10.5
«Я ленив. Я хочу механизм, который бы делал работу за меня»
Инженерия – это процесс применения математики и других практических знаний для изобретения новых машин.
Вы занимались инженерным искусством все время и даже не подозревали об этом! Но изобретения, описанные в этом разделе, гораздо чаще ассоциируются с работой инженера: конструирование машин, способных выполнять различные задачи для вас, освобождая вас для других занятий (включая наблюдение за теми машинами, которые вы спроектировали и построили).
Водяные и ветряные мельницы будут первой технологией из тех, которыми вы воспользуетесь, чтобы взнуздать природные процессы на Земле, заставить их делать работу за вас. Вы получите больший эффект от матушки-природы, создав ковшовую турбину. Маховые колеса позволят получать энергию более равномерно и окажутся полезными во всех типах машин, включая паровой двигатель, невероятно продуктивную штуку, для которой нужна только вода в качестве реактивного агента и любое способное гореть топливо.
Мы знаем, что наши читатели со склонностью к механике давно ожидали появления, ожидая появления этого раздела, и мы счастливы показать им все, что нужно, для изобретения этих технологий. Другими словами, дорогие путешественники во времени… запускайте свои двигатели!
10.5.1. Водяные и ветряные мельницы
Если мы научимся без тяжелого труда добывать плоды земли, то мы снова ощутим вкус золотого века.
Вы (также Антипатр из Фессалоники)
Что это
Способ взнуздать силы природы, чтобы заставить их работать на вас.
До того как были изобретены
Если вам требовалось размолотое зерно, распиленные бревна, раздробленные камни, или заточенные инструменты, или измельченная руда, или мехи, или откачанная вода, то вам приходилось делать это самостоятельно, ручками, словно долбаному придурку.
Изобретены
300 до н. э. (первые водяные мельницы);
270 до н. э. (ортогональная зубчатая передача);
40 до н. э. (падающий молот);
100 н. э. (первое колесо на энергии ветра);
400 н. э. (водяная мельница на падающей воде);
600 н. э. (дамбы для водяных мельниц);
900 н. э. (первые водяные мельницы);
1185 н. э. (первые современные водяные мельницы).
Предпосылки
Колеса, дерево или металл, ткань (для водяных мельниц).
Как изобрести
И водяные и ветряные мельницы – воплощение одной и той же идеи: все эти газы и жидкости на поверхности планеты непрерывно движутся туда-сюда, так что не будет ли замечательно, если мы заставим их сделать что-нибудь для нас?
Водяную мельницу изобрести просто: это гигантское колесо с лопастями, которые может толкать вода. Поместите его в поток, и оно будет вращаться со скоростью движения воды, но извлекая при этом только от 20 до 30 % от ее общей энергии. Вы можете поднять эту величину до 60 %, если будете использовать падающую воду: в этом случае не только движение воды станет работать на вас, но и ее масса.
Сделайте это, заменив плоские лопасти на вашем колесе на чаши и затем поставив колесо под водопадом. Если водопадов рядом нет, вы можете сделать для себя рукотворный: направьте поток по желобу, который будет заканчиваться как раз над вашим колесом. Постройте дамбу, чтобы поток имел один-единственный путь через вашу мельницу, и вы получите пруд, а на самом деле хранилище энергии, готовое к использованию при необходимости.
Это первая батарейка в мире, и вы только что ее изобрели.
Посредством вала ваше колесо окажется соединено с внутренностями мельницы, и вал будет вращаться в том же направлении и с той же скоростью, что и колесо. Это полезно для определенных видов работы – крутить ленточный транспортер, например, – однако вы можете перевести вращательное движение в любой другой вид движения с помощью несложной технологии.
Добавьте ортогональную зубчатую передачу (приложение Н), и вы заставите вращаться другое колесо, но уже по горизонтали, и это отличная штука для помола зерна. Просто установите два каменных жернова: один вращается, а другой, расположенный под ним, закреплен жестко. Сыпьте зерно в дырку посредине вращающегося жернова, и оно само собой смелется в муку и выдавится с краев.
Изменяя сравнительные размеры элементов передачи, которую вы используете, вы сможете менять скорость помола и крутящее усилие. Присоединив к водяной мельнице коленчатый рычаг, вы превратите вращательное движение в возвратно-поступательное, а его можно использовать для изобретения механических пил, насосов или мехов. Замените рычаг падающим молотом, и ваша мельница пригодится для того, чтобы разбивать камни (или ковать сталь).
И все это производит один и тот же источник энергии: вода, толкающая колесо!
Ветряные мельницы работают по тому же самому принципу, но здесь вместо воды используется ветер, который давит на набор парусов, расположенных, подобно лопастям вентилятора, вокруг несущего вала. Такое устройство ведет за собой ряд осложняющих факторов, которые мы ниже исследуем посредством вымышленного диалога между влюбленным в водяные мельницы критиком – давайте назовем его доктор Уотеруиллс – и хорошо информированным, разумным сторонником ветряных мельниц, которого мы поименуем Чомпски (табл. 12).
Давайте представим, что Уотеруиллс – человек, но Чомпски – восхитительный говорящий пес, издающий счастливое пыхтение, когда доктор чешет ему живот, поскольку никто, даже вы, не может нам запретить вообразить что угодно.
Таблица 12. Изначально идея проводить обучение и решать сложные проблемы с помощью диалога между двумя индивидуумами именовалась «Сократическим методом». Мощной обучающей технологией она стала вскоре после популяризации Сократом около 400 до н. э. Мы использовали ее, чтобы обсудить технические вопросы с говорящей собакой!
И на этом все об изобретении ветряных и водяных мельниц.
10.5.2. Ковшовая турбина
Между Землей и атмосферой Земли количество воды остается постоянным, ни каплей больше, ни каплей меньше. Это история о круговой бесконечности, о рождении самой планеты.
Вы (также Линда Хоган)
Что это
Лучшая версия водяной мельницы, которая не только меньше, но и обеспечивает эффективность порядка 90 %, и это выглядит супер рядом с теми 60 %, что мы видели в предыдущем разделе.
До того как была изобретена
Люди обходились водяными мельницами, но при этом они не знали, что они теряют, ну а теперь они все наверняка чувствуют себя идиотами.
Изобретена
1870-е н. э.
Предпосылки
Водяная мельница из дерева или (что лучше) из металла.
Как изобрести
Водяная мельница, которую вы изобрели в прошлом разделе (если вы читаете наше руководство последовательно) или которую вы когда-нибудь придумаете (если вы перелистнули прямо сюда, бормоча: «Фигня все это, мне нужны турбины прямо счас»), приводится в движение двумя способами: масса воды вызывает вращение, и кинетическая энергия передается от воды, когда та соприкасается с колесом. Ковшовая турбина (она же – турбина Пелтона) имеет дело с той же массой воды, но забирает бо́льшую часть энергии движущейся жидкости, и это обеспечивает ей лучшую эффективность.
Базовая идея состоит в том, чтобы получить воду под давлением (простейший способ добиться этого – пустить ее по наклонной трубе с маленьким отверстием в нижнем конце трубы: вес воды будет давить вниз) и заставлять ее бить по вашему колесу с увеличенной силой. Не требуется особого ума, чтобы заменить плоские лопатки колеса мельницы на изогнутые лопасти (ковши), чтобы лучше улавливать воду, но инновация, которую предложил Джонни Пелтон, состояла в том, чтобы не направлять поток прямо в центр ковшей, а поместить на колесо двойные ковши и нацелить воду точно на клиновидную прорезь между ними.
Вы можете увидеть, зачем это сделано, просто встав рядом с кирпичной стеной и поливая ее из шланга. Если направить струю прямо в стену, то независимо от напора вы немедленно промокнете: вода ударит в кирпичи и прольется брызгами на ваш организм. Именно это происходит с энергией воды, которая теряется вместо того, чтобы использоваться, когда поток направляется в центр ковшей водяной мельницы, туда, где эти ковши наиболее плоские. Но если в вашей стене есть изгиб и вы нацелите струю под углом на край этого изгиба, то останетесь сухим.
Вместо того чтобы резко отскочить от стены, вода будет аккуратно перенаправлена, опишет изгиб по стене и прольется с противоположного края. Совершенно аналогичным образом работают и турбины Пелтона: вода отдает бо́льшую часть энергии, струясь по чашам, а не ударяясь в них, и это заставляет колесо вращаться быстрее. Причина того, почему изобретатель предложил две чаши, а не одну, сводится к проблеме баланса: при таком варианте колесо получает одинаковую нагрузку по всем направлениям.
Ковшовая турбина, вращающаяся с половиной скорости воды, падающей на нее, будет забирать почти всю энергию потока. Вы сможете определить, что построили высокоэффективное устройство, по такому признаку – вода, выливающаяся из ковшей после того, как они сделают полуоборот, почти не движется.
Отлично, теперь вы забираете у потока 90 % того, что он несет!
Это не только дает вам больше энергии из той же самой воды, но открывает для вас новые источники энергии по всему миру, поскольку потоки слишком слабые и водопады слишком низкие для водяной мельницы в случае турбины Пелтона можно использовать.
В этот момент вы наверняка задумались, насколько сбивает с толку тот факт, что человечеству потребовалось более двух тысячелетий после изобретения водяной мельницы на то, чтобы нацелить струю не в центр лопатки, а в край ковша и тем самым почти удвоить эффективность устройства. На самом деле все обстоит еще хуже, поскольку оригинальная история о том, как Пелтон изобрел турбину, гласит: «Однажды Пелтон поливал из шланга огород, но тут к нему слишком близко подошла корова, и он направил шланг на нее, и струя воды ударила между ее чашеподобными ноздрями, и из-за этого голова животного дернулась назад, и, увидев это, Пелтон тут же все и придумал».
Мы не собираемся сказать вам, что история выше на самом деле правда, поскольку это не имеет значения. Если правда, то мы не более чем кучка тупиц, которым требуются мокрые коровы для того, что сделать даже банальные физические открытия. Если это выдумка, то мы все равно не более чем кучка тупиц, со всей очевидностью готовых поверить в то, что продвижение в науке невозможно без помощи со стороны банальной мокрой коровы.
10.5.3. Маховые колеса
Изменения не катятся на колесах неизбежности, они приходят в результате непрерывной борьбы.
Вы (также Мартин Лютер Кинг)
Что это
Способ запасать и потом использовать энергию, используя старое доброе колесо.
До того как были изобретены
Невозможно было сохранять энергию вращения и сглаживать получаемую от двигателей энергию, ну и еще колеса допускали значительно меньше махов.
Изобретено
300 до н. э. (в гончарном деле);
1100 н. э. (в механике).
Предпосылки
Колесо, сталь (для крепких и долговечных колес, а также для шариковых подшипников).
Как изобрести
Маховые колеса эксплуатируют тот факт, что объекты, находящиеся в движении, имеют тенденцию оставаться в движении. Если у вас есть тяжелое колесо, которому требуется много энергии, чтобы начать вращаться, также понадобится немало энергии, чтобы его остановить.
И это значит, что из такого колеса можно сделать батарейку, только запасать не электричество, а импульс, количество движения. Колеса – вовсе не идеальные «батарейки», они замедляются с течением времени из-за трения, но тяжелое или большое колесо может вращаться по-настоящему долго.
Поначалу их использовали для изготовления горшков (горшечный круг не более чем тяжелое колесо, которое надо раскрутить, чтобы оно вертелось некоторое время, и именно такую штуку, мой покрытый глиной друг, называют маховым колесом, рис. 21), но (ничего удивительного) людям понадобилось время, чтобы сообразить: эти штуки годятся для разных других вещей. Выходит, что вам просто нужно присоединить его к двигателю посредством штыря… и вы в деле!
Помимо запасания энергии они могут использоваться для того, чтобы механизмы работали более плавно.
В поршневых двигателях (см. раздел 10.5.4) поршни ходят с перебоями, а во многих случаях требуется постоянный поток энергии. Если вы управляете, например, трактором, то наверняка захотите, чтобы он катил вперед с постоянной скоростью, а не останавливался и потом дергался вперед бесчисленное количество раз. Если ваши поршни передают движение на маховое колесо, а не прямо на действующий механизм, то колесо продолжит вращаться, даже когда поршни не производят энергию.
Маховые колеса могут также высвобождать энергию быстрее, чем она была произведена исходно. Могут уйти часы на то, чтобы разогнать одно из них, но прикрепите к колесу тяжелый груз, и вы сможете направить всю эту энергию на некую работу в один момент, и это обеспечивает вам доступ к кратким, но мощным всплескам энергии, далеко за пределами того, что вы можете получить в обычных условиях.
Конечно, есть верхний предел того, сколько энергии может запасти любое маховое колесо: начав вращаться с достаточной скоростью, оно превосходит собственный предел прочности на растяжение и разрывается изнутри, так что осколки его разлетаются в стороны с невероятно большой скоростью. Именно по этой причине работать со стальными колесами безопаснее, чем с железными: у стали предел прочности выше, а значит, меньше шансы на то, что маховое колесо внутри вашего механизма превратит себя в удивительную металлическую бомбу.
Рис. 21. «Маховое колесо», также известное под менее техническим именем «колесо на палке»
Вы можете повысить объем энергии, которую в состоянии запасать любое колесо, увеличив либо его размер, либо скорость. Энергия, запасенная во вращающемся колесе, пропорциональна квадрату его скорости, так что маленькое быстрое колесо даст лучший результат, чем большое, но медленное.
И наконец, хотя маховые колеса могут выглядеть старомодными, они используются не только в поршневых двигателях. Экспериментальные колеса были сконструированы в 2004 н. э. в НАСА как способ дешевого и надежного сохранения энергии в космосе. Так что технически, если вы изобрели маховые колеса, вы также сделали первый шаг вашей космической программы!
10.5.4. Паровой двигатель
Применение такого мощного действующего вещества, как пар, к экипажам на колесах сильно изменит положение человечества.
Вы (также Томас Джефферсон)
Что это
Двигатель, использующий тот факт, что воде требуется больше места в парообразном состоянии, чтобы делать всякие штуки. Это технология столь полезная, что, когда она наконец оказалась изобретена, общество перестроило себя вокруг таких двигателей в процессе, который мы именуем промышленной революцией.
До того как был изобретен
Если вы хотели сделать что-либо, вам приходилось выполнять это самостоятельно, или использовать животных, или платить кому-либо, чтобы он сделал это за вас, но вы определенно не могли вскипятить некоторое количество воды и на этом отстреляться.
Изобретен
100 н. э. (движимые паром игрушки, технически бывшие паровыми турбинами);
1606 н. э. (первые водяные насосы, работающие на пару);
1698 н. э. (первые практичные водяные насосы, работающие на пару);
1765 н. э. (камера сепараторной конденсации, коммерциализирована в 1776-м);
1783 н. э. (пароход);
1804 н. э. (паровоз);
1884 н. э. (переизобретение паровых турбин).
Предпосылки
Железо (для котлов), чугун (для поршневых колец и цилиндров), сталь, сварка.
Как изобрести
Паровой двигатель, вероятно, выглядит немного устаревшим, но даже в наши дни бо́льшая часть электричества в мире производится именно с помощью пара. Единственная реальная разница между старомодными и современными паровыми машинами в том, что вместо дерева мы используем в котлах уголь, газ или даже саму богоподобную силу, скрытую внутри атома. И это правда: получив в распоряжение мощь, способную покончить с цивилизацией, и заточив ее в ядерных реакторах, мы используем ее большей частью для того, чтобы кипятить воду.
Ранние паровые двигатели были изобретены без приложения научной теории, без объяснения того, как они работают, так что даже если вы просто пролистаете этот раздел перед тем, как соорудить двигатель, то вы начнете в лучшей ситуации, чем первые изобретатели. Было сказано, что наука должна больше паровому двигателю, чем паровой двигатель должен науке, и хотя это неправда (наука в натуре никому ничего не должна), эта фраза дает вам представление о том, как много люди смогли узнать, изучая эти двигатели, которые сами и создали, в том числе они узнали и второй закон термодинамики.
Паровой двигатель состоит из двух частей:
• котел, который использует некую форму горения, чтобы кипятить воду и производить пар под давлением;
• двигатель, использующий пар, чтобы двигать поршень, турбину или себя самого.
Котел сделать несложно, если у вас есть металл: просто изготовьте герметичные трубы, которые будут проходить через нагреваемую на огне камеру сгорания (это именуется «водотрубным котлом»), или трубы с нагретым на огне газом, который будет проходить через герметичную, частично заполненную водой камеру («газотрубный котел»). Оба производят пар (и риск того, что ваш котел взорвется, так что поглядывайте за этим), но водотрубный котел обычно оказывается дешевле.
Как только у вас есть пар, вы можете прогнать его через вторую камеру сгорания, чтобы нагреть еще сильнее, создав перегретый пар, несущий больше энергии и способный на бо́льшую работу. Перегретый пар можно также слегка охладить без конденсации его в воду, и это отлично, поскольку вам не придется беспокоиться о том, что вода все время будет засорять ваш новенький паровой двигатель.
Создать двигатель, способный использовать энергию пара для выполнения работы, можно за пару дней, и простейший способ – направить пар в поршень. Поршень – это просто масса, свободно двигающаяся внутри цилиндра, и его изготовление требует некоторой степени технической точности: вам понадобится цилиндр, одинаково широкий по всей длине, и поршень, чуть более узкий, чтобы мог поместиться в цилиндр. Чтобы обеспечить вашему поршню герметичность, вы можете поместить чугунное кольцо на поршень: снабженный пружиной кусок металла, который создает постоянный контакт с цилиндром.
До изобретения поршневых колец поршни плотно оборачивали пеньковой веревкой у их основания. Пенька плотна, она не изнашивается так быстро при трении и работает почти – но не совсем – так же хорошо, как кольцо. Но вы не беспокойтесь, небольшая утечка пара ни к чему страшному не приведет, ваш двигатель все так же будет работать, хотя и не столь эффективно.
Когда вы забираете пар из котла и отправляете к поршню, пар расширяется и толкает поршень вверх. По мере того как пар остывает, он конденсируется, и это создает давление, вынуждающее поршень опускаться, а затем внешнее давление снова поднимает его. Поскольку в общем и целом вам надо, чтобы охлаждение происходило быстро, впрысните холодной воды в поршень для ускорения процесса.
Вот и весь ваш двигатель (рис. 22).
Движение вверх-вниз, производимое поршнем, может толкать пилу, приводить в движение насос или посредством коленчатого рычага превращаться в круговое движение (смотрите приложение Н).
С подобным паровым двигателем вы попадаете на уровень развития технологии в 1698 н. э., но если вы подозреваете, что нагревание и охлаждение одного и того же поршня приводит к трате кучи энергии впустую, то нацепите на себя охотничий берет и назовите себя Шерлоком Холмсом, поскольку именно так дело и обстоит. Вы можете разом перескочить через восемьдесят лет, если измените устройство двигателя так, что его горячая часть будет оставаться горячей, а холодная – холодной.
Рис. 22. Машина, которая будет двигать вашу цивилизацию: паровой двигатель
Сделайте это, установив связь между вашим поршнем и отдельной конденсационной камерой, которая будет открываться при поднимании поршня. Высокое давление среды поршня станет заталкивать пар в конденсационную камеру, которую можно быстро охладить с помощью холодной воды.
Если вы не хотите использовать поршни, то есть другой способ генерировать энергию с помощью пара, и на самом деле именно его люди обнаружили первым около 100 н. э. Подобное устройство именуется эолипил, его можно создать, направляя пар от кипящей воды во вращающуюся сферу, из которой должны торчать изогнутые сопла, расположенные следующим образом (рис. 23).
Рис. 23. Машина, которая могла бы двигать древнегреческую цивилизацию: эолипил
Пар, выходящий из сопл, превращает их в подобия реактивных двигателей и вращает сферу. Это ракетный двигатель на пару, но изобретшие его эллины смотрели на него исключительно как на игрушку. Вы можете утереть им всем нос, превратив ваш эолипил в чертову динамо-машину.
Как вы увидите в разделе 10.6.2, динамо-машины трансформируют механическое вращение в электричество, используя тот факт, что провода, двигающиеся в магнитном поле, порождают проходящий через них электрический ток. Поместив внутри сферы неподвижный магнит и обмотав саму сферу проводами, вы сможете использовать устройство как маленькую электростанцию.
Если же и эолипил вас не привлекает, вы всегда можете направить струи пара на лопасти турбины – почти так же, как вы направляли воду на лопасти турбины Пелтона, – чтобы получить то же вращательное движение (и электричество, если захотите) уже этим способом.
Ну а теперь плохие новости: все паровые двигатели, с поршнями ли, с соплами или другие, по большому счету неэффективны. Не важно, что вы делаете, крупные объемы энергии будут рассеиваться с теплом, и даже с паром под высоким давлением, дополнительными конденсаторными камерами и паровыми машинами многократного расширения (двигатель, использующий пар для того, чтобы двинуть поршень больше одного раза) вы не добьетесь эффективности намного больше 20 %.
Даже самые продвинутые паровые двигатели нашего времени имеют эффективность от 40 до 50 %, и все же они движут наш мир, так что не переживайте, ваш мир тоже придет в движение.
Другой большой проблемой для паровых двигателей является их соотношение энергии к весу. Все металлические детали, да и вода, весят достаточно много, и да, они отлично работают в зданиях или в колоссальных средствах транспорта, где их вес не имеет особого значения (вспомним паровозы и пароходы), но в небольших конструкциях вроде самолетов или автомобилей их использовать трудно.
Для последних вам придется изобрести более легкий двигатель внутреннего сгорания.
Паровой двигатель пользуется внешним сгоранием: вы сжигаете нечто за пределами двигателя для того, чтобы получить пар, и тот уже направляете к двигателю. Внутреннее сгорание убирает потребность в транспортировке пара, вы просто взрываете что-то внутри поршня, чтобы он двигался. Летучее топливо смешивается с воздухом, так что оно легко загорается, потом впрыскивается в цилиндр поршня и резко сжимается. Электрическая искра производит воспламенение, выталкивает поршень, и когда тот отодвигается, то выхлоп выходит наружу.
Каждый поршень проходит через четыре такта: втягивание, сжатие, горение, выхлоп, и когда один из поршней вспыхивает, то второй как раз возвращается в исходное положение. Подобный двигатель определенно немного сложнее, чем паровой (здесь вы полагаетесь на контролируемую серию взрывов, а вовсе не на старый добрый кипяток), но проблемы, связанные с их созданием, не выглядят непреодолимыми.
Четыре поршня можно расположить так, что они будут попарно работать в противофазе, и это даст вам более постоянную тягу, и прикрепить их эксцентриками к общему валу. Подобное расположение позволяет контролировать вентили для поступления топлива и удаления выхлопа. Второй вал можно изогнуть и присоединить к пистонам, чтобы скоординировать их толчки, и на этот вал повесить маховое колесо, которое делает равномерным получаемое движение (рис. 24).
Рис. 24. Двигатель внутреннего сгорания: поршень 1 сжигает топливо, поршень 2 избавляется от выхлопа, поршень 3 впрыскивает топливо, и поршень 4 сжимает топливо, готовясь поджечь его.
Вот и все!
Но прежде чем вы броситесь изобретать двигатель внутреннего сгорания, запомните: их труднее сконструировать, дороже эксплуатировать, и они требуют более качественного топлива. В эпоху, когда вам приходится изобретать все с нуля, штука вроде парового двигателя, который работает на воде и не требует ничего, кроме буквально любого горючего материала, будет просто незаменимой.