Квантовые логические вентили
Логический вентиль представляет собой вычислительное устройство, которое выполняет простую операцию при загрузке в него одного или более битов информации. Применяемый им для этого способ основан на области математики, известной как «Булева алгебра», которая названа в честь Джорджа Буля, разработавшего ее в XIX веке. Сложные логические схемы, из которых состоит «мозг» компьютера, собраны из таких вентилей, которые получают входящий сигнал из бинарных единиц и нулей, а затем следуют простым инструкциям, чтобы что-нибудь с ними сделать. Транзистор выступает в качестве логического вентиля, выполняющего такую операцию посредством преобразования двух входящих сигналов, каждый из которых может быть как О, так и 1, в единственный исходящий сигнал, принимающий значение либо О, либо 1.
Существуют различные типы логических вентилей, например вентиль «И» (на выходе будет единица, только если на входе получены две единицы) или вентиль «ИЛИ» (на выходе будет единица, когда на входе получены либо одна, либо две единицы). Создание комбинаций этих простых вентилей, а также вентиля «НЕ» (который берет один из входящих сигналов и переключает его: 0 на 1 или 1 на 0) позволяет конструировать более сложные логические операции. Так, комбинация двух вентилей «НЕ», двух вентилей «И» и одного вентиля «ИЛИ» дает элементарное устройство сложения (называемое вентилем «исключающее ИЛИ»).
Квантовая логика работает сходным образом, только теперь нам приходится отслеживать все возможности. Квантовые алгоритмы вроде алгоритмов Шора и Гровера основываются на особом порядке, в котором логические операции производятся над двумя или более кубитами. Однако вместо подачи электрического тока на полупроводниковые диоды мы теперь манипулируем суперпозициями квантовых состояний при помощи лазеров и магнитных полей.
Простейший пример кубита представляет собой отдельный электрон (или любая частица с квантовым спином, который может быть либо параллелен, либо антипараллелен действующему магнитному полю). Под действием дополнительного электромагнитного импульса в течение нужного периода времени спин электрона может развернуться. Это пример квантового вентиля «НЕ». Другая квантовая операция соответствует развороту спина электрона лишь наполовину. Это вводит его в суперпозицию вращения вверх (1) и вниз (0) одновременно. Такая операция называется операцией «квадратный корень из НЕ». Имея два запутанных электрона, которые начинают с вращения в одну сторону, эта операция вводит их в суперпозицию четырех возможных состояний: 00, 01, 10 и 11. Большее количество кубитов позволяет строить более сложные квантовые алгоритмы. Например, исследователи с успехом создали квантовый эквивалент вентиля «исключающее ИЛИ», позволяющего им осуществлять простое сложение.
Как только алгоритм осуществлен, выбирается одно из возможных итоговых состояний, которое затем необходимо усилить таким образом, чтобы его можно было считать с помощью какого-либо макроскопического устройства. Само собой, это лишь одна из многих важнейших проблем реализации, которые еще предстоит разрешить.