене Хайнц Биллинг с коллегами сделали чувствительный 30-метровый прототип. Его размер предопределили размеры сада Института астрофизики им. Макса Планка. В северо-восточном углу кампуса Калтеха в здании складского типа разместился 40-метровый прототип интерферометра, ставший любимым детищем Рона Древера. Опять-таки размеры детектора были ограничены доступным пространством.
Тем временем в Кембридже Рэй Вайсс с командой студентов-дипломников и постдокторантов вынуждены были довольствоваться настольным инструментом. Длина его плеч едва достигала 1,5 м – максимум, что позволял скромный грант от NSF. Если Калифорнийский технологический институт инвестировал в начинание около $3 млн, то администрация MIT не проявляла никакого интереса к новой технологии, вспоминает Вайсс. «Они считали, что лазерные интерферометры никогда не смогут зарегистрировать гравитационные волны. Какие-то официальные лица высокого уровня с сомнением относились даже к ОТО и к существованию нейтронных звезд и ЧД. Ситуация значительно изменилась в течение 1990-х гг., но в те времена атмосфера была не особенно интеллектуальной».
Все это не помешало Вайссу рассчитать затраты на масштабный проект 10-километровой гравитационно-волновой антенной системы с длинной базой. Вайсс составил заявку вместе со своими коллегами из MIT Питером Солсоном и Полом Линси, а также Стэном Уиткомбом из Калтеха. Заявка, получившая название «Синяя книга», была призвана убедить Национальный научный фонд профинансировать крупный исследовательский проект.
Благодаря энтузиазму Ричарда Исааксона, являвшегося в NSF координатором программ по гравитационно-волновой физике, в 1983 г. «Синяя книга» удостоилась самого пристального внимания и получила положительные отзывы рецензентов. Должным порядком план технической разработки был одобрен Национальным советом по делам науки, консультационным органом по вопросам координации и развития науки при президенте и конгрессе США. Через год начали поступать деньги правительства – первый транш многолетнего гранта на научно-исследовательские и опытно-конструкторские разработки того, что в итоге вылилось в LIGO. Было, однако, одно условие: команды Массачусетского и Калифорнийского технологических институтов должны работать над ним вместе. Точка.
Точнее, многоточие… Рон Древер совершенно не стремился работать в тесном сотрудничестве с Рэем Вайссом. Приятно уехать из дождливой Шотландии в солнечную Калифорнию, но он рассчитывал построить большой прибор самостоятельно. Более того, двое ученых имели абсолютно разные представления о подходе к решению задачи. Конструкция, изначально предложенная Вайссом, вызывала у Древера большие сомнения.
Вспоминая рождение проекта LIGO в середине 1980-х гг., Вайсс удивляется, что новорожденному удалось выжить. Вместе с Торном и Древером он делал все возможное, чтобы справиться с неподъемной задачей. Их стали называть «тройкой» – в кампус Калифорнийского технологического института проникли хотя бы слова из Советского Союза, раз уж сам Брагинский не смог приехать. «После первых регистраций LIGO в 2015 г. мы удостоились огромного признания и славы, – говорит Вайсс, – хотя должны бы стыдиться. Мы были весьма некомпетентны. Никто из нас не имел сколько-нибудь серьезного опыта руководства такой масштабной программой. Это было очень сложное время».
Возникали и проблемы личного характера. Вайсс и Древер не слишком ладили. «Честно говоря, с ним было невозможно работать, – рассказывает Вайсс. – Интуиция могла увлечь его куда угодно. Сегодня у него была одна идея. Завтра он пытался протолкнуть нечто совершенно иное. Некоторые идеи Рона были очень хороши, другие – полнейшая чушь. Он не мог ни на чем остановиться – не мог принять окончательное решение. Это был ребенок в одежде взрослого. Он хотел делать все, так что долгое время мы не добивались ничего».
Пора было защищать проект. Это было предложение Дика Гарвина из IBM, сделанное им в 1985 г. Вы должны помнить Гарвина по «схватке из-за антенн» с Джо Вебером на Пятой Кембриджской конференции по вопросам релятивизма в 1974 г. Он был очень уважаемым научным консультантом при правительстве и скептически относился к перспективам LIGO. По совету Гарвина NSF организовал в ноябре 1986 г. недельный семинар в Кембридже с участием авторитетных ученых. Приехали все, вспоминает Вайсс: лауреаты Нобелевской премии по физике, экспериментаторы, разработчики лазеров, эксперты по производству высокоточных зеркал, метрологи. В конце – вероятно, к удивлению Гарвина – комитет одобрил начинание, решив, что пришло время построить большой лазерный интерферометр для регистрации волн Эйнштейна. Проект LIGO должен был объединить две одинаковые обсерватории, находящиеся на расстоянии нескольких тысяч километров друг от друга. Лишь тогда можно было бы с уверенностью идентифицировать сигнал из космоса среди фонового шума.
Настал момент реформировать структуру управления LIGO. Летом 1987 г. тройку Вайсс – Торн – Древер сменил единоличный директор проекта Рокус «Робби» Фогт из Калифорнийского технологического института. Положительной стороной этого решения было то, что Фогт направил все предприятие в нормальную колею. Решения принимались, сроки выдерживались, проблемы решались. Через два года после назначения Фогт добился своей главной цели – составить итоговую детальную заявку на строительство лазерно-интерферометрической гравитационно-волновой обсерватории, которая была бы одобрена NSF. Прекрасно!
Существовала и отрицательная сторона. С Робби Фогтом было очень трудно иметь дело. Он руководил, раздавая приказы, и любого ослушника вышвыривал за дверь. «Судя по тому, что я о нем слышал, это был как раз тот человек, который нужен, чтобы проект состоялся, – вспоминает Вайсс. – Но я не представлял, как с ним будет сложно. Кто-то из Калифорнийского института однажды сказал мне: “Вы уже не будете прежним после работы над проектом, которым руководит Робби”. Он оказался прав».
Важной частью заявки был двухэтапный принцип. Первую версию LIGO (Initial LIGO, или iLIGO) предполагалось завершить в самом начале XXI в. Оборудование имело бы максимальную чувствительность, достигнутую учеными и технологией в течение 1990-х гг., и смогло бы регистрировать волны Эйнштейна, вызванные слиянием нейтронных звезд на расстоянии по меньшей мере 50 млн св. лет. В этом объеме пространства находятся тысячи галактик. При определенном везении iLIGO уловила бы сигнал одного или даже двух слияний нейтронных звезд в течение планового срока эксплуатации – около десятилетия. Во всяком случае таковы были оптимистичные расчеты Кипа Торна.
Кроме того, iLIGO позволила бы проверить концепцию экспериментально. Ее главными задачами были наработка практического опыта применения многочисленных новых технологий, выявление непредвиденных проблем и демонстрация самой возможности работы двух крупных лабораторий в связке. Тем временем продолжалась бы разработка еще более точного оборудования: более мощных сверхчистых лазеров, более качественных зеркал с совершенным отражающим слоем, лучших систем подвеса и более рациональных конфигураций интерферометра. Продвинутую обсерваторию LIGO предполагалось ввести в действие примерно в 2015 г. Это было бы нечто невиданное – по сравнению с предшественницей чувствительность предполагалось постепенно повысить в 10 раз, дальность в 10 раз, а объем пространства в 1000 раз. Ученые задумывались о нескольких десятках регистраций в год.
В декабре 1989 г., когда заявка на LIGO была одобрена Национальным научным фондом, до 2015 г. оставалась четверть века. Это были дерзкие планы. Знаменательно, что вводная часть документа открывалась словами Николо Макиавелли, сказанными в 1513 г.: «Нет дела, коего устройство было бы труднее, ведение опаснее, а успех сомнительнее, нежели замена старых порядков новыми».
Трудно, опасно, сомнительно… и дорого, о чем Макиавелли не упомянул. Тем не менее в 1990 г. Национальный совет по делам науки одобрил заявку, несмотря на бюджет почти в $300 млн. Одна загвоздка: из-за большого объема финансирования – беспрецедентного для NSF – проект должен был также получить одобрение конгресса. Последнее слово (быть или не быть LIGO) оставалось за Капитолийским холмом.
Еще одно препятствие, едва не уничтожившее LIGO, отчасти возникло из-за Тони Тайсона из AT&T Bell Laboratories. Как вы помните, в 1970-х гг. Тайсон был одним из самых непримиримых противников Джо Вебера. Тайсона пригласили выступить в комитете палаты представителей конгресса США по науке, космосу и технике. Его первым заданием было оценить осуществимость проекта LIGO, вторым – опросить астрономов и узнать, насколько популярен этот проект в их среде.
Сегодня, вспоминая об этом случае, Тайсон жалеет, что согласился на второе задание. Его собственное мнение о заявке на строительство LIGO уже вызвало резкую критику круга ученых, занимающихся гравитационными волнами. Он высоко оценивал перспективы проекта, но понимал, что он сырой. Вероятно, конгрессу лучше выдать первый транш на разработку прототипа интерферометра средних размеров, а не сразу на полномасштабную обсерваторию. Это были, в общем, соображения технического порядка. Но в ходе опроса двух сотен видных американских астрономов проявилась выраженная связь вопроса с политикой развития науки. Оказалось, пять из каждых шести астрономов вообще против строительства LIGO. Это слишком сложно, слишком рискованно, слишком сомнительно в плане результативности, а главное, слишком дорого. Почему бы не потратить деньги на новые телескопы и астрономический инструментарий? На вещи, проверенные временем?
В какой-то мере сомнения вызывались физическим обоснованием LIGO. В консультативном докладе Национального совета по научным исследованиям о приоритетах астрономии и астрофизики в 1990-е гг. проект LIGO характеризовался как «интересный физический эксперимент, пока не продемонстрировавший своей полезности для астрономии». И эти физики со своими лазерами осмелились назвать свой инструмент обсерваторией? Они до сих пор ничего не обнаружили. Они даже не могут направить эту штуковину на конкретную точку в небе.
Разумеется, Тайсон был обязан сообщить о результатах своего опроса. В итоге на него обрушился вал ядовитых электронных писем от людей, связанных с LIGO. Тем не менее конгресс одобрил проект благодаря еще двум годам активного лоббирования Робби Фогта – на Капитолийском холме он был новичком, но его яркая личность привлекла внимание законотворцев. Наконец, в 1992 г., через 20 лет после первой публикации эпохальной статьи Рэя Вайсса в журнале MIT Quarterly Progress Report, Национальный научный фонд получил разрешение заключить соглашение о сотрудничестве с Калифорнийским и Массачусетским технологическими институтами. Были выбраны две площадки для строительства – Хэнфорд и Ливингстон. Наконец можно было приступать к сооружению LIGO.
Или нельзя?
Во всяком случае, не сразу. Достигли апогея личные трения между специалистами из Калифорнийского института. Заступив на пост первого директора LIGO, Фогт опирался на технический опыт Рона Древера, выдвигавшего блестящие идеи – например, повысить мощность лазера с помощью резонаторов Фабри – Перо и дополнительно подавить дробовой шум путем рециркуляции мощности, – но с годами Фогту становилось все труднее терпеть вспышки неуправляемой интуиции Древера и его неспособность на чем-нибудь остановиться. Радикальное изменение масштаба проекта требовало порядка, организации и дисциплины – качеств, которые для Древера были пустым звуком.
Дискуссии переросли в споры, споры – в раздоры. Двое ученых вообще перестали разговаривать. Фогт демонстративно покидал помещение, стоило Древеру войти, – не лучший способ выполнения многомиллионного проекта. Другим членам команды также стало трудно работать с Древером, а у многих были проблемы с Фогтом из-за его авторитарного и негибкого стиля руководства. По словам Вайсса, это был полный разлад, сведения о котором просочились в научную прессу. Репортажи о «шторме Фогт – Древер», как стали называть конфликт, появились на страницах Science и Nature. NSF отреагировал очень резко, и ученые Калифорнийского технологического института испугались за судьбу LIGO. В 1992 г. они исключили Рона Древера из проекта и даже сменили замки на двери его кабинета.
Вред, однако, уже был причинен. Группа независимых экспертов даже рекомендовала NSF свернуть проект. Фогт стал еще более подозрительно относиться к вмешательствам извне в любом виде, поскольку хотел руководить LIGO по-своему. Это не понравилось Национальному научному фонду, потребовавшему сделать формат управления значительно более прозрачным и отчитываться за каждый потраченный доллар и каждый предпринятый шаг. Мог ли NSF в полной мере доверять Робби Фогту? Он сумел протолкнуть LIGO в конгрессе, но, решили независимые эксперты, не способен возглавить строительство объекта. В конце 1993 г. руководство NSF совместно с верхушкой администрации MIT и Калтеха пришли к неизбежному выводу: Фогт тоже должен уйти. Проект LIGO слишком важен, чтобы позволить причудам одного человека его уничтожить.
Кто же подходил для завершения работы?
Может быть, специалист по физике элементарных частиц из Калифорнийского технологического института Бэрри Бэриш? Он был легким в общении и невероятно организованным человеком, имел огромный опыт управления крупными научными проектами. До недавнего времени Бэриш являлся одним из руководителей масштабного эксперимента, служащего подготовкой к строительству SSC – сверхпроводящего суперколлайдера – американского гигантского ускорителя элементарных частиц, который должен был стать главным инструментом поиска неуловимого бозона Хиггса. Если название этой лаборатории ничего вам не говорит, причина в том, что она так и не была построена. В октябре 1993 г. многомиллиардный проект ускорителя, финансируемый министерством энергетики, был закрыт конгрессом. Бэриш остался не у дел.
В рождественские каникулы 1993 г. к Бэришу обратился президент Калифорнийского технологического института коллега-физик Томас Эверхарт. Как он смотрит на то, чтобы возглавить LIGO? Они обсудили предложение во время прогулки по пляжу. Бэриш не смог сразу принять решение. Он еще не пришел в себя после краха SSC и, кроме того, пристально следил за проектом LIGO и знал обо всех затруднениях. Осуществим ли он?
В конце концов Бэриш согласился. В феврале 1994 г. он сменил Фогта на должности ответственного исполнителя проекта. Навыки стратегического планирования и управления позволили ему поставить LIGO на ноги. Главную роль сыграло то, что он покончил с прежней структурой управления, влил в проект много свежей крови – ученые из области физики элементарных частиц искали работу – и составил гораздо более реалистичную оценку стоимости проекта. Он сообщил NSF: если фонд действительно намечает разработку и осуществление усовершенствованного aLIGO лет через 15, нужно быть готовым к удорожанию проекта процентов на 40.
Весной 1994 г., когда в Хэнфорде должна была начаться подготовка строительного участка, произошло два знаменательных события. Во-первых, еще одна экспертная группа настоятельно рекомендовала продолжить работы по LIGO. Во-вторых, Бэриша и Кипа Торна, главного теоретика проекта, пригласили выступить на собрании Национального комитета по науке в Вашингтоне. По его воспоминаниям, это было формальное мероприятие продолжительностью около часа. Торн рассказал о научных основах проекта, в том числе озвучив самые оптимистичные оценки количества событий, которые LIGO сможет зарегистрировать. Бэриш поделился новыми идеями реализации проекта.
Вспоминая тот хлопотный год, Бэриш называет чудом то, что летом 1994 г. комитет вновь одобрил заявку на LIGO, несмотря на значительное повышение сметы. «Еще большее чудо, – продолжает он, – что NSF продолжает бесперебойное финансирование больше 20 лет. Потенциальная отдача была высока, но и риски большие. Впрочем, не рискуя, невозможно заниматься наукой на пределе возможностей».
Благодаря тому что NSF дал проекту зеленый свет, лазерно-интерферометрическая гравитационно-волновая обсерватория наконец стала реальностью. Менее чем через четыре года руководитель строительства в Ливингстоне Джерри Стэпфер водил меня по объекту, пока еще пустому, убежденный, что первая регистрация не за горами: «Нужно во что-то верить!»
_________
Виа Эдоардо Амальди в Сан-Стефано-а-Мачерата всего в 30 минутах езды от Пьяцца-дель-Дуомо в Пизе. В историческом центре города туристы фотографируются на фоне Пизанской башни и, вероятно, гадают, почему гравитация до сих пор не покончила с этим сооружением (прежде всего потому, что оно стабилизировано системой стальных канатов). Некоторые, возможно, слышали апокрифическую историю о том, как Галилей ронял с вершины башни шары разной массы, чтобы опровергнуть Аристотеля. Не многие знают, что самые точные измерения гравитации в Европе проводятся всего в получасе езды на юго-восток.
Впрочем, во время моего визита во второй половине сентября 2015 г. научная работа не ведется, поскольку детектор Virgo находится на реконструкции. «Усовершенствованная LIGO введена в действие несколько дней назад, – говорит Федерико Феррини, директор Европейской гравитационной обсерватории. – Мы тоже устанавливаем новое, более чувствительное оборудование. В конце 2016 г. или начале 2017 г. мы надеемся присоединиться ко второму научному запуску Advanced LIGO». Предстоит решить еще много проблем и преодолеть препятствий. Большая наука – это движение по пути проб и ошибок. Лозунг на стене кабинета Феррини гласит: «Завтра мы ошибемся умнее».
Полушутя-полусерьезно итальянский физик рассказывает, что несколько недель назад, находясь с женой в Сантуарио-ди-Монтенеро – знаменитом месте паломничества недалеко от Ливорно, – помолился за регистрацию волны Эйнштейна. «Мой срок на посту директора заканчивается в конце 2017 г., – замечает он. – Я уверен, что к тому времени у нас будет несколько событий». Он не сказал, что за 8 дней до моего визита уже произошла регистрация GW150914, вызвавшая огромное воодушевление, поскольку участникам коллаборации LIGO – Virgo было запрещено обнародовать новость. Неудивительно, что Феррини был уверен в успехе.

 

 

Virgo во многом похожа на LIGO, только длина ее плеч 3 км вместо четырех. Кроме того, регион к юго-востоку от Пизы населен намного плотнее Хэнфорда в штате Вашингтон или лесистого севера луизианского Ливингстона. Трубы Virgo проложены на поверхности земли, как и в американских обсерваториях. Над ними пришлось возвести несколько низких мостов, чтобы фермеры могли проехать на тракторах. Наружная поверхность труб выкрашена в небесно-голубой цвет, чтобы они не слишком выбивались из пасторального итальянского ландшафта.
Координатор пусконаладочных работ Бас Свинкельс показывает мне объект. Он единственный голландец среди постоянных участников проекта Virgo – изначально французско-итальянского, в дальнейшем к коллаборации присоединились Венгрия, Польша и Нидерланды. Свинкельс ведет меня в зону размещения лазерного и вакуумного оборудования Virgo. Гигантское пространство заполнено громадами вакуумных резервуаров. Новинкой усовершенствованной Virgo являются криогенные ловушки – значимый вклад Nikhef, Национального института субатомной физики Нидерландов в Амстердаме. С помощью жидкого водорода они замораживают любые остаточные загрязнения в системе, обеспечивая еще более качественный вакуум. Свинкельс с гордостью рассказывает о невероятных аттенюаторах Virgo – конструкциях 10-метровой высоты из семи обратных маятников, на которых на проволоке из аморфного кварца будут вывешиваться зеркала.
Трудно поверить, что до второй половины 1980-х гг. Virgo существовала только в виде идеи, особенно если вспомнить, как долго шел к началу реализации проект LIGO. Опять-таки это огромное преимущество европейцев – они не первые. США уже давно ведут масштабные исследовательские работы.
Итальянские физики – опытные охотники на гравитационные волны. В начале 1970-х гг. Эдоардо Амальди и Гвидо Пиццелла построили первый чувствительный антенный детектор, желая проверить заявления Джо Вебера. Их группа в лаборатории Фраскати Национального института атомной физики (INFN) возле Рима сотрудничала с командой Хайнца Биллинга из Института Макса Планка в Мюнхене. Они не получили убедительных результатов, но, возможно, добьются большего с помощью лазерной интерферометрии.
Во всяком случае, так думал специалист по физике элементарных частиц Адальберто Джадзотто, который был экспертом по сейсмоизоляции. В 1980-е гг. он объединил усилия с Аленом Брилле из Национального центра научных исследований Франции (CNRS), который знал все об оптике и лазерах. Вместе они выдвинули идею детектора Virgo – европейского ответа LIGO. Официальное предложение на проект INFN/CNRS было подано французскому и итальянскому правительствам в 1989 г., перед тем как Робби Фогт завершил работу над первоначальной заявкой на LIGO для Национального научного фонда.
Название Virgo не является аббревиатурой. Детектор назван в честь скопления галактик в созвездии Девы. Скопление Девы находится в 50 млн св. лет; Джадзотто и Брилле вознамерились построить детектор, который сможет регистрировать волны Эйнштейна, вызванные слиянием нейтронных звезд даже на таком расстоянии.
Virgo должна была иметь сопоставимую с LIGO чувствительность, несмотря на укороченные плечи интерферометра. Но европейцы хотели построить детектор, восприимчивый к более низким частотам за счет лучшего подвеса зеркал. Масштабную многоуровневую систему подвеса разработал Джадзотто. Рабочий прототип был завершен в 1987 г. в лаборатории INFN в Пизе. Теперь он выставлен в вестибюле главного здания Европейской гравитационной обсерватории.
Virgo была не единственным европейским проектом. В Германии в конце 1980-х гг. имелись планы строительства трехкилометрового интерферометра, в 100 раз превышающего 30-метровый прототип Хайнца Биллинга. Биллинг вышел на пенсию в 1989 г., но его новаторскую работу продолжил Карстен Данцманн. Биллинг, тогда 75-летний, был убежден, что рано или поздно усилия его преемника увенчаются успехом. «Герр Данцманн, – сказал он, – я доживу до того момента, когда вы найдете эти волны».
Немцы объединились с экспериментаторами из Глазго (Шотландия) и теоретиками из Кардиффа (Уэльс). Они назвали будущий интерферометр GEO – German-English Observatory. Сегодня Данцманн признает, что они по незнанию здорово сглупили: Шотландия и Уэльс – части Великобритании, но, разумеется, не стоит называть шотландца и валлийца англичанином. Вскоре GEO стало расшифровываться как «Гравитационная европейская обсерватория», хотя полное название практически никогда не используется.
Летом 1990 г. казалось, что проекту стоимостью €100 млн вот-вот будет дан зеленый свет. Однако в следующие два года GEO тихо зачах из-за падения Берлинской стены и последующего объединения Восточной и Западной Германии. Львиная доля расходов нового правительства на науку была направлена на реорганизацию в бывшей ГДР. На крупные новые инициативы просто не осталось денег. К 1992 г. стало ясно, что у GEO нет будущего, по крайней мере в первоначальном виде.
Новые возможности появились, когда Данцманн переехал из Мюнхена в Ганновер, столицу германской земли Нижняя Саксония. В Ганноверском университете знаменитый физик-лазерщик Герберт Веллинг занимался реорганизацией физического факультета, и эксперименты в области гравитационной физики стояли у него в списке приоритетов. В 1993 г. он пригласил Данцманна для разработки новой программы, частично финансируемой фондом «Фольксваген» – немецкой автомобилестроительной компании со штаб-квартирой в Нижней Саксонии. Довольно скоро проект GEO вернули на рассмотрение, хотя и в гораздо менее масштабном и дорогом варианте.
Проект Virgo был одобрен в 1993 г. и первоначально оценивался в €75 млн. Строительство началось через три года. Проект GEO600 – в новом названии была отражена уменьшенная до 600 м длина плеча – стоимостью €10 млн стартовал в 1994 г., а строительные работы по нему начались в 1995 г. за южной окраиной Ганновера. Европейцы взяли быстрый старт.
GEO600 производит совершенно иное впечатление, чем LIGO или Virgo. Прежде всего, объект довольно трудно найти. К западу от крохотной деревушки Руте сначала расстилаются поля сельскохозяйственного факультета университета. Затем узкая пыльная дорога ведет к россыпи панельных сооружений: администрации, посту управления и столовой обсерватории. 600-метровые гофрированные трубы напоминают детали дешевой канализационной системы. Они прячутся в траншеях, и их легко проглядеть. Но внешность обманчива. Войдя в центральное здание, частично заглубленное в землю, вы оказываетесь в окружении высокотехнологичного лазерного оборудования, стоек электроники и вакуумных резервуаров, где заключена точная оптика.
Во время моего визита в начале февраля 2015 г. GEO600 был единственным действующим лазерным интерферометром в мире – LIGO и Virgo закрылись на реконструкцию. Никто, однако, не надеялся, что маленький немецкий детектор уловит колебания пространственно-временного континуума – он намного менее чувствителен, чем три его старших брата. Главным предназначением этого объекта была разработка и апробация новых технологий. Рециркуляция сигнала впервые была применена здесь. GEO600 продемонстрировал и возможности метода сжатого света, использующего квантовые эффекты для увеличения стабильности выходного сигнала интерферометра.
Сначала европейские проекты, особенно Virgo, воспринимались как конкуренты LIGO. Кое-кто даже опасался, что европейцы обойдут американцев, первыми проведя прямую регистрацию волн Эйнштейна, и этот призрачный риск, возможно, помог LIGO выжить. Но скоро стало ясно, что от сотрудничества выиграют все.
За два года до официальной церемонии открытия LIGO, состоявшейся в ноябре 1999 г., детектор GEO600 присоединился к научной коллаборации LIGO. Первый одновременный пробный запуск обсерваторий в Хэнфорде и Ливингстоне и GEO600 был произведен в 2002 г. Год спустя начала функционировать Virgo. В 2007 г. коллаборации LIGO и Virgo заключили соглашение о совместном анализе данных. С тех пор все технические данные, результаты тестов, измерения в ходе наблюдений и научный анализ четырех детекторов являются общим достоянием тысячи с лишним членов различных групп.
_________
Это был долгий тернистый путь, но все хорошо, что хорошо кончается. После длительного этапа отладки и нескольких лет наблюдений первоначальные версии LIGO и Virgo закрыли на реконструкцию, соответственно в октябре 2010-го и в декабре 2011 г. Гравитационные волны не были зарегистрированы спустя полвека после того, как Джо Вебер впервые задумался о способах измерения крохотных колебаний. Тем не менее все сохраняли оптимизм. Вот-вот начнется создание усовершенствованных версий LIGO и Virgo. В течение пяти лет предполагалось собрать новые детекторы. Постепенно они станут гораздо чувствительнее предшественников. Еще несколько лет подождать, еще немного потерпеть.
17 марта 2014 г. исследователи Гарвард-Смитсоновского центра астрофизики в Кембридже (штат Массачусетс) объявили, пользуясь их терминологией, о «первом прямом изображении гравитационных волн». Не от столкновения нейтронных звезд или слияния ЧД, а вследствие Большого взрыва. Полученном с помощью не гигантского лазерного интерферометра, а маленького микроволнового телескопа на Южном полюсе.
Неужели Рэя Вайсса, Кипа Торна, Рона Древера и всех остальных обошли – после десятилетий разработки, строительства, тестирования и вложений сотни миллионов долларов?
Это тема главы 10. Но сначала я должен объяснить, как возникла Вселенная.
Назад: 7 Лазерная эпопея
Дальше: 9 О сотворении мира