10.10
«Мне нужны вещи, которые не горят в огне»
И хотя изобретения, описанные в этом разделе, можно использовать не только для сооружения огнестойких строений, они позволяют справиться и с этой проблемой тоже. Фактически цемент и бетон – строительные материалы, которые, несмотря на дешевизну, дают возможность возводить здания, способные простоять более тысячи лет.
Еще более полезной выглядит сталь, невероятно прочная и гибкая субстанция, с которой ваша цивилизация окажется способной на создание всего, от мостов до шариковых подшипников. И, в конце концов, сварка даст вам шанс изготовить нечто крупнее любой печи для обжига, и такие конструкции окажутся столь же крепкими, как если бы они были сделаны из единого куска металла.
Именно эти технологии позволят вам приблизиться к цивилизации современного уровня, так что мы рады предложить их вам.
10.10.1. Цемент и бетон
Идеальное здание отвечает трем параметрам: оно крепкое, пригодное и красивое.
Вы (также Марк Витрувий Поллион)
Что это
Строительные материалы, которые могут выглядеть скучными до того момента, пока вы не поймете, что их можно описать как жидкий камень.
До того как были изобретены
Камню приходилось с большим трудом придавать ту форму, что вам требовалась, вместо того чтобы просто налить жидкость в форму, подождать, пока она застынет, и отпраздновать успех.
Изобретены
7200 до н. э. (известковая штукатурка);
5600 до н. э. (первые образцы бетона, использовались для заливания полов на территории нынешней Сербии);
600 до н. э. (гидравлический цемент);
1414 н. э. (переизобретение цемента и бетона);
1793 н. э. (современный бетон).
Предпосылки
Печи для обжига (для нагревания известняка), вулканический пепел или глиняные изделия (для цемента).
Как изобрести
Следуя инструкциям из приложения С, вы можете превратить известняк в негашеную известь, а негашеную известь в гашеную – которая самостоятельно вступает в реакцию с диоксидом углерода из воздуха и твердеет. Добавьте некоторое количество глины (или песка с водой) к вашей гашеной извести, и вы изобретете строительный раствор: легко мнущуюся пасту, которая при высыхании становится твердой как камень. Замените часть песка и воды соломой или конским волосом, чтобы увеличить стойкость на разрыв, и вы получите штукатурку: достаточно прочную субстанцию, чтобы использовать ее для наружной отделки зданий.
Она хороша еще и тем, что не пропускает воду, после того как затвердеет.
Это свойство делает штукатурку отличным материалом при строительстве подземных хранилищ для продуктов: ваши запасы остаются в холоде, но при этом никакая вода до них не доберется.
Однако все эти технологии требуют воздуха для высыхания, и в случае со штукатуркой это может занять несколько месяцев. Решение состоит в том, чтобы добавить в раствор силикаты алюминия: это позволяет изготовить гидравлический цемент, раствор, который не только сохнет быстрее, водонепроницаем, но еще и твердеет при соприкосновении с водой, что невероятно полезно, когда вы строите маяки, волноломы и другие штуки, находящиеся в постоянном контакте с сырой стихией.
Силикаты алюминия находятся в вулканическом пепле и глине, так что, если у вас вокруг валяется такой пепел, вы можете просто добавить его в раствор. Если нет, то возьмите старые горшки, разбейте на мелкие куски и отважно замешайте их в ваше сырье. Лошадиный волос можно добавить, чтобы избежать появления трещин (точно так же, как и в случае со штукатуркой), а кровь животных создаст в цементе крохотные пузырьки, обеспечивающие более высокую стойкость при нагрузках от замерзания-таяния.
Цемент – отличная штука, но можно сделать его еще лучше, просто добав ляя гравий, камни или гальку.
Это уже бетон!
Простая добавка из буквально валяющихся под ногами камней делает цемент намного прочнее: камни принимают на себя бо́льшую часть нагрузки, и это значит, что вам по плечу более крупные структуры. Помимо зданий бетон можно использовать для мощения дорог, только не забывайте давать плитам небольшой уклон в сторону обочин, чтобы вода стекала и не появлялись всякие неприятности вроде луж.
Цемент и бетон повсеместно использовались в Римской империи, но после ее крушения в 476 н. э. технология оказалась утеряна на тысячелетие. Есть немногочисленные здания, построенные из цемента после этой даты, но необходимые для их возведения знания хранились внутри гильдий, редко записывались и никогда не распространялись.
И только когда невнятный римский манускрипт от 30 до н. э. (написанный архитектором и инженером Витрувием, цитата из которого открывает этот раздел) был обнаружен в одной из библиотек Швейцарии в 1414 н. э., секреты цемента и бетона оказались открыты заново. Потребовалось еще несколько столетий – до 1793 н. э. – для появления идеи «нагрей известняк, чтобы произвести негашеную известь», облегчившей изготовление цемента и бетона.
Вы можете легко улучшить историю человечества, просто не забыв на тысячу лет, как делать бетон. Например, вы можете позаботиться, чтобы рецепт этого материала попал в более популярную библиотеку.
10.10.2. Сталь
Все решения выглядят простыми – после того как вы к ним пришли. Но они просты только тогда, когда вы уже знаете, в чем их суть.
Вы (также Роберт М. Пирсиг)
Что это
Сплав железа и углерода, более прочный, чем любой из этих двух элементов в отдельности, с невероятной прочностью на разрыв: способностью держать тяжелый груз без вибрации или разрыва. Нуждаетесь в отличных зданиях, инструментах, средствах транспорта, механизмах или чем-либо еще?
Подумайте о стали.
До того как была изобретена
Всем приходилось обходиться куда менее удобными материалами.
Изобретена
3000 до н. э. (плавка железа);
1800 до н. э. (первая сталь);
800 до н. э. (домны);
500 до н. э. (чугун);
1000-е н. э. (первое использование бессемеровского процесса);
1856 н. э. (бессемеровский процесс переоткрыт европейцами, после чего европейцы назвали его по имени одного из европейцев).
Предпосылки
Плавильни и горны, каменный уголь или кокс.
Как изобрести
В разделе 10.4.2 мы видели, как с помощью плавильни можно удалить примеси из руды, чтобы получить железо, и как можно отбить это железо в горне, чтобы очистить его. Но что произойдет, если добавить в железо углерод?
Мы скажем, что произойдет: углерод взаимодействует с железом так, что получается сплав с большой стойкостью к растяжению, который мы именуем «сталь». Подобная субстанция годится, чтобы изготавливать самые разные объекты, среди которых:
• мосты;
• железнодорожные пути;
• железобетон;
• провода и стальные кабели;
• гвозди, винты, болты, молотки, заклепки;
• иглы;
• банки для консервов;
• шарикоподшипники;
• пилы и плуги;
• турбины;
• вилки, ложки, ножи;
• ножницы;
• спицы для колес;
• струны для музыкальных инструментов;
• колючая проволока;
• два меча на одном креплении, чтобы вы могли использовать их как пар у ножниц и др.
Разное количество углерода порождает различные сплавы, и только материал с содержанием углерода от 0,2 до 2,1 % носит марку «сталь». И даже внутри этого короткого отрезка разное содержание углерода обеспечивает разную прочность и сопротивление при растяжении, так что вы можете поэкспериментировать, чтобы найти то, что вам понравится. Кухонные ножи – чтобы их было удобно точить и они при этом не ломались – содержат около 0,75 % углерода.
Чтобы ввести углерод в железо и изготовить такую отличную, прекрасную сталь, вы должны поместить железо в ящики с размолотым в порошок каменным углем и нагревать до температуры в 700 °C на протяжении недели. Углерод из угля будет реагировать с размягчившимся железом, создавая тонкий слой стали.
Тем не менее только внешняя часть каждого слитка железа превратится в сталь, так что вы должны расплющивать и сгибать ваш металл на наковальне раз за разом, чтобы он весь целиком обрел новые качества. Очевидно, что это медленный и дорогой процесс, вам снова приходится делать то, чем вы уже один раз занимались, возясь с железом. Наверняка вы не удивитесь, выяснив, что лупить по металлу молотом часами – долгий, горячий, трудный, изнурительный и скучный процесс, в общем, полный отстой, так что вы изобретете кое-что получше пр-р-р-р-рямо… сейчас!
Наши поздравления – вы придумали домну.
Мы уверены, что вы уже в курсе, что домна в основе своей улучшенная версия той же топки. Вместо того чтобы ваша плавильня сама втягивала воздух, теперь вы насильно впихиваете его снизу и заставляете подниматься, проходя по дороге через обрабатываемый материал. Но вместо чередующихся слоев железной руды и каменного угля вы берете железную руду, известняк и дающий более высокие температуры кокс.
У вас получается более интенсивное горение, железная руда плавится точ но так же, как и при изготовлении железа, но процесс идет дальше: железо вступает в реакцию с углеродом, формируя новый сплав с точкой плавления около 1200 °С (достаточно низко, чтобы расплавить в вашей домне). Высококарбонизированная жидкость скапливается на дне и вытекает из домны, а после того как она остынет, вы можете забрать свой металл.
Но это еще не совсем сталь.
Проблема в том, что в вашем железе теперь слишком много углерода: вам требуется от 0,2 до 2,1 %, а после прохождения через домну вы можете получить до 4,5 %. Железо с высоким содержанием углерода (его также называют «первичный чугун») очень хрупкое: слишком легко ломается при изгибе или растяжении, чтобы его можно было использовать для строительства мостов или зданий, но его низкая точка плавления позволяет разливать материал по формам, чтобы получить сковородки, трубы и тому подобное.
Чтобы снизить содержание углерода в чугуне до уровня стали, вам придется использовать «бессемеровский процесс», основы которого были открыты в Восточной Азии в XI веке н. э. Идея состояла в том, чтобы подавать холодный воздух на расплавленный металл, и более современная версия (запатентована в 1856 н. э. мужиком, как вы догадались, по фамилии Бессемер) – пропускать воздух через жидкий чугун с помощью мехов или воздушных насосов.
Таким образом в расплав попадает кислород, вступающий в реакцию с расплавленным углеродом, отчего получается диоксид углерода. Он либо сгорает, либо выходит в виде пузырей, оставляя позади более чистое железо, и в качестве бонуса эта реакция также производит тепло, а значит, нагревает расплавленный металл еще сильнее, позволяя процессу не замирать, даже если повышается точка плавления жидкого металла.
Очень трудно понять, когда нужно прекратить подачу воздуха для необходимого содержания углерода, так что не беспокойтесь, сожгите весь углерод, который сможете, получив чистое железо, а потом добавьте столько, сколько вам нужно.
Железо – шестой из самых распространенных элементов во вселенной и четвертый – в земной коре, но до того, как люди придумали домны и бессемеровский процесс, было невозможно превращать его в сталь дешево или эффективно. Но вы только что справились с этой задачей, и теперь один из самых распространенных на Земле металлов стал для вас одновременно и самым дешевым.
Прекрасно сделано!
Если в вашей цивилизации уже появились инженеры, то они определенно поблагодарят вас за это.
И последнее замечание по поводу стали: вы можете производить стальную проволоку высокого качества, используя высокую прочность на разрыв, которой характеризуется сталь, и технологию под названием «волочение». Все, что вам нужно сделать, – изготовить грубую проволоку из стали, а затем протянуть ее через отверстие в форме конуса, вот так (рис. 33).
Таким образом вы получите проволоку с одинаковой толщиной по всей длине, и весь «отжатый» материал никуда не денется, а только сделает вашу проволоку еще длиннее. Последовательно используя несколько отверстий с уменьшающимся диаметром, вы сможете изготовить проволоку куда более тонкую, чем вручную.
Храповик (приложение Н) можно использовать для продвижения стали вперед, и что особенно удобно, все это можно делать при комнатной температуре: просто требуется некоторое количество смазки. И вот этот момент неожиданно оказывается сложным. Вернувшись в XVII век н. э., мы обнаружим, что тогда использовали жир или растительное масло, но они работают только с мягкой сталью, а слишком сильное трение заставит вашу проволоку сломаться.
Рис. 33. Устройство для волочения проволоки, вид сбоку
В 1650 н. э. некто Иоганн Гердес «случайно» обнаружил, что если сталь достаточно долго продержать в моче, то на ней появляется слой мягкого материала (теперь мы называем этот процесс коррозией), и он уменьшает трение при изготовлении проволоки. Это процесс, названный «искусственное ржавление», использовался 150 лет, пока кто-то не заметил, что разбавленное пиво на самом деле ничуть не хуже мочи, и только около 1850 н. э. люди догадались проверить, нельзя ли обойтись водой.
Можно. Она справляется замечательно.
Действуйте лучше, чем мы, не замачивайте сталь в моче без особой на то причины.
10.10.3. Сварка
Когда я сообщил отцу, что собираюсь стать актером, он сказал: «Отлично, но на всякий случай выучись на сварщика».
Вы (также Робин Уильямс)
Что это
Способ сплавлять два куска металла так надежно, что шов будет крепче самих кусков металла.
До того как была изобретена
Любой кусок металла приходилось плавить целиком, поскольку, как только его создавали, единственным способом присоединить его к другому куску оставались шурупы и болты, которые намного слабее хорошей сварки.
Изобретена
4000 до н. э. (кузнечная сварка);
1881 н. э. (дуговая сварка);
1903 н. э. (газовая сварка).
Предпосылки
Металл, горн, электричество (для дуговой сварки), ацетилен (для газовой сварки).
Как изобрести
Кузнечная сварка очень проста: нагрейте в горне два куска металла, которые вы хотите соединить, до температуры от 50 до 90 % от их точки плавления, чтобы они оставались твердыми, но сделались гибкими. Проблема в том, что, когда металлы достигают такой температуры, их поверхность склонна окисляться, а окислы мешают хорошей сварке. Рассыпая песок (или хлорид аммония, или селитру, или смесь всех трех, см. приложение С) по поверхности металла, вы решите эту проблему: он снижает точку плавления окислов, позволяя им улетучиваться из зоны между двумя кусками металла, когда вы начинаете по ней бить.
«Бить?» – спрашиваете вы.
Ну да, это не высокотехнологическая форма сварки, крутой вы наш перец, это технология, при которой вы нагреваете два куска металла и буквально вколачиваете их друг в друга там, где хотите соединить, до тех пор пока они не прилипнут. Если руки ваши не очень сильны, то можно использовать водяную мельницу (раздел 10.5.1), чтобы изготовить механический молот.
Если у вас есть электричество (раздел 10.6.1), вы можете изобрести дуговую сварку: менее трудоемкий процесс, который также позволяет сваривать предметы, слишком большие для того, чтобы засунуть их в горн. Дуговая сварка использует тепло, генерируемое электрической дугой, что исходит с кончика электрифицированного куска металла, именуемого электродом, и заканчивается там, где вы хотите варить.
Электрод помещают рядом с тем местом, где предполагается сваривать два куска металла, и дуга вынуждает их плавиться, образовывать единое целое. Прут из наплавочного металла можно использовать для того, чтобы ваши детали соединялись, и тогда шов может оказаться прочнее, чем сами базовые металлы.
Просто заземлите ваши куски металла, поднесите электрод достаточно близко, чтобы возникла дуга, и варите. Постарайтесь, чтобы расстояние между электродом и сварным швом всегда оставалось постоянным: иначе будет меняться ток, а вместе с ним и температура, и качество сварки тоже.
Нет необходимости говорить, что это безумно опасное занятие, особенно если вы застряли в прошлом и никогда ранее не работали с электричеством. В этом случае вам наверняка захочется задержаться на фазе «нагрейте металл, посыпьте песочком и колотите молотом, пока не добьетесь нужного результата».