Книга: Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма
Назад: Глава 1 Бионический человек, который строит бионических людей
Дальше: Глава 3 Человек с волшебным порошком

Глава 2
Рождение Бам-Бама

Расшифровка и редактирование генома

 

Хью Герр получил возможность создавать жизнеспособные бионические протезы и экзоскелеты благодаря новым технологиям, которые позволяют ему и другим изучающим биомеханику точно записывать, каким образом движутся и взаимодействуют различные части тела, а затем конструировать сложные наборы робототехнических деталей, находящихся за пределами тела и способных в реальном времени воспроизводить действия нормальных его частей. Для этого требуется почти мгновенно и очень эффективно улавливать и обрабатывать огромные массивы информации — и для того, чтобы запечатлеть и охарактеризовать поведение здоровой ноги, и для того, чтобы построить машину, которая сумеет имитировать это поведение.
Но все эти достижения — лишь самый краешек открывающихся перед нами возможностей. Как мы увидим в дальнейших главах, та же технологическая точность, которая позволяет робототехникам строить приспособления, прикрепляемые к внешней поверхности нашего тела, то же математическое волшебство и программы для распознавания закономерностей, которые Герр использует для того, чтобы питать энергией свои творения, — все эти технологии можно направить и внутрь, чтобы записывать, характеризовать и понимать, каким образом различные компоненты нашего организма взаимодействуют на клеточном уровне. Исследователи, работающие в этой сфере, тоже открывают и высвобождают тайные целительные силы и непочатые запасы возможностей, — всё то, о чем могли только мечтать ученые предыдущих поколений.
В каком-то смысле они добиваются еще более ошеломляющих успехов, чем сотрудники лаборатории Герра. Некоторые специалисты не просто конструируют новые части тела или усовершенствуют те, которые у нас уже есть: эти биохакеры вторгаются в тонкую механику работы самого организма, переписывая клеточные «инструкции» или направляя их на выполнение задач, не предусмотренных природой. Таким путем эти смельчаки заставляют организм перестраивать или преобразовывать себя. Идеи некоторых из этих технологических подвигов (как и герровских бионических конечностей, обладающих невероятными способностями к адаптации) не всегда являются лишь продуктом человеческого воображения. Лучшие из них тоже берут начало в самой природе: пожалуй, это почти неизбежно.
Взять хотя бы случай одного удивительного мальчика из городка Маскегон (штат Мичиган) по имени Лайам Хёкстра.
* * *
Зимой 2005 г. настал день, когда супруги Дана и Нил Хёкстры впервые поняли, что их сын Лайам не такой, как все. Веселый темноволосый ребенок, которому было всего-то пять месяцев от роду, потянулся к двум пальцам, которые ему предлагала мать, вцепился в них железной хваткой, оторвался от земли и раскинул руки, образовав в воздухе букву Т.
Его родителям случалось видеть, как такой же трюк проделывают олимпийские спортсмены, демонстрируя свою впечатляющую силу. Называется это «железный крест».
«Он просто висел так, в буквальном смысле», — вспоминает Нил.
К трем годам Лайам обзавелся рельефным прессом и внушительными бицепсами. Он мог без всякой помощи взобраться вверх по канату. Он размахивал пятифунтовыми гантелями, словно погремушками, напоминая жутковатого карапуза Бам-Бама из комедии «Флинтстоуны»: этого сверхъестественного силача, воспитанного мастодонтами, усыновляет герой фильма Барни Раббл. Однажды Лайам закатил истерику и пробил кулаком дыру в стене.
Лишь когда дедушка Лайама, вышедший на пенсию адвокат, похвастался своему приятелю-врачу, что его крошка-внук когда-нибудь станет играть в футбол в его любимой команде «Мичиган Вулверинз», семейство узнало, чем, по всей видимости, объясняется столь необычайная сила ребенка. Доктор попросил у родителей разрешения осмотреть малыша, а потом убедил их отправить его на генетическую экспертизу в расположенный неподалеку город Гранд-Рапидс (штат Мичиган), откуда образцы генетического материала Лайама переправили в Питтсбургский университет.
Питтсбургские специалисты вскоре сообщили семье, что невероятные физические способности ребенка, возможно, являются результатом единичной мутации (как бы одной-единственной опечатки) в генетической последовательности длиной около 3 млрд пар оснований, закодированной в каждой из его клеток.
«Мы предполагаем, что у него имеется какая-то мутация, поскольку он обладает очень необычным фенотипом с гиперразвитыми мышцами, — говорит Роберт Феррелл, один из руководителей Лабораторий геномики и протеомики Питтсбургского университета. — Мы просто пока не выявили эту мутацию».
По мнению Феррелла, то место в генетической последовательности, где она произошла, находится неподалеку от места, где обнаружили мутацию у еще одного ребенка: ее описали в New England Journal of Medicine примерно за год до рождения Лайама. Неназванный испытуемый, о котором идет речь в статье, из-за генетической мутации лишен способности вырабатывать GDF-8, сигнальное вещество, играющее ключевую роль в регулировании и сдерживании роста мышц. Аналогичная мутация, повлиявшая на тот же биологический маршрут, могла бы объяснить, почему по мышечной массе Лайам на 40 % превосходит среднего ровесника, почему его кормят не три раза, а шесть раз в день — и почему он может, улегшись на спину, выжимать, как штангу, здоровенную собаку, живущую у них в семье.
Возможно, эта особенность когда-нибудь поможет Лайаму попасть в любимую дедушкину команду. Хотя личность немецкого мальчика с похожей мутацией так и не раскрыли общественности, известно, что его мать, также обладающая аномалией в этом гене, — профессиональный спринтер. А дед мальчика был строителем и один голыми руками мог поднять бордюрный камень.
Обнаружение людей, которые, подобно Лайаму, обладают необычными, потенциально «сверхчеловеческими» физическими чертами, приобретает новое значение именно сейчас, когда мы вступаем в эпоху генной инженерии. Конечно, люди, наделенные необычайной силой, гибкостью, ростом, выносливостью, встречаются на протяжении всей истории человечества — от Геркулеса из древнегреческих мифов до циркового силача с огромными усами и бритой головой, облаченного в леопардовое трико.
Однако, возможно, благодаря новым технологиям мы сумеем использовать сведения, полученные при исследовании таких вот людей-феноменов, для лечения, а то и исцеления некоторых наиболее изматывающих и разрушительных генетических заболеваний нашего времени. Однако эти же технологии вынуждают задаться непростыми вопросами. Что произойдет, когда у всех появится возможность наделять себя или своих детей силой Лайама Хёкстры — навсегда? Если мы решим не поступать так со своими детьми, не приведет ли это к тому, что в дальнейшей жизни они будут проигрывать своим генетически модифицированным конкурентам, чьи родители когда-то сделали иной выбор?
* * *
Я еду по Нью-Джерсийскому шоссе, поглядывая на химические заводы, испускающие зловонные дымы, и тут мне приходит в голову послушать какое-нибудь спортивное радио, чтобы настроиться на предстоящее интервью. Но лишь приблизившись к Городу братской любви [Филадельфии], я начинаю по-настоящему вслушиваться в то, что доносится из динамиков.
По радио обсуждают домашнюю футбольную команду «Филадельфия Иглз», и эта дискуссия становится какой-то очень уж эмоциональной, как если бы обсуждаемый защитник-распасовщик (который, судя по всему, не очень справляется со своей работой) был близким другом участников беседы — хроническим алкоголиком или жертвой супруги, которая время от времени его избивает. Слушатели, звонящие в студию, выражают все классические стадии развития горя: гнев («Надо его вообще выгнать, мы зря ему попустительствуем»), отрицание (мол, это у него временно, это пройдет), торговлю («Он будет лучше играть, если мы найдем хорошего принимающего»), грусть («Я больше не могу ЭТО ВЫНОСИТЬ!»).
Въезжая в подземный гараж под кампусом Пенсильванского университета, имеющим какой-то сурово-урбанистический вид, я размышляю над странностями нашего пылкого увлечения игрой, где трехсотфунтовые мужики в коротких обтягивающих штанах и голеностопных щитках носятся по полю, то и дело сталкиваясь друг с другом. Дошло до того, что некоторыми из нас победа определенной команды в том или ином футбольном матче может восприниматься как событие эпохальной важности, почти вопрос жизни и смерти.
Человек, с которым я иду встречаться, Г. Ли Суини, испытал это на себе — самым причудливым и неожиданным образом. Еще в конце 90-х Суини совершил удивительный научный подвиг. Исследователь создал первую в истории генетически модифицированную супермышь: словно волшебник, он превратил ничем не примечательного подопытного грызуна, имеющего обычные размеры, в особь со столь мускулистыми, столь нелепо-накачанными ногами, что журналистам не понадобилось много времени, чтобы придумать «сенсационное» название для этого зверя. Они окрестили новую мышь и ее родичей «мышами-шварценеггерами».
На конференции Американского общества клеточной биологии, проходившей в Сан-Франциско, Суини поведал зачарованной аудитории, что его методика, возможно, когда-нибудь придет на выручку пожилым людям, чьи мускулы постепенно усыхают, или позволит продлить жизнь больным опаснейшими формами мышечной дистрофии. Эти оптимистические видения давали новую надежду для страдающих неизлечимым недугом, а ведь таких пациентов очень редко обнадеживают.
Когда Суини вернулся к себе в лабораторию после конференции, на него обрушился шквал звонков: к нему обращались и отчаявшиеся больные, и близкие тех людей, которых можно считать одними из слабейших наших собратьев. Но с ним пытались связаться и некоторые спортсмены — вполне здоровые мужчины и женщины в расцвете сил. Эти атлеты умоляли Суини, чтобы он испытал на них свою методику.
«Все эти звонки и письма стали поступать буквально в тот же день, когда у меня вышла статья на эту тему, — рассказывает Суини. — Их были сотни,».
Один тренер школьной футбольной команды, состоящей из старшеклассников, даже предлагал заплатить Суини, чтобы тот модифицировал гены всех его подопечных. Суини, мягкий и сдержанный ученый, вежливо отказался. Но Барбара Прайс, с давних пор занимающая должность его помощника по административной работе, часто проявляла при этом куда меньше дипломатического такта.
«Пару раз я просто поражалась, — говорит Прайс, которой приходилось брать на себя львиную долю звонков. — Я отвечала: вы что, шутите? Доктор Суини работает с животными! Нам звонили даже родители спортсменов».
Через 17 лет после того, как он явил миру первое поколение мускулистых мышей, Суини остается в центре одного из самых этически сложных научных конфликтов нашего времени. В отличие от Герра, который, похоже, в своих биомеханических штудиях с завидной легкостью и непринужденностью перемещается между сферой восстановления и сферой усовершенствования, Суини ощущает глубокие внутренние противоречия. Он бьется за то, чтобы продвигать вперед развитие генной инженерии, но одновременно пытается предотвратить ее неправильное использование. Область исследований, которую избрал Суини, принадлежит к тем, которые не дают спокойно спать бесчисленным специалистам по научной этике.
Суини сегодня — и желанный докладчик на конференциях для родителей, чьи дети страдают разными видами мышечной дистрофии, и весьма уважаемый консультант Всемирного антидопингового агентства (ВАДА): работающие в нем представители спортивных властей интересуются, когда официально начнется эпоха «генетического допинга». Может быть, эта эпоха уже наступила, просто они об этом еще не знают?
Суини не питает иллюзий. «Уже сейчас можно попытаться провести генетическую модификацию спортсмена, если у вас хватит знаний, — утверждает он. — ВАДА и в самом деле хочет выяснить, существуют ли сегодня люди, которые применяют генетический допинг. Некоторые тяжелоатлеты так помешаны на победах, что готовы пойти на что угодно, даже если в дальнейшем это повредит их репутации».
Генетически модифицированные атлеты, безумно накачанные и способные безнаказанно растоптать всех нас, лилипутов по сравнению с ними, — это, конечно, лишь одно из потенциальных последствий той революции, которая уже происходит в генной терапии. Всякая технология, позволяющая редактировать гены, которые служат причиной заболеваний, поневоле заставляет вообразить десятки разнообразных новых созданий, и от этих картин многим становится неуютно. Представьте себе целые армии генетически модифицированных суперсолдат, не чувствующих боли и не способных к состраданию; представьте себе чересчур заботливых и властных родителей, корректирующих ДНК своих детей, чтобы тех приняли в Гарвард; представьте себе младенцев, переделанных так, чтобы в будущем походить на Джастина Бибера.
И в самом деле: подобно тому, как Хью Герр и его коллеги находят революционные способы преобразования человеческого тела с помощью всякой бионики, присоединенной к нему снаружи, ученые вроде Суини трансформируют наши возможности, действуя изнутри: проникая в генетические схемы (которые имеются в каждой из наших клеток) и меняя их детали — или же что-то добавляя к ним.
Суини намерен делать всё, что в его силах, чтобы помогать спортивным властям подготовиться к возможности появления генетического допинга. К тому же он знает о том, какую озабоченность вызывает генная инженерия в целом. Но он не прекращает свои изыскания. Ведь в мире слишком много страданий — и сейчас очень велика вероятность, что многие из этих недугов удастся исцелить. Вот почему в 2011 г. Суини сделал еще один большой шаг в сторону испытаний своей методики на людях: он стал использовать крупных животных в качестве подопытных объектов.
С помощью генной инженерии Суини получил первых в мире золотистых ретриверов-«Шварценеггеров».
* * *
Еще будучи старшеклассником, Суини играл в футбол в Луизиане и Техасе — двух штатах, буквально помешанных на этом виде спорта. Он был защитником-распасовщиком, т. е. как раз тем игроком, которого трехсотфунтовые парни из другой команды пытались раздавить, как букашку.
«Меня не интересовали методы, которые позволили бы мне как следует накачаться, — говорит он. — Меня интересовало, как сделать так, чтобы соперник не накачивался и тем самым давал мне выжить».
Возможно, именно поэтому Суини остается глух к мольбам амбициозных здоровяков, которые просят его помочь им стать еще здоровеннее. Но и как ученый он не сочувствует их логике. Наука требует неспешного и кропотливого труда, и сегодня Суини работает на долгосрочную перспективу. А вот физически полноценные спортсмены, которые к нему обращаются, словно бы хотят рискнуть своим будущим здоровьем (т. е. как раз этой долгосрочной перспективой) ради шанса урвать немного славы уже сейчас. «Некоторые из этих спортсменов — просто психи,», — откровенно говорит он, пока мы сидим в конференц-зале рядом с его лабораторией.
Спокойный, скромный исследователь с широким и высоким лбом, с аккуратным пробором, придающим ему что-то явно мальчишеское, Суини провел первые годы своей профессиональной карьеры в обеззараженном лабораторном царстве, изолированном от суровых филадельфийских улиц и остального мира могучими бетонными зарослями медицинских корпусов, больниц, научно-исследовательских центров. Там этот ученый, облаченный в белый халат, погрузился в изучение мира молекул, очень далеко отстоящего от тех драм и насущных проблем реальной жизни, которые в конце концов станут главным побудительным мотивом для его изысканий.
С самого начала он принадлежал к числу тех счастливых ученых, которым даровано чистое, почти детское интеллектуальное удивление, заставляющее лучших из нас разгадывать тайны природы. Так было с того самого дня в начале 70-х, когда, еще будучи студентом МТИ, Суини сгорбился над микроскопом и впервые увидел мышечную клетку в движении.
«Это было очень круто — сама возможность реально увидеть, как движутся эти комплексы молекул, — вспоминает Суини. — Можно было проделывать это даже с отдельными белковыми волокнами — помечать их и потом наблюдать за их движением».
В ту пору Суини занимали не экстремальные случаи развития мышц (дети, чьи мускулы словно бы разрушают себя, или гигантские тяжелоатлеты, бугрящиеся мускулами и очень стремящиеся увидеть, до какой степени они могут накачаться), а более фундаментальные вопросы.
Герру хотелось измерить и воспроизвести процессы, с помощью которых сухожилия и мышцы организма захватывают, передают и преобразуют энергию. Ли Суини хотел понять, откуда берется сам первичный импульс, порождающий движение. К примеру, каким образом ваша рука переходит от положения абсолютного покоя к молниеносным движениям, которые необходимы для того, чтобы с силой бросить камень? Где источник первоначального всплеска энергии, который при звуке стартового пистолета резко посылает спринтера вперед, отрывая его тело от дорожки? Благодаря чему мы с вами можем внезапно вскочить с кресла, чтобы пожать кому-то руку?
Суини понимал, что этот таинственный взрыв энергии каким-то образом зарождается в глубине самих наших клеток. Но как нечто начавшееся внутри структуры столь микроскопической, что мы ее с трудом можем разглядеть, способно развивать силу, достаточную для того, чтобы пошевелить кость? Как оно может породить силу, позволяющую двухсотфунтовому [90-килограммовому] человеку ходить, бросать бейсбольный мяч, поворачивать голову? Да и вообще как это сила добирается от крошечных клеточек до той кости, которой она движет?
В дальнейшем Суини узнал, что наши мышцы состоят из пучков цилиндрических волокон (каждое — не толще человеческого волоса). Именно эти пучки волокон можно увидеть в жареной куриной грудке, когда она распадается на кусочки под вилкой и ножом. Присмотревшись к этим цилиндрическим волокнам под микроскопом, Суини заметил, что и сами волокна тоже, в свою очередь, состоят из более мелких нитей (так называемых «волоконец»), сплетенных вместе. Пучки волокон похожи на пряди волос, а волоконца напоминали ученому тончайшие паутинки. Самые толстые из этих ниточек состоят из белков, именуемых миозинами, более тонкие ниточки — из белков, именуемых актинами.
Удивительно, что именно взаимодействие миллионов этих крошечных компонентов (таких маленьких, что их почти невозможно разглядеть невооруженным глазом) позволяет пятитонному африканскому слону мчаться по саванне, баскетболисту НБА забрасывать мяч в кольцо, а маленькому Лайаму Хёкстре, подтянувшись на пальцах матери, образовывать в воздухе букву Т.
В каждой мышечной клетке толстые клубки миозиновых нитей уложены параллельно более тонким актиновым нитям, которые завиты в плотные кольца. Концы миозиновых нитей в этих пучках могут выгибаться вверх или вниз, образуя длинный ряд «согнутых пальцев» между актиновыми кольцами, находящимися над ними и под ними. Эти «миозиновые головки» образуют тысячи микроскопических мостиков к тем волоконцам, между которыми они зажаты.
Когда Суини стал заниматься этой областью науки, уже было известно, каким образом начинается процесс сокращения мышц. Обычно решение пошевелить рукой зарождает ся как возникающий в головном мозге биохимический импульс — всплеск электрической активности, который затем проходит по позвоночнику и периферическим нервам — и в конце концов достигает пересечения между нервами и нужной мышцей. Здесь нервы тут же выделяют вещество под названием ацетилхолин. Но тогда ученые еще не до конца выяснили конкретные молекулярные механизмы того чуда движения, которое происходит дальше.
Было известно, что химические реакции, запускаемые ацетилхолином, заставляют миозин взаимодействовать с аденозинтрифосфатом (АТФ). Было известно, что АТФ — наиболее готовая к использованию форма накопленной энергии, существующая в организме. Подобно бензину в машине или жидкости для зажигалок, добавленной в костер, она питает определенный процесс: в данном случае — движение мышцы. Взаимодействуя с АТФ, «миозиновые головки» мышцы (Суини стал рассматривать их как истинные «моторы» тела) то отсоединяются от актиновых нитей, то присоединяются к ним, растягиваясь с эластичностью пучка резинок, вцепляясь в актин, как абордажные крючья, и тем самым вынуждая мышцу сокращаться. Мы наблюдаем это как внезапное раздувание бицепса.
Чем больше миозиновых волоконец сплетено вместе, тем сильнее и быстрее их концы-«крючья» могут тянуть актин (просто благодаря увеличению их количества) и тем крупнее кажется нам соответствующая мышца.
«Миозиновые волоконца тянут за актиновые волоконца и заставляют их скользить, — поясняет Суини. — Вот как сокращается мышца».
Выяснив это, Суини начал понимать биологические основы того, что всем нам кажется интуитивно ясным, хотя если немного задуматься, то может показаться, что тут есть некоторое противоречие. Почему самые сильные среди нас (все эти накачанные форварды, которые выпихивали Суини из зоны прохода, или российские толкательницы ядра) — это те, кого реже всего можно увидеть бегущими марафон? Логика вроде бы подсказывает обратное. В конце концов, если у вас больше мышц, вы можете бежать дольше, разве не так?
Объяснение этого противоречия очень простое: существует несколько разных типов мышечных волокон. Одни волокна специализируются на быстрой выработке огромной энергии: такое требуется, если нужно стремительно стартовать в начале гонки, или поднять стофунтовый мешок риса, словно лист бумаги, или свалить на траву Ли Суини, защитника школьной команды. А другие волокна менее мощны, они действуют медленнее, зато куда более энергоэффективно: именно такие необходимы для того, чтобы пробежать марафон, совершить долгую прогулку или весь день не ронять голову на грудь. Обычно они называются мышечными волокнами первого типа — «медленными». Их «быстрые» собратья именуются волокнами второго типа. (На самом деле есть и другие типы, но пока мы будем рассматривать упрощенную картину.)
Волокна второго типа дают триумфальный взрыв энергии, но стремительно выгорают, когда кончается порох. Они напоминают зайца из басен Эзопа, который стремглав вылетает из ворот, но в середине состязания решает вздремнуть. Волокна первого типа неспешны, словно эзоповская черепаха, зато они работают стабильно. Они действуют в режиме «медленного сгорания», постепенно потребляя энергию по мере того, как она становится им доступна, и сокращаясь в более благоразумном ритме, который можно долго поддерживать. Они способны делать это хоть весь день. Если дать черепахе достаточно времени, она всегда обгонит зайца. Медленные мышцы оснащены более значительным количеством клеточной аппаратуры, умеющей расщеплять одну молекулу сахара на 30 молекул мышечного топлива, готового к употреблению в форме АТФ. Однако на это требуется больше времени. Когда в их распоряжении достаточно сахара и кислорода, медленные мышцы способны без перерыва выполнять эту химическую трансформацию, питающую их энергией. Их быстрые собратья тоже могут вырабатывать АТФ из сахара, но они умеют делать это гораздо быстрее. Однако столь высокая скорость не дается даром: этот процесс куда менее эффективен. После первоначального всплеска энергии метаболические процессы, используемые быстрыми волокнами (более грубые и неопрятные, чем у их медленных сородичей), могут сделать из одной молекулы сахара всего две молекулы АТФ, готовые к использованию, а не 30, как у медленных волокон. Кроме того, такие процессы оставляют после себя химический мусор вроде молочной кислоты: отсюда характерное жжение в мышцах, которое все мы чувствуем после тяжелой тренировки.
Соотношение количества медленных и быстрых мышечных волокон у спортсмена [как и у всякого человека] во многом определяется генетическими факторами и может влиять на предрасположенность человека к занятию видами спорта, рассчитанными на выносливость или на спринтерские качества. То же самое мы наблюдаем и у животных: быстрые волокна в изобилии встречаются в ножных мышцах гепарда, тогда как в ногах ленивца полным-полно медленных волокон. Однако тренировки также способны сказаться на этом соотношении. По данным некоторых исследований, доля быстрых волокон в икроножных мышцах олимпийских спринтеров порой превышает 75 %, а в ногах элитных марафонцев доля медленных волокон часто составляет около 80 %.
Все эти открытия в конце концов окажутся полезными для исследований Суини. Получив в Гарварде кандидатскую степень в области биофизики и психологии, Суини перешел в Пенсильванский университет, где сосредоточился главным образом на изучении мышечных «моторов» — миозина. Однако в середине 80-х команда исследователей из Бостонской детской больницы сделала открытие, которое расширило горизонты работы Суини, изменило траекторию его карьеры и в конечном счете забросило его в самое пекло весьма эмоциональной битвы за отыскание лекарства от изнуряющего недуга. Ставки в этой битве очень высоки.
Зачастую именно изучение поломок организма позволяет нам лучше всего узнать, что и почему необходимо для того, чтобы в организме нормально работали те или иные компоненты. К началу 80-х годов Луис М. Кункель, профессор педиатрии и генетики, уже много лет занимался поиском генетических причин наиболее опасной формы мышечной дистрофии (заболевания, истощающего мышцы) — недуга, именуемого мышечной дистрофией Дюшенна (МДД). В 1986 г. Кункель выявил не только ген, где сосредоточены мутации, вызывающие МДД, но и белок, кодируемый этим геном. Данный белок участвует в функционировании мышц, хотя никто раньше даже не знал, что он вообще существует. Каким-то образом отсутствие этого белка в организме запускает череду разрушительных процессов, которые заставляют постепенно атрофироваться мышцы страдающих МДД.
Для Суини открытие Кункелем этого белка (названного им дистрофином) стало чем-то вроде открытия новой планеты Солнечной системы. Перед ученым распахнулось новое обширное поле для исследований. Он решил разгадать тайну действия дистрофина и начал публиковать статьи на эту тему.
Вскоре ученому стали звонить организаторы конференций для групп родителей, чьи дети страдают МДД.
— Знаете, я не занимаюсь разработкой методов лечения, — неизменно отвечал им Суини. — Меня просто интересует, как работает этот белок и что в организме идет не так, когда его нет.
— И все-таки мы хотели бы, чтобы вы приехали об этом поговорить, — настаивали организаторы. — Людям важно лучше разобраться в ваших идеях и открытиях, в том, как всё это работает. Потому что, возможно, это поможет им самим подумать о том, как вы могли бы исправить положение.
И Суини поехал. И эти конференции коренным образом изменили его жизнь.
* * *
Если вы когда-нибудь встречали человека с мышечной дистрофией Дюшенна или человека, чей ребенок страдает этим заболеванием, вы поймете, почему Ли Суини ощутил такое чувство срочной необходимости что-то сделать, когда он впервые вошел в этот конференц-зал. МДД — разрушительный и изматывающий недуг, дающий себя знать с жестокой неспешностью, словно бы стремясь принести как можно больше мучений не только больному, но и его близким. Родителям отпущен некоторый благословенный период, в течение которого они наблюдают, как их ребенок развивается нормально. Большинству даже доводится увидеть, как их дитя делает свои первые радостные шажки.
Но постепенно они начинают замечать: с их чадом что-то не так. Между двумя и семью годами (когда обычно ставят этот диагноз) большинство детей с МДД передвигаются медленнее своих сверстников и испытывают при этом значительные затруднения. Может показаться, что они какие-то неуклюжие. Они постоянно падают, и им нелегко даются лазанье, прыжки, бег. Они часто устают и вечно просятся на ручки.
И все равно «родителям бывает трудно смириться с первоначальным диагнозом», как предупреждает сайт EndDuchenne. Org. Иногда может показаться, что дело идет на поправку, хотя мышцы ребенка при этом незаметно для постороннего глаза разрываются на части: процесс идет под кожей и не заметен обычному наблюдателю.
Но эта неоднозначность постепенно уходит, когда наступает вторая стадия заболевания. Между шестью и девятью годами у ребенка развивается странная походка, призванная компенсировать слабость туловища и бедер: больной выпячивает живот, или сильно отводит назад плечи, или ходит на носках либо на пятках. К 12 годам большинству таких детей требуется инвалидная коляска. Примерно в 15 лет возникают проблемы с дыханием и с сердцем. Средняя ожидаемая продолжительность жизни больных МДД — всего 25 лет.
На конференции Суини объяснил, каким образом, по его мнению, неспособность организма вырабатывать один-единственный белок может вызывать такие страдания и биологические разрушения, как мышечная атрофия может возникать из-за своего рода микроскопической опечатки в молекулярной инструкции, которая содержится в ядре каждой клетки нашего тела.
Всякий человек обладает примерно 20 000 различных генов, расположенных в плотно свернутых двойных спиралях, которые имеются в ядре каждой клетки. Каждый из этих генов состоит из 27 ООО — 2,4 млн пар основных строительных блоков ДНК — микроскопических молекулярных кластеров, именуемых нуклеотидами. Каждый нуклеотид, в свою очередь, содержит одну из четырех ключевых молекул, именуемых основаниями. Эти четыре вещества — аденин, цитозин, гуанин и тимин. Последовательности этих оснований (их обозначают первыми буквами — А, Ц, Г и Т) на молекулярном уровне кодируют те инструкции, которые используются нашими клетками для синтеза каждого из белков, которые вырабатывает наш организм. Эти белки, в свою очередь, влияют на самые разные параметры — от цвета волос до темперамента и соотношения количества быстрых и медленных волокон в мышцах. Именно ошибка в нуклеотидной последовательности, кодирующей производство белка дистрофина, вызывает мышечную дистрофию Дюшенна.
Дистрофии — необычайно крупная белковая молекула, которую Суини сравнивает с «очень жесткой пружиной». Это своего рода клеточный амортизатор: он необходим, поскольку актин и миозин окружены деликатной клеточной мембраной. Дистрофии прикрепляется к этой мембране, тем самым соединяя актиновые и миозиновые волокна с эластичной матрицей, находящейся снаружи, и смягчая силу сокращений мышцы так, чтобы мембрана оставалась защищена. Если клетки внутри мембраны «потянут» слишком сильно, дистрофии подастся, словно упругая пружина, поглощающая силу удара или нажатия, и предотвратит разрыв непрочных оболочек клеток.
Без этого важнейшего клеточного амортизатора ребенок с МДД всякий раз повреждает свои мышцы, совершая какое-либо движение. (Представьте, что вы едете по ухабистой дороге на машине без амортизаторов.) Постепенно мышцы начинают разрываться. Вот почему такие дети приобретают эту неуклюжую походку. Вот почему они со временем всё больше теряют силу. Вот почему (даже когда они неуклонно слабеют) их мышцы с виду кажутся более выпуклыми, чем когда-либо, внушая родителям ложные надежды. Такие бугры возникают не из-за увеличения количества волокон, сделанных из миозина и актина. Они появляются из-за роста жировых отложений и толстого слоя неподатливой рубцовой ткани. Эти жесткие сгустки в конце концов обрекут своего юного носителя на инвалидное кресло.
После того как Суини закончил свой доклад на первой для себя конференции по МДД, его обступили родители страдающих этим недугом. И они говорили с ним совсем не так, как небольшие группы студентов (в сущности, его будущих коллег), подходивших к Суини после его лекций в Пенсильванском университете.
«Эти родители пребывали в отчаянии, — вспоминает он. — Им отчаянно хотелось узнать всё возможное, чтобы хоть как-то почувствовать, хоть как-то понять, что же происходит с их ребенком».
Больше всего Суини запомнилось их смятение, вызванное тем, что весь мир (как им казалось) равнодушен к страданиям их детей. Эти люди явно ощущали, что о них все забыли.
«Они хотели узнать, почему среди ученых так мало тех, кто стремился бы проводить исследования в попытке справиться с этой проблемой», — говорит Суини.
И внезапно глубинное интеллектуальное любопытство Суини, его восхищение тайнами природы — всё это обратилось в нечто куда более серьезное и значительное. Суини вдруг нырнул в водоворот реального человеческого страдания. И это изменило маршрут его профессиональной карьеры. «Я почувствовал себя виноватым, когда сказал им, что я, честно говоря, не пытаюсь справиться с этой проблемой, что я просто хочу разобраться в ней», — отмечает Суини.
Вернувшись домой, он никак не мог перестать думать об этих родителях и об их детях. Он хотел что-то сделать, как-то им помочь. Его понимание механики данного заболевания приобрело иной оттенок — оттенок зримой трагедии.
Если причиной всех этих страданий и несчастий действительно является мутация, очевидное решение — попытаться как-то обратить эту мутацию вспять. Но с чего начать?
Идея о том, что мы могли бы в буквальном смысле заново переписать генетические инструкции организма, углубиться в биологические «строительные планы» человеческого тела и внести в ДНК изменения, преобразующие ткани и органы, разительно отличается от всех других научных подходов, когда-либо возникавших в истории науки и человечества в целом.
Некоторые сказали бы, что тем самым мы по-хакерски взламываем Божественный код, ведь мы явно вмешиваемся в генетические последовательности, которые оттачивались и совершенствовались на протяжении миллиардов лет эволюции живых существ. Вот почему ученые уже давно предупреждают: если уж мы хотим идти по этому пути, нужно проявлять при этом особую осторожность. Все эти вмешательства в ДНК могут приводить к непредсказуемым последствиям. Можно обрушить на человечество невиданные недуги. Можно случайно вывести мутантные виды животных. Можно создать настоящий Парк юрского периода, как в известном цикле фильмов.
При этом всегда было очевидно, что подобные исследования таят в себе огромный потенциал избавления людей от страданий — слишком огромный, чтобы можно было с чистой совестью отказаться от движения по этому рискованному пути. Ученые и врачи уже много лет заявляют: если мы сумеем подчинить себе генетику, перед нами откроются практически неограниченные перспективы излечения недугов. Мы сможем исцелять детей, страдающих МДД и бесчисленным множеством других болезней и отклонений. Мы сможем спасать жизни. Специалисты осознали это вскоре после открытия ДНК, несмотря на всё беспокойство о возможном неправомерном использовании технологий и о том, что эти достижения могут пойти на пользу не всем страждущим, а лишь немногим избранным.
Так или иначе, все эти мечтания начали воплощаться в реальную клиническую практику лишь спустя десятилетия. По-настоящему этот путь начался около 40 лет назад. В конце 60-х — начале 70-х исследователи из Университета Джонса Хопкинса впервые показали, что некоторыми ферментами можно управлять, чтобы они, подобно паре волшебных микроскопических ножниц, рассекали длинные нити ДНК на определенные фрагменты, проводя разрезы в любых заданных местах. Вскоре стэнфордские биохимики опубликовали серию статей, где описывали, как они «сшивают» различные фрагменты — специально обрезанные так, чтобы они оканчивались комплементарными нуклеотидами. Такие нуклеотиды притягиваются друг к другу, словно противоположные полюса магнитов. Специалисты назвали результат такого сшивания «рекомбинантной ДНК».
В 1972 г. биологи Теодор Фридман и Ричард Роблин рассказали о революционных возможностях применения этих методов в программной статье, опубликованной в Science и озаглавленной «Генная терапия генетических заболеваний человека». Они предположили, что главным в медицине будущего станет переписывание наших собственных генетических «строительных планов».
За последние несколько лет биологи успели сделать еще один скачок вперед, разработав новую технологию редактирования генов под названием CRISPR. Она проще, быстрее и дешевле, чем какой-либо из ее аналогов, использовавшихся прежде и обходившихся в тысячи долларов, причем на разработку одного такого метода зачастую уходили месяцы: изменению одного-единственного гена вполне могла быть целиком посвящена студенческая дипломная работа. До сравнительно недавнего времени методики целенаправленной генной терапии предполагали вставку генетического материала в какое-то произвольное место хромосомы, что иногда вызывало нежелательные побочные эффекты. А вот технология CRISPR, применимость которой для редактирования генов в человеческих клетках показали только в 2012 г., является гораздо более точным и тонким инструментом. В ее основе — задействование системы, используемой одноклеточными организмами для отслеживания чужеродных ДНК из встреченных ими ранее вирусов и плазмид, которые представляют угрозу для данной клетки. Применяя так называемые «гидовые РНК» как молекулярные маркеры для точного обозначения мест, где необходимо провести разрезы в человеческих клетках, ученые — они убедительно это продемонстрировали — могут управлять действиями фермента Cas9, обладающего способностью «взрезать» ДНК, чтобы извлекать нежелательные гены из клетки — или вставлять в нее новый генетический материал.
Методика позволяет даже лаборантам выполнять что-то вроде микрохирургии генов: теперь можно очень точно нацеливаться на определенные генетические последовательности в тех или иных участках хромосомы и легко изменять их. Эти серьезные модификации можно осуществлять сравнительно быстро — применяя доступные всем желающим готовые инструменты, которые стоят всего около 30 долларов. Многие убеждены, что вскоре эта технология позволит путем такого «переписывания» избавлять людей от многокомпонентных заболеваний и генетических черт — таких, причиной возникновения которых служит не один, а несколько генов.
Однако еще задолго до появления CRISPR ученые пытались использовать модифицированную ДНК. В 1990 г. группа, работающая в одном из американских Национальных институтов здравоохранения (National Institutes of Health, NIH) под руководством У. Френча Андерсона, лечила четырехлетнюю девочку от синдрома тяжелого комбинированного иммунодефицита [его еще называют «синдромом мальчика в пузыре», так как больные им весьма уязвимы перед инфекционными заболеваниями и вынуждены постоянно находиться в стерильной среде], взяв у нее пробу крови, изолировав лейкоциты (белые кровяные тельца) в чашке Петри и затем подвергнув их воздействию вируса, который, как надеялись ученые, сможет внедрить свой генетический груз в ядра клеток девочки. Этот вирус заранее выпотрошили и начинили рекомбинантной ДНК, кодирующей производство одного из важнейших ферментов, необходимых для выработки Т-лимфоцитов, борющихся с инфекциями: именно этот фермент организм пациентки оказался не способен вырабатывать самостоятельно. Когда ученые вернули эти клетки в организм больной и он начал синтезировать необходимый фермент, это стало поворотным моментом в истории науки.
Правда, те эффекты, которых добился Андерсон и его команда, оказались лишь временными и не столь мощными, как надеялись некоторые: большинство «старых» клеток девочки продолжали штамповать ошибочную ДНК. Время шло, и ее больные клетки продолжали делиться гораздо быстрее, чем их собратья, которых Андерсон после генетической модификации вернул к ней в организм. К тому же, разумеется, этих модифицированных клеток в ее организме было гораздо меньше, чем прочих.
Один из коллег Суини (позже они будут вместе работать в Пенсильванском университете), биолог Джеймс Уилсон, спустя четыре года после пионерских работ Андерсона с девочкой, страдающей синдромом тяжелого комбинированного иммунодефицита, продемонстрировал методику, дающую более долговременные результаты. Он сумел встроить особый вирус в печень пациента, страдающего генетическим заболеванием, из-за которого в организме возникает смертельно опасная концентрация «плохого» холестерина. Поскольку в печени гораздо больше регенеративных клеток, чем во многих других органах и жидкостях организма, методика Уилсона оказалась гораздо более эффективна, чем все предыдущие аналогичные попытки. Модифицированные клетки печени быстро и массово размножались, и со временем этот орган превратился в надежный источник новых клеток — завод по производству недостающих ферментов, постоянно вбрасывающий их в кровеносную систему.
Позже Уилсон едва не погубил свою карьеру из-за еще одного препятствия: как выяснилось, биологическая аппаратура самого организма, предназначенная для борьбы с инфекциями, иногда способна неожиданно бурно реагировать на присутствие таких вот «вирусных векторов», используемых для доставки новой — модифицированной — ДНК. В 1999 г. Джесси Гелсингер, 18-летний идеалист из Аризоны, страдавший сравнительно легкой формой одного генетического заболевания, вызвался поучаствовать в очередном исследовании Уилсона. Не прошло и четырех суток после того, как ему ввели вирус, содержащий модифицированную ДНК, как температура у Гелсингера поднялась до 40,3°. Повсюду в его организме начались воспалительные процессы, что указывало на острый иммунный отклик. Пять дней спустя Уилсону позвонили в четыре часа утра. Врач, работающий в палате интенсивной терапии, сообщил ему, что Гелсингера пришлось подключить к аппарату искусственного кровообращения. Его органы начали отказывать. Вскоре он умер.
«Белки, которые доставляли модифицированные гены, очень сильно активировали иммунную систему, мы такого никогда раньше не наблюдали, — говорит Уилсон. — Для нас это было как гром среди ясного неба. Каждый раз, когда нам звонили сообщить о его состоянии, новости были всё хуже и хуже».
Результатом трагедии стали судебные иски, слушания в Конгрессе, почти загубленная профессиональная карьера Уилсона. Вся сфера генетической инженерии словно бы откатилась на несколько лет назад. На протяжении почти всего первого десятилетия XXI в. одной из сложнейших проблем генной терапии станет отыскание способа подавлять атаку организма (иногда очень мощную) на модифицированные вирусные векторы, используемые для доставки ДНК, призванной избавить человека от смертельного недуга. Впрочем, в последние годы исследователи добились впечатляющих успехов на этом пути.
Однако исследователям, надеющимся развивать методы генной терапии, мешало — и до сих пор мешает — еще одно (вероятно, даже более серьезное) препятствие. Речь идет о сложности генетического кода как такового.
Человеческий геном — невероятно, ошеломляюще запутанная штука. В отличие от «синдрома мальчика в пузыре» и мышечной дистрофии Дюшенна, подавляющее большинство заболеваний и признаков человека вызвано взаимодействием многих различных участков ДНК и особенностей окружающей среды. Ученые уже начали более или менее успешно применять методы генной инженерии, ориентированные на борьбу с относительно несложными болезнями, причиной которых служит та или иная единичная мутация. Тем самым подтверждается, что методы генетической терапии, о которых мечтали Фридман и Роблин, действительно реализуемы на практике. Появление технологии CRISPR не исключает и того, что впоследствии удастся избавлять людей и от более сложных заболеваний, исправляя несовершенства ДНК сразу на нескольких ее участках. Но во многих смыслах вся эта работа, по сути, только начинается.
Ученые еще только пытаются понять, каким образом компоненты человеческого генома и окружающей среды взаимодействуют друг с другом, изменяя нас к лучшему или к худшему. Собственно говоря, специалисты лишь недавно создали сами инструменты, необходимые для быстрого и дешевого считывания 3,2 млрд нуклеотидов, образующих генетическую последовательность каждого отдельного человеческого существа. Многие исследователи вынуждены признать: лишь когда эти инструменты удастся в должной мере усовершенствовать, мы сможем по-настоящему реализовать потенциал генетической терапии.
В этой сфере активно применяются достижения по части наращивания вычислительных мощностей, роста математической изобретательности и развития систем распознавания закономерностей, — те же достижения, которые Хью Герр использует в своей лаборатории, выясняя, как функционирует человеческая нога. Они уже начинают преобразовывать молекулярную биологию. Тысячам специалистов потребовалось почти десятилетие (и 3 млрд долларов), чтобы к 2000 г. расшифровать и записать в виде последовательности биологических букв первый человеческий геном, состоящий из 3,2 млрд нуклеотидов. Сегодня биотехнологические компании способны проделать это всего за три дня, причем один такой анализ обходится дешевле 5000 долларов. К тому времени, когда вы будете это читать, они наверняка сумеют делать это всего за тысячу или даже за гораздо меньшую сумму. Похоже, с каждым месяцем «секвенирующие машины» для анализа ДНК становятся эффективнее, их стоимость падает, а возможности манипуляций с генами растут.
Для секвенирования геномов [т. е. выяснения их ДНК-последовательности] нынешние специалисты используют сравнительно недавно разработанные методики, позволяющие автоматической системе кромсать куски ДНК на удобные для анализа фрагменты, быстро делать миллионы копий этих фрагментов и затем с помощью сложных методов, использующих молекулярные метки и визуальное распознавание, «читать» буквы конкретных геномов. Эти технологии (наряду с ростом вычислительных мощностей, позволяющих вести анализ и сравнение в этой постоянно пополняемой библиотеке полностью секвенированных геномов длиной в 3 млрд нуклеотидов) сулят настоящую революцию в нашем понимании того, каким образом различные комбинации генов взаимодействуют друг с другом, вызывая заболевания и определяя то, как мы выглядим, действуем, мыслим.
* * *
Чтобы воочию увидеть передовые рубежи этого фронта научной революции (и попытаться понять, куда может привести генетическая инженерия, ориентированная на единичные мутации, — подобная той, которой занимается Суини), в 2014 г. я отправился во влажный, окутанный смогом южнокитайский мегаполис Шэньчжэнь, чтобы посетить компанию BGI, которая раньше носила название Bejing Genomics Institute [Пекинский институт геномики]. Компания располагается возле порта, в восьмиэтажном здании бывшей обувной фабрики. В 2008 г. в BGI работало всего 20 человек, но к 2014-му их количество перевалило за 5000, и компания стала крупнейшей в мире организацией, занимающейся секвенированием, а значит, заняла весьма заметное место в непрерывно растущей сфере генетических исследований.
Именно здесь — ив подобных фирмах и институтах — специалисты характеризуют и анализируют колоссальные массивы данных, отыскивая закономерности, которые могли бы объяснить, каким образом все эти миллиарды микроскопических белков, которые мы содержим в каждой своей клетке, взаимодействуют друг с другом, определяя наши черты, — и как небольшие изменения в этих белках могут в совокупности вызывать ту или иную поломку нашего организма.
Сегодня ученые из BGI и их коллеги раздвигают границы возможного с помощью инструментов современной генетики. Эти специалисты не только помогают выяснить, какие генетические последовательности несут ответственность за бесчисленные человеческие недуги, но и выявляют те гены, которые можно корректировать или размножать, создавая необычайно крупную рыбу — или просо, обладающее высокой урожайностью и засухоустойчивостью. Методами генной инженерии они вывели новую породу миниатюрных свиней, которые светятся в темноте, если на них упадет ультрафиолетовый луч: это полезно для научных исследований, поскольку такая особенность позволяет легко отслеживать состояние пересаженных органов. Биоинженеры BGI секвенировали ДНК «ледяного человека», останки которого (возрастом около 4000 лет) нашли в Гренландии: ученым хотелось выяснить, насколько он по своей генетической последовательности отличается от наших современников.
Более того, BGI даже вступила на этически сомнительную территорию поиска генов, которые могли бы сделать всех нас больше, быстрее, сильнее и умнее. Иными словами, компания начала искать того же рода молекулярные уровни, как и те, что порождают чрезвычайно мускулистых мышей и позволяют младенцу по имени Лайам Хёкстра, схватившись за пальцы матери, повиснуть в воздухе, образуя «железный крест».
Недавно BGI приступила к секвенированию ДНК более чем 2000 обладателей необычайно высокого IQ. Цель этих изысканий — выявить генетические предпосылки ума. Компания согласилась взяться за этот проект совместно с исследователями из лондонского Королевского колледжа и Вашингтонского университета. Это непростая задача: считается, что не меньше 10 000 генов (т. е. половина человеческого генома) вносят тот или иной вклад в интеллектуальные особенности каждой отдельной личности.
Во время своего визита в лаборатории BGI я познакомился с Крисом Чаном, американским программистом и генетиком, который участвует в этих исследованиях. Я расспросил его о целях проекта и о тех разногласиях, которые он пробуждает в кое-каких кругах — например, среди специалистов по медицинской этике и отдельных ученых, беспокоящихся, как бы всё это не привело к появлению генетически модифицированных младенцев. Чан заметил: «Мне кажется, если каждый желающий получит возможность обзавестись более смышлеными детьми, в конечном счете это улучшит состояние общества».
Многие ученые относятся к этим работам скептически: они считают, что компании вряд ли удастся разгадать тайны человеческого разума. Но если BGI все же добьется успеха, это станет не первым случаем, когда она сумела выявить генетические особенности, которые могли бы оказаться важными для создания биоинженерных методик совершенствования человека. В 2010 г., секвенировав геномы 50 тибетцев и 40 ханьских китайцев, компания объявила, что ей удалось обнаружить более 30 генов с мутациями, позволяющими некоторым людям лучше переносить пребывание на большой высоте. Почти половина из этих мутаций оказалась связана с тем, как организм использует кислород. В сущности, исследователи нашли биологические рычаги, на которые можно было бы попытаться нажимать с помощью медикаментов или генетических манипуляций, чтобы облегчить адаптацию человека, попавшего в горы.
Предупреждения университетских специалистов по этике о возможных последствиях грядущей генетической революции казались чем-то очень далеким и неважным, когда я бродил по коридорам BGI. В 2010 г. компания получила кредит на 1,5 млрд долларов от Китайского банка развития, финансирующего проекты, отвечающие политике властей страны. Эта колоссальная [во всяком случае, для научной организации] сумма позволила BGI буквально в одночасье воспарить, превратившись из сравнительно маленькой фирмы в корпорацию, обладающую более значительной «огневой мощью» по части генетических работ, чем какое-либо другое отдельно взятое научно-исследовательское учреждение планеты.
Во время своей поездки в Шэньчжэнь и в гонконгский филиал компании, расположенный в здании бывшей типографии и находящийся хоть и за границей, но совсем близко, я обходил помещение за помещением, заполненные самыми лучшими, самыми умными лаборантами-китайцами, с детскими лицами, в голубых лабораторных халатах. Склонясь над пробирками, держа в руках пипетки, они готовили образцы для секвенирующих машин.
Другие специалисты поджидали, когда можно будет, поднявшись на несколько лестничных пролетов, отнести эти образцы в один из просторных залов длиной с половину футбольного поля, похожих на пещеру, но освещенных флуоресцентными лампами и уставленных лабораторными столами. В Гонконге я вошел в один из таких залов. Здесь раздавалось неумолчное гудение мощных кондиционеров, поддерживающих в помещении постоянную температуру — ровно 20 °C. Из потолка с интервалами в несколько футов выступали темные круги (их было не меньше 60) — корпуса камер, в потоковом режиме передающих изображение в далекий «центр управления», находящийся в этом же здании. Камеры были устремлены на предметы, разложенные на столах передо мной.
На каждом столе располагалось обтекаемое устройство чуть больше обычного мини-холодильника — пожалуй, размером с маленькую микроволновку. Несмотря на столь скромные габариты, такое устройство стоит дорого: в США на эту сумму можно купить много домов на четыре спальни, причем в очень хорошем районе. Компании BGI принадлежит 128 этих секвенсоров ценой в 750 000 долларов каждый, сделанных по последнему слову техники. Называются они «Illumina HiSeq 2000».
Каждый 13-дневный цикл работы одной «Иллюмины» дает 600 гигаоснований информации (т. е. данные о 600 млрд нуклеотидов). Таким объемом генетических сведений можно заполнить шесть этажей библиотеки, на каждом из которых в общей сложности 900 м полок для научных журналов. Это в 1200 раз больше того количества данных, который поместится на обычном CD-ROM. Иначе говоря, на этих шести библиотечных этажах может храниться результат полной расшифровки геномов 200 человек, объемом по 3 млрд нуклеотидов. (Правда, для BGI это был бы результат расшифровки всего десяти геномов: каждый геном она секвенирует по 20 раз, чтобы добиться высочайшей статистической точности.) Таким образом, компания расшифровывает около 1730 геномов каждые 13 дней. Где-то во всех этих данных таятся закономерности, которые могут содержать указание на то, что же делает нас такими, какие мы есть, — и за какие молекулярные рычаги мы могли бы потянуть, чтобы позволить всем желающим преобразиться, став такими, какими они хотят стать.
После того как «Иллюмины» извергнут свои данные, целая армия молодых сотрудников, сидящих по ту сторону границы, в Шэньчжэне (в офисных ячейках, которые располагаются в огромном помещении, напоминающем склад), приступает к следующей стадии работы — очистке этой информации и поиску корреляций между определенными буквами в ДНК-последовательности и носителями определенных черт или заболеваний: возможно, эти особенности можно будет связать с конкретными генами.
Чтобы эффективно проводить все эти сопоставления, BGI организовала несколько вычислительных центров, оснащенных суперкомпьютерами. Анализ ДНК — математическая проблема на много порядков сложнее, чем выяснение взаимосвязей между различными частями человеческой руки или ноги, которое (как мы узнали из предыдущей главы) находилось далеко за пределами досягаемости предыдущих поколений инженеров-биомехаников: лишь в наше время специалисты вроде Хью Герра и Патрика ван дер Смагта получили возможность моделировать взаимодействия этих бесчисленных переменных и выявлять, как эти параметры связаны друг с другом и с движениями человека.
Герру приходится работать с тысячами переменных, а компании BGI — с миллиардами, так что ее аппетиты по части вычислительных мощностей постоянно растут и никогда не находят полного удовлетворения. Растет и объем компьютерной памяти, находящийся в распоряжении корпорации. Цель — достичь общей производительности в тысячу терафлопсов (иными словами, в 1 квадриллион операций в секунду). Незадолго до моего визита компания объявила, что сумела превысить четверть этой величины. В рамках некоторых проектов, требующих, чтобы статистики компании одновременно проводили сложный регрессионный анализ множества нуклеотидных последовательностей (каждая — длиной в 3 млрд нуклеотидов), китайское правительство разрешает BGI доступ к некоторым из самых мощных суперкомпьютеров в мире, расположенным в вычислительных центрах, которые принадлежат властям страны и которыми они безраздельно распоряжаются.
Вероятно, величайшие достижения и открытия компании еще впереди. BGI заявила, что планирует секвенировать миллион человеческих геномов. Если удастся реализовать эту амбициозную цель, корпорация получит в свое распоряжение генетическую библиотеку невиданного объема. Иными словами, компания надеется прочесть 3 квадриллиона нуклеотидов: для того чтобы хранить эти данные в традиционном бумажном формате, потребовалась бы библиотека в 30 млн этажей. Столь гигантская сокровищница данных, вероятно, позволит ученым искать любые корреляции между определенными генами и определенными признаками или заболеваниями, причем степень статистической достоверности при этом будет чрезвычайно высока. Но для этой работы, конечно, понадобятся и неслыханные вычислительные мощности.
Я поинтересовался у Чана, занимающегося исследованиями генетических корней интеллектуальных способностей, не становится ли ему неуютно при мысли о том, что в будущем какие-то человеческие черты можно будет формировать методами генной инженерии. Я передал ему опасения, которые часто высказывают специалисты по медицинской этике: мол, такие технологии пойдут на благо лишь немногим избранным, а мы, все остальные, останемся где-то далеко позади. Сначала мне показалось, что Чана не очень волнует эта проблема. Но когда я стал донимать его уточняющими вопросами, он все-таки признался, что некоторые сценарии дальнейшего развития этой отрасли заставляют его призадуматься.
«Если вы обладаете возможностью напрямую редактировать гены, вам могут показаться довольно страшными кое-какие вещи, которые вам не составит труда вообразить», — довольно беспечно признал он.
«Например, какие вещи?» — осведомился я. В конце концов, многие полагают, что эту способность напрямую редактировать гены даст нам технология CRISPR.
Чан заговорил о чертах, которые мы ассоциируем с социопатами вроде Бернарда Мейдоффа или Чарльза Мэнсона — людьми, которые словно бы не чувствуют никакого раскаяния, совершив деяния, которые большинство в нашем обществе считает омерзительными.
«Если кому-то покажется, что такая черта даст его ребенку конкурентное преимущество, — объясняет ученей, — и этот кто-то будет точно знать, как методом генной инженерии добиться… нужного сочетания признаков — никакого сочувствия плюс огромная самоуверенность, то это действительно страшно».
* * *
Чем больше Ли Суини думал о том, как помочь детям с мышечной дистрофией Дюшенна и их отчаявшимся родителям, тем больше он осознавал, что ему хочется найти способ помочь и другой группе пациентов, страдающих от атрофии мышц. Как раз в тот период, когда он посетил конференцию по МДД, так перевернувшую его жизнь, Суини печально размышлял над страшными последствиями процессов старения. Несколько месяцев его преследовала горестная картина почти неизбежного разрушения мышц, которое превращает тех, кто принадлежит к старшему поколению, в хрупкие тени самих себя.
На все эти мысли его натолкнула смерть бабушки — Мэтти Тео Ричардсон. Много лет она счастливо жила вместе с родителями Суини в техасском Арлингтоне. Но кончина, постигшая Ричардсон в 91 год, выглядела не очень-то привлекательно. Эта женщина всегда была очень энергичной, ей нравилось возиться в саду. Однако с годами она становилась всё слабее, и настал день, когда ее подвели ноги. Ричардсон упала и сломала бедро. После этого падения она так и не оправилась, хотя прожила еще полтора года.
Когда Суини виделся с ней в последний раз, Ричардсон сокрушенно сказала ему, что больше не в состоянии делать те вещи, которые она так любит делать, что она стала слишком хрупкой и что ей больше незачем жить.
«А дальше она просто угасла, — говорит Суини. — Ее мышцы очень ослабли, и она позволила себе умереть».
Ее смерть побудила Суини (в месяцы, предшествовавшие тому дню, когда он согласился выступить на конференции по Дюшенну) внимательнее присмотреться к тому, что происходит с нашими мышцами по мере того, как мы стареем. Между 30 и 80 годами все мы теряем в среднем: одну треть общей массы своих скелетных мышц. Мы в буквальном смысле начинаем усыхать. Суини задался вопросом: почему так происходит? Да и должно ли происходить? Как ему казалось, точно такое же биологическое сырье, которое используется организмом для строительства мышц в молодости, остается доступным организму и в старости. Что заставляет наше тело внезапно прекратить эту необходимую работу по ремонту существующих мышц и созданию новых?
Слыша истории о страданиях детей с МДД от их родителей, Суини вспоминал о возрастной атрофии мышц, которая так занимала его мысли в последнее время. В беспомощности отчаявшихся родителей он узнавал свою собственную. Ученый осознал: если он сумеет раскрыть тайну увядания мышц по мере старения человека, не исключено, что это открытие принесет пользу и больным МДД. Если дать этим пациентам более крепкие мышцы (как он мечтал поступить со своей хрупкой бабушкой, прикованной к постели), и дети, и их близкие получат больше бесценного времени — и качество этого времени будет выше.
Была еще одна причина, по которой такую попытку стоило бы предпринять. Суини поддерживал тесные контакты с генетиком Джимом Уилсоном и его коллегами. Вместе с Уилсоном он даже выпустил статью о дистрофине и генной терапии. Да, мышечную дистрофию Дюшенна вызывают именно мутации, влияющие на этот белок, один-единственный. Однако дистрофиновый ген — самый крупный из всех, какие человек встречал в природе. Он состоит по меньшей мере из восьми независимых «промоторов» [своего рода биологических катализаторов], обладающих специфичностью по отношению к определенным тканям, и в нем около 2,4 млн нуклеотидов. Сам же белок дистрофии содержит более 3500 аминокислот. Как мы уже знаем, ученые научились потрошить некоторые вирусы и превращать их в механизмы доставки рукотворного генетического материала, но такие вирусы оказались просто недостаточно велики для того, чтобы в них поместились молекулярные инструкции для синтеза дистрофина. Нужные фрагменты ДНК в них не влезали.
Так что Суини с Уилсоном стали дальше работать над проблемой дистрофина. Суини был полон решимости как можно скорее что-то сделать — что-то такое, что помогло бы и страдающим МДД, и жертвам возрастной атрофии мышц, таким, как его бабушка Мэтти Тео Ричардсон.
Ученый начал с попыток диагностировать эту проблему у пожилых людей. Он толком не понимал, почему с годами мы теряем мышечную массу, но он подозревал, что причина может крыться в возрастном замедлении работы эндокринной системы — группы желез, передающей общие инструкции по всему организму: от инициирования инстинкта «бей или беги» до сигнализирования, что нам пора лечь спать или что мы влюбились. Всё это делается путем выбрасывания в кровь определенных гормонов.
Суини знал, что гормоны эндокринной системы также играют роль в запуске и регуляции процессов роста и ремонта мышц. Собственно говоря, и синтетические стероиды, которыми пользуются бодибилдеры, и генетически модифицированный гормон роста действуют благодаря тому, что они имитируют соединения, синтезируемые нашей эндокринной системой, — гормоны, уровень которых в нашем организме, как было известно Суини, резко падает по мере нашего старения. Если бы Суини как-то сумел прицельно воздействовать на те мышечные области, которые принимают эти общие сигналы роста, если бы он смог найти способ посылать им свое собственное послание, тогда, быть может, ему все-таки удалось бы убедить их расти дальше. И ученый решил взломать систему, точно хакер.
Он взвесил доступные варианты. Анаболические стероиды отпадали. И пожилые люди, и дети с МДД часто испытывают проблемы с сердцем, а всё большее количество исследований заставляет предположить, что анаболические стероиды могут негативно действовать и на способность сердца эффективно перекачивать кровь, и на его способность расслабляться и наполняться кровью в интервалах между сокращениями. Лечение стероидами, возможно, и привело бы к росту массы скелетных мышц у таких людей, но если при этом ухудшилась бы работа сердца, пациентам осталось бы не очень много времени, чтобы насладиться этой увеличившейся мышечной массой. Кроме того, Суини знал, что анаболические стероиды с биохимической точки зрения очень далеки от тех молекулярных переключателей, до которых он надеялся дотянуться. В сущности, это модифицированные версии тестостерона — мужского полового гормона (помните введение и этих древнегреческих олимпийцев, жевавших бараньи тестикулы?). Они вызывают активный рост волос на лице и другие симптомы, совершенно не связанные с ростом мускулов. Суини предположил, что атрофию мышц у пожилых людей вызывают изменения в какой-то другой части эндокринной системы: в конце концов, такая атрофия случается у представителей обоих полов.
Затем он обратился к человеческому гормону роста (ЧГР). ЧГР синтезируется фасолеобразной структурой в основании головного мозга, именуемой гипофизом. Эта железа посылает организму распоряжения о наращивании мышечной массы (поэтому она служит популярным объектом воздействия у атлетов, принимающих допинг). И в самом деле, мысль о том, что именно гипофиз мог бы служить причиной изменений, которые происходят в стареющем организме, представлялась очень даже разумной.
Однако, хотя ЧГР казался многообещающей мишенью, Суини решил, что и он слишком уж удален от того механизма мышечного роста, до которого он рассчитывал добраться. Гормоны работают по принципу «ключа и замка». Они циркулируют в крови, пока не встретят белки, к которым они «подходят». Эти белки (их называют рецепторами) выступают из различных клеток по всему организму. Когда гормон соединяется с рецептором, начинаются определенные клеточные процессы в ДНК данной клетки, подобно тому, как ключ зажигания заводит автомобиль.
Ученые долго считали, что и тестостерон, и ЧГР напрямую способствуют росту мышечной массы, в частности из-за того, что они дают организму приказ вырабатывать третье вещество, именуемое IGF-1. Именно это соединение, синтезируемое в самих клетках мышц, запускает целый каскад химических процессов, которые приводят к дальнейшему росту мускулов. При этом стволовые клетки, эти странствующие строительные бригады организма, приступают к работе в мышечных клетках, добавляя новые слои миозина и актина, из которых состоят два типа волоконец, скользящих друг по другу и позволяющих нашим мышцам сокращаться, преобразуя химическую энергию в кинетическую — в ту силу, которая позволяет нам двигаться и вообще всячески воздействовать на мир физическим путем.
«В конце концов мы решили обратиться напрямую к IGF-1, потому что это вещество и было нашей реальной целью!», — говорит Суини.
Иными словами, он решил попытаться воздействовать на сам ген, отвечающий за выработку IGF-1 (а не полагаться на гормоны, которые влияют на синтез этого вещества), — и отправить что-то вроде приказа о всеобщей мобилизации десяткам крошечных белков, этих рабочих пчелок, обитающих внутри самих мышечных клеток и умеющих заниматься строительством и ремонтом. Вместо введения дозы гормонов, отдающих такой приказ, но рано или поздно распадающихся, он намеревался применить генетически модифицированный вирус, который доставил бы «искусственный!» ген непосредственно в мышцу, которая в результате стала бы «включенной» — и в дальнейшем оставалась бы в таком состоянии.
Суини разбил подопытных мышей на три группы — по возрасту. В первую группу входили молодые (двухмесячные), во вторую — грызуны средних лет (18-месячные), в третью — пожилые (24-месячные). (В среднем мышь живет гораздо меньше человека.) Затем он с помощью инъекции ввел модифицированный вирус в мышцы правой задней ноги каждого зверька. Левая задняя нога служила для сравнения. Спустя 4–9 месяцев он жертвовал этими животными ради науки — умерщвлял их, вскрывал и изучал, каким образом выросли мышцы.
Результаты оказались совершенно однозначными. Мышечная масса у самых юных зверьков увеличилась на 15 %, а сила их мускулов — на 14 %. Но больше всего Суини поразился, обследуя мышей постарше. С первого взгляда стало очевидно, что у них более крупные мышцы. Получалось, что вещество IGF-1 очень успешно запустило соответствующий процесс. Но когда однажды Суини пришел в лабораторию, уселся перед компьютером и стал анализировать эти данные вместе с одним из своих постдоков, его потрясли полученные цифры.
Да, он ожидал кое-какого мышечного улучшения. Но когда он как следует изучил мускулы грызунов, находившихся в возрасте, эквивалентном человеческому 90-летнему (именно в этом возрасте бабушка, его любимица, окончательно сдалась гибельной слабости тела), Суини обнаружил, что мышцы у них такие же крепкие и здоровые, как и у молодых животных.
«Что ж, это несколько лучше, чем я ожидал», — сдержанно заметил он тогда.
«Мы предполагали, что состояние их мускулов улучшится, — говорит сегодня Суини. — Но мы не знали, что они придут к самому лучшему состоянию, какое только бывает на протяжении всей жизни этого существа,».
У пожилых грызунов мышцы выросли на 19 %, а их сила увеличилась на целых 27 %. Более того, экспрессия [«включение»] гена, отвечающего за синтез IGF, «в полной мере предотвращала существенные потери самых быстрых и мощных типов волокна», тем самым давая возможность предположить: усиливается не только производство новых мускулов, но и мышечная регенерация. Наличие таких процессов регенерации указывало на то, что подобная методика могла бы помочь пациентам, страдающим мышечной дистрофией, сохранять нормальное функционирование мускулов. Да и для всех остальных людей последствия этого открытия могли оказаться весьма серьезными.
«Когда эти животные достигли весьма почтенного возраста, их мышцы уже больше не менялись, — отмечает Суини, и перед глазами невольно возникает образ 90-летних людей, страдающих старческим слабоумием, но бодро участвующих в соревнованиях по спортивному многоборью «CrossFit». — Мышцы оставались таким же сильными, как у этих же зверьков в юности».
Результаты своих исследований Суини опубликовал в одном из серьезных научных журналов, снабдив текст постскриптумом, который кажется слишком личным для сухого академического издания: «Г. Л. С. посвящает эту работу памяти своей бабушки Мэтти Тео Ричардсон, чья жизнь стала труднее и короче из-за нехватки мышечной силы, необходимой для того, чтобы стоять и ходить».
* * *
Хотя статья Суини имела для него не только научное, но и глубоко личное значение, он осознавал, какую опасность таят в себе эти исследования. Опубликовав эту работу, он предостерегал: для спортсменов генетическая терапия, ориентированная на ген, который отвечает за выработку вещества IGF-1, могла бы стать «идеальным усилителем качества выступлений».
«Вы наращиваете мышечную массу и силу — даже без всяких тренировок, — отмечал он. — И никакой анализ крови не обнаружит, что вы прибегли к этому методу». Ученый язвительно заметил: эта технология — мечта лентяя.
И все-таки он не был готов к тому, что на него обрушится такое количество звонков от спортсменов, которым отчаянно хочется улучшить свои показатели.
В 2001 г. два корреспондента британской газеты Guardian посетили лабораторию Суини и вблизи посмотрели на представителя очередного поколения модифицированных мышей. Когда ученый продемонстрировал им забавно накачанного зверька, репортеры окрестили этого грызуна «Мачо».
Целенаправленно воздействуя на печень, Суини создал в ней центр усиленного производства молекул IGF-1, которые затем разносились кровеносной системой по всему организму, приводя к росту мышц повсюду. Это лечение повысило общую мышечную массу Мачо на ошеломляющие 60 %, позволив ему «без всяких усилий» забираться вверх по лесенке с прикрепленным к спине грузом в 120 г — втрое больше собственного веса.
К тому времени прошло уже больше трех лет с тех пор, как Суини впервые явил миру своих мышей. С этого момента ему стали обрывать телефон спортсмены. И это сказалось на его отношении к таким исследованиям.
«Я убежден, что если бы Советский Союз не распался, там бы сейчас уже вовсю занимались генетическим изменением людей, — заявил Суини британским репортерам во время этого их визита. — Кто знает, к чему бы это привело?»
Сходные опасения возникают у многих ученых — и далеко не только у тех, кто профессионально занимается исследованием мышц. Так, в своей книге «Беги, плыви, швыряй, обманывай» британский спортивный биолог Крис Купер пишет, что для спортивных достижений необходима «сила, выносливость и способность состязаться, преодолевая болевой порог». Те профессиональные атлеты, которые не чужды мошенничества, десятилетиями пытаются улучшить эти параметры при помощи (как это называет Купер) «неснятой троицы» — анаболических стероидов, гормона эритропоэтина и различных стимуляторов. Одна из наиболее ярких и невероятных историй охоты на гены среди всех, с которыми я столкнулся при подготовке этой книги, касается выявления не генетической мутации, а третьего компонента куперовской «неснятой троицы» — веществ, позволяющих лучше переносить боль.
В начале 2000-х группа британских генетиков получила необычное сообщение от врачей, работающих в больнице пакистанского Лахора. Медики рассказывали о десятилетнем пакистанце, который зарабатывал на жизнь, устраивая уличные представления, где втыкал себе в руки ножи и разгуливал по раскаленным углям. При этом мальчик получал вполне реальные повреждения: после своих выступлений он постоянно приходил в больницу израненным и в ожогах, прося, чтобы его подштопали. Но вот что странно: как бы ни были страшны травмы, полученные им в тот или иной день, юный фокусник, похоже, не ощущал совершенно никакого дискомфорта. Он словно бы вообще не обращал на них почти никакого внимания. Доктора начали подозревать, что у факира имеется какая-то редкая мутация, которая делает его невосприимчивым к боли.
К несчастью, когда команда британских генетиков приехала на место, чтобы проверить эту гипотезу, было уже слишком поздно: незадолго до этого мальчишка спрыгнул с крыши, чтобы произвести впечатление на своих приятелей, и погиб. Однако приехавшие генетики все-таки смогли получить образцы ДНК у жителей родной деревни фокусника. Ученые обнаружили, что у представителей трех тамошних семей имеется дефект гена со сложным названием «натриевый канал N9A (SCN91)» — одного из 11 человеческих генов, кодирующих белки, задействованные в процессах инициирования болевых сигналов, которые распространяются по телу. Все эти люди могли бы при желании ходить по горячим углям, не чувствуя никакой боли. Эта мутация открывает широкие перспективы для разработки обезболивающих лекарств. Однако вполне можно себе представить, почему в некоторых видах спорта способность терпеть боль может оказаться такой же важной, как и мускулы внушительных размеров в тяжелой атлетике. К тому же возникают тревожные мысли не только о спортсменах, которые готовы пойти на всё ради победы, но и о солдатах, которыми могут двигать такие же побуждения, или об авторитарных правительствах, насильственно превращающих солдат в пушечное мясо, не чувствующее боли.
Основной автор исследования, С. Джеффри Вудс из Кембриджского института медицинских исследований, не пожелал говорить о своей работе и быстро повесил трубку, когда я с ним связался. И это не единственный из работающих в данной области, кто проявляет такую осторожность. Сицзинь Ли, профессор Медицинской школы Университета Джонса Хопкинса, считается, как и Суини, одним из главных в мире специалистов по биологическим путям передачи мышечных сигналов. Но и он избегал моих звонков. Он воздерживается от общения с журналистами, поскольку (как он объяснил Дэвиду Эпштейну, автору книги «Спортивный ген», вышедшей в 2014 г.) «обеспокоен явной готовностью спортсменов использовать в неблаговидных целях ту методику, которая даже еще не стала полноценной технологией и которая предназначена для больных, у которых не осталось другого выбора». Ли опасается, что типы мышечной терапии, над которыми работает и он, и Суини, «могут, подобно стероидам, приобрести в обществе негативный ореол из-за той роли, которую они играют в спортивных скандалах».
Безусловно, пример со стероидами служит здесь серьезным предупреждением. Сегодня легко забыть, что задолго до того, как их стали ассоциировать со спортивным жульничеством, анаболические стероиды использовались как могучая благая сила — для лечения слабейших среди нас (страдающих от острого недоедания скелетоподобных узников, освобожденных из Освенцима и других концлагерей в конце Второй мировой, или жертв ожогов, или детей с проблемами роста).
Почему это отношение к стероидам изменилось? Здесь имеет смысл рассмотреть классический предостерегающий пример, наверняка постоянно маячащий в сознании Суини, Ли и их коллег, размышляющих о новой эпохе генетического допинга. Речь идет об истории человека по имени Гордон Хьюз.
В 1961 г. Хьюз синтезировал новое вещество под названием «норболетон» или «генабол» — в ходе работы над своей кандидатской диссертацией по химии, которую он выполнял в английском Манчестерском университете. Изобретатель полагал, что это соединение могло бы помочь пожилым пациентам, перенесшим хирургическую операцию и. нуждающимся в том, чтобы их организм вырабатывал больше белков. Компания Wyeth Pharmaceuticals (ныне — часть концерна Pfizer), куда Хьюз потом устроился, даже провела исследования этого вещества как средства для набора веса, которое могли бы применять обладатели скромных габаритов.
Но весь остальной мир узнал об этом лекарстве отнюдь не как о средстве для пожилых пациентов, перенесших операцию, или для худощавых детей. Это касается и меня, и Суини. Я впервые узнал об этом веществе несколько лет назад, когда прилетел на кукурузные поля Шампейна (штат Иллинойс), чтобы встретиться с Патриком Арнольдом, угрюмым коренастым химиком, некогда наткнувшимся на детище Хьюза, изучая в медицинской библиотеке литературу о стероидах. Арнольд имел в виду совсем иное применение этого вещества. В начале 90-х этот 24-летний лаборант пахал на низкооплачиваемой работе, которую ненавидел: он помогал синтезировать соединения, которые используются в шампунях и гелях для волос. На досуге он охотно занимался тяжелой атлетикой. И ему было очень скучно.
Однажды, запустив очередную серию реакций, Арнольд стал искать в справочниках молекулярную структуру стероидов, упоминаемых в журналах для тяжелоатлетов, и вдруг его осенило. Арнольд вспоминает, как он подумал: «Я терпеть не могу свою работу, я прохлаждаюсь тут, почти ничего не делая, в моем распоряжении целая лаборатория, а значит, я могу попробовать сварить кое-какие из этих штук. Черт побери, никто никогда не узнает, что я здесь вытворяю».
Арнольд внес исходные компоненты, необходимые для синтеза нужных ему стероидов, в список реагентов, которые он регулярно заказывал через компанию, и никто ничего не заметил. Вскоре он по десять часов в неделю сидел в библиотеках, просеивая научные журналы и забытые патенты в поисках соединений, чья молекулярная структура стоила дальнейшего изучения. Едва ли не больше всего Арнольда воодушевил хьюзовский норболетон. Вещество имело уникальное химическое строение, которое не позволяло обнаружить его в организме, а кроме того, оно, судя по всему, обладало многими свойствами более мощных стероидов, которые уже пробовал исследовать Арнольд.
Много лет спустя, уже став преуспевающим экспертом по пищевым добавкам (вполне традиционным), чьи продукты используются, например, профессиональными бейсболистами вроде Марка Макгуайра, неутомимый Арнольд решил для забавы сварганить порцию норболетона. О норболетоне мало кто знал, так что системы детектирования допинга, действующие в профессиональном спорте, попросту не имели в своем распоряжении образцов этого вещества, а значит, не могли и обнаруживать его в организме. А потом Арнольд передал синтезированное им соединение олимпийской велогонщице Тэмми Томас. Совершенно проигнорировав предостережения Арнольда насчет дозировки, Томас приняла столько вещества, что вскоре могла поднимать немыслимые 143 кг из приседа. Вдобавок у нее появился крупный кадык, она заговорила низким мужским голосом, на лице у нее стали расти усы и борода, а верхняя часть головы стала по-мужски лысеть. В конце концов уровень выработки естественного тестостерона в ее организме (женский организм тоже вырабатывает этот гормон, хотя и в меньших количествах, чем мужской) упал до столь низкого уровня, что антидопинговые организации заволновались: такое падение содержания тестостерона — известный побочный эффект, часто возникающий после того, как спортсмен завершил прием курса стероидов. Мочу спортсменки начали подвергать тщательному анализу — и спустя некоторое время, разумеется, сумели выявить в ней продукты метаболизма, которые затем позволили установить, что Томас принимала норболетон.
Образец синтезированного им вещества Арнольд послал и одному предприимчивому бизнесмену по имени Виктор Конте, владевшему центром спортивного питания в калифорнийском Барлингейме (под названием BALCO — Вау Area Laboratory Cooperative [«Лабораторный кооператив Калифорнийского залива»]). Конте окрестил вещество «прояснителем» и начал поставлять его спортсменам высшего класса. После того как Томас попалась, Арнольд сделал нечто неслыханное в истории спортивного допинга. Он прошерстил знаменитый каталог соединений, выпускаемый фирмой Merck, и создал совершенно новый стероид.
Впоследствии деятельность BALCO привела к мощному скандалу, затронувшему ряд самых известных спортсменов США и запятнавшему имена бейсбольных титанов Джейсона Джиамби и Барри Бондса, футбольной звезды Билла Романовски, британского спринтера Дуэйна, Чемберса, легкоатлетки Мэрион Джонс (трехкратной олимпийской медалистки) и других атлетов. Арнольда приговорили к трем месяцам заключения, которые он отбыл в федеральной тюрьме, находящейся в Моргантауне (штат Западная Вирджиния).
Именно из-за печально известных зелий Арнольда большинство людей знает о работах Гордона Хьюза. Ученый, уже вышедший на пенсию, с неодобрением относится к такой славе.
«Меня огорчает, что люди принимают эти препараты, — признался мне Хьюз. — Вещества не соответствуют требованиям FDA. И вообще вы ничего о них не знаете».
По словам Хьюза, когда он впервые синтезировал это соединение, ему и в голову не могло прийти, что его творение могут использовать таким вот образом.
Но такие мысли пришли в голову чиновникам Всемирного антидопингового агентства, обдумывающим наступление эпохи генной терапии. Более того, в связи с этим они частенько вспоминают о деле BALCO. В январе каждого года Суини вместе с несколькими другими видными экспертами-генетиками прилетает в Монреаль и добирается до сверкающего 48-этажного небоскреба, который высится на двухсотлетней площади Виктория-сквер. Затем он и его коллеги проводят восемь часов, уединившись в конференц-зале на семнадцатом этаже, поедая ту пищу, которую им соизволят принести, и обсуждая те бесчисленные способы, какими атлеты могли бы злонамеренно использовать достижения этой новейшей отрасли — генной инженерии — для того, чтобы изменить свой организм.
«Они [чиновники ВАДА] надеются на сей раз определить развитие событий, — говорит Суини. — Они надеются, что теперь спортсмены будут больше опасаться таких методов и что вадовцев не застанут врасплох, как это случилось с ними во время этого фиаско с BALCO».
И все равно Агентство ограничено в своих возможностях. Один из путей его работы — контактировать с компаниями, проводящими испытания методик генной терапии, получать у них образцы и затем искать в организме атлетов остатки соответствующих «биологических автографов», которые показывают, что спортсмен пытался изменить свои гены. Еще один вариант — выделять гранты тем исследователям, которые стремятся разработать инновационные методы тестирования на генетический допинг.
Но тут есть серьезная проблема. Доказать, что спортсмен «взломал» свои гены (как хакер взламывает программу), можно лишь одним способом — обнаружив наличие в его организме того вектора, который доставил новую ДНК. Однако организм в конце концов расщепляет этот вектор и выводит из себя его компоненты, не оставляя никаких следов. После того как это произошло, практически невозможно доказать, что эта ДНК не досталась спортсмену от природы.
«Это один из вопросов, которые мы обсуждаем, — рассказывает Суини. — Нужно решить, с какой периодичностью проводить тестирование, чтобы гарантировать: мы сумеем выловить эти следы».
Вероятно, самое существенное препятствие на этом пути — само число возможностей вмешательства в гены. Когда-то Суини успешно изменил кое-какие гены мышей (а в 2011 г. — золотистых ретриверов), но можно менять не только такие разновидности генов. По словам ученого, ВАДА «беспокоится почти обо всех мыслимых средствах генной терапии, которые могли бы дать спортсмену конкурентное преимущество».
По самым последним подсчетам, в области движения выявлено уже более 200 генов, которые ассоциируются с улучшением качества спортивных выступлений. Об этих генах написаны целые тома (хороший пример — «Спортивный ген» Эпштейна). По современным данным, практически каждый из этих генов сам по себе, в отдельности, играет слишком небольшую роль, чтобы его стоило изменять с использованием нынешних технологий. Однако технологии редактирования генов (такие как CRISPR) развиваются стремительно, а значит, вполне может статься, что такое положение вещей когда-нибудь изменится. Между тем целый ряд «искусственных» генов уже сейчас находится в пределах нашей досягаемости — например, ген нечувствительности к боли, или ген, управляющий синтезом IGF-1, или еще один ген, чья мутация привлекла внимание Суини: именно об этой мутации шла речь в начале этой главы, когда мы упомянули о необычном немецком младенце. Он родился с такими могучими мускулами, что пресса окрестила его «Супермалышом». Эта мутация воздействует на синтез миостатина — вещества, о котором пока мало что известно, хотя оно оказывает на организм очень мощное влияние.
* * *
Именно миостатином занимается Сицзинь Ли, специалист по биологии развития, работающий в Университете Джонса Хопкинса: тот самый, который упорно не отвечал на мои звонки. Этот неизвестный науке белок, содержащийся только в мышцах, Ли открыл в начале 90-х — примерно в то же время, когда Суини начинал исследования дистрофина.
Как выяснили Ли и его аспиранты, роль миостатина в организме состоит в том, чтобы подавлять рост мышц. Если IGF-1, вещество, которое изучал и на которое воздействовал Суини, представляет собой педаль газа для мышечного роста, то миостатин служит тормозом. Без этого вещества мышцы растут без ограничений, зачастую достигая размера, как минимум, вдвое превосходящего нормальный. Как выяснилось, в природе встречаются мутации, которые, судя по всему, «выключают» соответствующие гены у животных. Вскоре после того, как Ли и его группа вывели таких огромных безмиозиновых грызунов, что пресса окрестила их «мышами-гигантами», эти же ученые выявили сходную природную мутацию у породы супермускулистых коров под названием «бельгийская голубая». Еще одна команда исследователей обнаружила миостатиновую мутацию у одной из пород гончих, представители которой при беге развивают скорость до 35 миль в час [около 56 км/ч]. Собаки с двумя копиями дефектного гена были чересчур мускулисты и не годились для соревнований. Но особи с одной копией, похоже, обладали как раз оптимальной мышечной массой: они нередко становились чемпионами.
Не прошло и двух лет после открытия Ли, как с ученым связались врачи из одной берлинской больницы. Им показалось, что они сумели выявить первого новорожденного человека с такой мутацией. Именно этого младенца потом назовут «Супермалышом».
«Если вы берете на руки обычного младенца, вы ощущаете что-то мягкое, потому что у маленьких детей большая жировая прослойка, — объясняет Маркус Шульке, педиатр-невролог, осматривавший этого ребенка вскоре после рождения, когда медсестры заметили, что у новорожденного происходит необычное дрожание конечностей. — Но у этого младенца было твердое тело. На ощупь оно напоминало одну большую мышцу,».
В свое время Шульке прочел работу Ли, где тот описывал свое открытие. В 2004 г. эти два исследователя совместно с несколькими другими опубликовали в New England Journal of Medicine статью, где подтверждали: у ребенка наблюдается миостатиновая мутация. В прессе поднялся ажиотаж, очень расстроивший семью, где родился младенец. Некоторые критически настроенные авторы требовали, чтобы его не названная в статье мать, о которой сообщалось, что она является профессиональным спринтером, вернула все свои медали. Сегодня Шульке отказывается раскрывать какую-либо информацию о текущем состоянии мальчика: после шумихи в СМИ семья попросила врача больше никогда не сообщать о ней никаких сведений. Однако родители самого, вероятно, известного общественности «супермалыша» в США (во всяком случае, из тех, чье имя не скрывается) все-таки по-прежнему не отказываются беседовать с журналистами.
Мичиганцу Лайаму Хёкстре, мальчику, с которым мы познакомились в начале главы, сейчас, когда я это пишу, девять лет. У него рельефный пресс, и его спина так и бугрится мышцами. Он играет в хоккей, и ему нравится борьба (по словам его отца Нила). И хотя мальчик не очень-то успешно сражается с соперниками на хоккейной площадке, его сила, судя по всему, дает ему явное преимущество на борцовском ринге, где он способен одолевать противников, даже не зная традиционных и общепринятых приемов. По словам отца мальчика, Лайам также может гораздо дальше бросать и отбивать бейсбольный мяч, чем его сверстники. Да и на школьном дворе его мышцы приносят пользу. Нил не без гордости рассказывает, как Лайам недавно «завалил» парня постарше, который приставал к его друзьям.
Врачи пока не сумели выяснить, какая же конкретная мутация вызвала такое усиленное развитие мышц Лайама. Но Суини, Феррелл (анализировавший ДНК мальчика) и многие другие специалисты убеждены, что причина здесь, скорее всего, именно генетическая. Если мутацию все-таки удастся выявить, это может проложить путь к разработке новых методов лечения — или новых методов накачивания для спортсменов, жаждущих побед, и просто для здоровяков, стремящихся увеличить свою мышечную массу.
Пока же для Суини и ряда других исследователей миостатин — в числе самых перспективных веществ, на которые можно оказывать целенаправленное воздействие, разрабатывая методики лечения заболеваний, связанных с атрофией мышц. Сейчас, когда я это пишу, несколько фармацевтических компаний уже проводят клинические испытания так называемых ингибиторов миостатина.
В 2011 г. Суини при помощи миостатиновой мутации вывел золотистого ретривера-«шварценеггера». А в 2015-м китайские ученые объявили, что при помощи технологии CRISPR получили гончих с мышечной массой, вдвое превышающей обычную. Этого удалось добиться, избавив их организм от миостатина посредством генетической модификации. Они сообщили, что намерены выводить собак и с другими мутациями, аналогичными тем, что вызывают человеческие заболевания, например болезнь Паркинсона или мышечную дистрофию.
Суини по-прежнему верит в эффективность IGF-1, но он занимается главным образом ингибированием миостатина, поскольку для этого нужно встраивать в организм меньше вирусных векторов, а значит, меньше вероятность, что организм даст на них нежелательную иммунную реакцию. Впрочем, в дальнейшем ученый еще может вернуться к IGF-1. Смерть Джесси Гелсингера, произошедшая в 1999 г., потрясла институт, где работал Уилсон, и исследователю на пять лет запретили тестировать его методики на испытуемых-людях. Но с тех пор медики нашли новые методы подавления иммунного отклика: в частности, для этого используются другие векторы (некоторые из них открыл сам Уилсон), а кроме того, применяются определенные стероиды: то и другое сдерживает воспалительные процессы на первой — самой важной — стадии лечения. Евросоюз впервые одобрил одну из методик генетической терапии в 2014 г. Сегодня, по некоторым оценкам, одновременно проходят более 2000 испытаний новых генетических методик лечения. Скорее всего, в будущем такие методики станут очень широко применяться для избавления людей от болезней. Пока же Суини и его коллеги пристально следят за этими испытаниями, чтобы определить, какие вирусные векторы наиболее безопасны и насколько далеко мы можем продвигаться по этому пути, не нанося вред пациентам.
* * *
Во время долгой поездки на машине из офиса Суини обратно в Нью-Йорк я размышляю о собственном генетическом составе. В детстве я занимался игровыми видами спорта. Был момент, когда я мечтал стать профессиональным бейсболистом. В старших классах я даже несколько месяцев выступал за школьную футбольную команду, но, к сожалению, оказался слишком мал для своих 14 лет. Поэтому одно из самых ярких моих воспоминаний — как однажды я героически встал прямо на пути у гигантского переростка-фулбека по имени Джон Бёрк после того, как защитник-распасовщик отдал ему мяч. Я всерьез намеревался его уложить, несмотря ни на что. Когда Бёрк, словно асфальтовый каток, прокатился надо мной, я обхватил его за лодыжки, словно беспомощный лилипут, вцепившийся в Гулливера. Бёрк протащил меня за собой как минимум ярдов тридцать (возможно, даже не заметив), а потом свалил меня — в виде совершенно деморализованной груды рук и ног — где-то к северу от пятнадцатиярдовой линии.
А вот если бы уже тогда открыли ингибиторы миостатина, все могло бы повернуться иначе. На мгновение я позволяю себе представить мир, где у меня имелась бы возможность играть роль Джона Бёрка, грозно нависающего над каким-то другим недоразвитым хиляком. Тут мне приходит в голову, что во времена, когда я учился в старших классах, стероиды уже были вполне доступны, как и зал с силовыми тренажерами. Но я даже не думал тогда поэкспериментировать с тем или другим.
И я прихожу к выводу: подобно Суини, мне вовсе не улыбается мысль о переписывании своего генома во имя обретения спортивной славы. Однако я мог бы отнестись к этому иначе, если бы такие мутации более непосредственно касались того, чем я зарабатываю себе на жизнь: если бы я, к примеру, мог с помощью генетической модификации улучшать способности к запоминанию или уровень интеллекта. Позже я узнал (мы об этом еще поговорим в дальнейших главах), что кое-какие недавние открытия предоставляют человеку эту соблазнительную и морально сомнительную возможность: не исключено, что скоро мы сможем корректировать собственные гены, улучшая память и мыслительные способности — и даже повышая уровень счастья.
Впрочем, по пути домой меня не покидает грустный образ этих детей, больных МДД, и их отчаявшихся родителей. Если, отыскав метод лечения этого недуга, мы заодно предоставим не очень-то многочисленным громилам возможность генетически модифицировать их мускулы — что с того? Это не слишком высокая цена и не слишком высокий риск. Вот почему работы Суини и таких его коллег, как Сицзинь Ли, продолжаются полным ходом.
Генная терапия — не единственный способ «хакерского» вторжения в механизмы работы тела, направляющий их действие так, чтобы организм сам себя исцелял. В последние годы ученые начали исследовать другие разновидности методик, которые обладают столь же мощным преобразующим потенциалом. Эти методики нацелены на то, чтобы высвободить скрытые силы регенерации, изначально заложенные в наши клетки. Специалисты давно подозревали, что эти потрясающие силы в нас есть, но лишь недавно они начали понимать, как до них добраться.
Назад: Глава 1 Бионический человек, который строит бионических людей
Дальше: Глава 3 Человек с волшебным порошком