Кварки
К середине 1930-х годов было известно о существовании нескольких элементарных частиц. Помимо протонов, нейтронов и электронов, которые составляют атомы обычной материи, и фотонов электромагнитного излучения, физики также обнаружили позитроны и нейтрино. Затем, вскоре после появления теории о пионах Юкавы, в космических лучах засекли новую частицу, которую сначала ошибочно приняли за пион Юкавы. На самом деле она напоминала тяжелый и нестабильный электрон и сегодня называется «мюоном». Мюоны формируются в верхних слоях атмосферы Земли, когда высокоэнергетические протоны, прилетающие из космоса, сталкиваются с молекулами воздуха, и продолжительность их жизни составляет всего лишь долю секунды. Пионы были экспериментально обнаружены несколькими годами позже.
Чтобы глубже изучить структуру квантового мира, вскоре были построены ускорители частиц (или дробилки атомов, как их сначала называли). Идея была проста: вместо использования света для исследования субатомных структур физики последовали примеру Резерфорда с альфа-частицами. Однако, чтобы изучать более маленькие линейные масштабы, им нужны были более энергетические частицы. Что важно, они использовали волнообразные свойства частиц материи, а не световые волны. Чем выше энергия пучка частиц, тем короче длина волны де Бройля и меньше итоговый линейный масштаб. Кроме того, чем больше энергии можно освободить из крошечного объема посредством все более мощных столкновений частиц, тем выше вероятность создания из этой энергии все более и более экзотических частиц.
Ко второй половине XX века было открыто так много новых элементарных частиц, что физики начали задумываться, действительно ли их можно называть элементарными. Как выяснилось, атомы 92 различных элементов состояли всего из трех частиц – протонов, нейтронов и электронов, – так, может, все эти частицы тоже состояли из нескольких более фундаментальных компонентов?
При классификации частиц было обнаружено, что одно семейство включает в себя слишком много вариаций. Подверженные сильному взаимодействию адроны подразделяются на две группы. Первую составляют барионы, включая протон и нейтрон. К ним вскоре добавился целый ряд новых частиц-барионов, в том числе «лямбда», «сигма», «кси» и «омега». Вторая группа, называемая мезонами, включает в себя пион, а также несколько других, более тяжелых частиц, таких как «эта» и «каон».
Мы не можем вынуть отдельные кварки из частицы вроде нуклона. Даже если мы дадим достаточно энергии, чтобы разорвать связь между кварками, с помощью этой энергии у нас получится лишь создать новую пару кварк/антикварк посредством так называемого «рождения пар» (см. рисунок на странице 188). Новый кварк встанет на место вынутого из нуклона, а антикварк объединится с вынутым кварком и сформирует мезон.
В попытке восстановить простоту и лаконичность два теоретика, Марри Гелл-Ман и Джордж Цвейг, предположили, что все адроны (барионы и мезоны) обладают внутренней структурой. Они продемонстрировали, что все различные вариации можно представить состоящими из более элементарных частиц, называемых «кварками».
Всего несколькими годами позже эта гипотеза получила подтверждение в Стэнфордском центре линейного ускорителя в Калифорнии. В ходе эксперимента, который в значительной степени напоминал знаменитый опыт Резерфорда с рассеянием альфа-частиц, в свое время подтвердивший гипотезу о внутреннем строении атомов, высокоэнергетические электроны отскакивали от протонов и нейтронов. На этот раз направление отталкивания электронов показало, что внутри каждого нуклона содержится три крошечных сгустка материи. Существование кварков было доказано.
Сначала считалось, что существует всего три типа (называемых «ароматами») кварков. Теперь мы знаем, что всего их шесть, причем каждый обладает различной массой. Протоны и нейтроны состоят всего из двух типов кварков, названия которых довольно незамысловаты: протон содержит два «верхних» кварка и один «нижний», а нейтрон – два «нижних» и один «верхний».
Как выяснилось, заряд протона или электрона представляет собой не самую маленькую единицу электричества. Три кварка заряжены отрицательно и обладают по одной третьей заряда электрона каждый, а другие три кварка заряжены положительно и содержат по две трети заряда протона. Таким образом два верхних кварка, положительный заряд каждого из которых равен двум третям заряда электрона, и один нижний кварк, отрицательный заряд которого равен одной трети заряда электрона, вместе составляют заряд протона, а два нижних и один верхний нивелируют заряды друг друга внутри электрически нейтрального нейтрона.
Фермионы включают три поколения семейств частиц: в нижней части левой колонки находятся кварки, а в нижней части правой – лептоны. Вся состоящая из атомов материя во Вселенной создана исключительно из частиц первого поколения (они изображены на поверхности). В это семейство входят верхние и нижние кварки, которые составляют нуклоны в атомном ядре, электрон и его нейтрино. Частицы второго и третьего поколения гораздо более тяжелы и имеют очень краткий срок жизни. Их можно создавать в ускорителях частиц.
Четыре других аромата называются – хотя на это и нет особых причин – «странностью», «очарованием», «прелестью» и «истинностью». Лично я предпочитаю описание четырех ароматов магии, данное Терри Пратчеттом в романах о Плоском мире: «верхний», «нижний», «поперечный» и «мятный»!
В дополнение к электрическому заряду кварки должны также обладать другим свойством, называемым цветным зарядом. Он необходим, чтобы объяснить, почему для создания нуклонов и всех остальных барионов кварки группируются исключительно по три, но встают в пары кварк/антикварк для создания пионов и сходных с ними мезонов. Подробнее об этом я расскажу в Главе 8.
Сегодня известно о существовании всего двух видов элементарных частиц материи: кварков и лептонов. Лептонами называют все частицы, которые не подвержены сильному ядерному взаимодействию, – то есть все частицы, не имеющие цветного заряда, а иными словами: все элементарные частицы материи, за исключением кварков! К лептонам относится электрон и два его более тяжелых собрата, мюон и таулептон, а также три типа нейтрино.
Что ж, приятно хотя бы осознавать, что первая открытая элементарная частица, обнаруженная более ста лет назад, до сих пор остается элементарной. Отдадим должное электрону.
Так насколько мы уверены, что электроны и кварки представляют собой самые фундаментальные кирпичики материи? Быть может, со временем мы выясним, что они тоже обладают внутренней структурой. Быть может, существует и кое-что более базовое и фундаментальное.