Квантовая хаология
Сэр Майкл Берри, Профессор Королевского общества, Бристольский университет
Казалось бы, квантовый мир существенно отличается от мира классической физики, который он отвергает. Квантовые энергетические уровни, волновые функции и вероятности кажутся несовместимыми с ньютонианскими частицами, движущимися по определенным орбитам. И все же две теории должны быть тесно связаны. Даже Луну можно считать квантовой частицей, так что должны быть обстоятельства – грубо говоря, большие, тяжелые объекты, – для которых квантовые и классические предсказания совпадают. Но «границы применимости классической теории» размыты, и существенное число современных исследований нацелено на то, чтобы их понять.
Сложности с границами применимости классической теории становятся особенно большими, когда ньютонианские орбиты хаотичны. Хаос – это длительная нестабильность, в которой движение, хотя и является четко определенным, столь чувствительно, что его предсказание на практике невозможно. В хаосе нет регулярных повторений. Знакомый всем пример – погода. Еще один – беспорядочное вращение одного из спутников Сатурна, Гипериона, огромной каменной картофелины размером с Нью-Йорк.
Хаос представляет собой проблему, так как развертывание квантовой волны во времени определяется соответствующими уровнями энергии. Математическим следствием существования энергетических уровней является тот факт, что квантовое развитие времени включает в себя лишь периодическое движение на определенной частоте – то есть противоположность хаосу. Следовательно, в квантовой механике нет хаоса, одна регулярность. Как же тогда может существовать хаос в нашем мире?
На этот вопрос два ответа. Первый заключается в том, что по достижении границ применимости классической теории – когда тела становятся больше и тяжелее – время, необходимое на подавление хаоса квантовой механикой, тоже становится больше и, строго говоря, стремится к бесконечности. Однако это объяснение не годится, так как «время подавления хаоса» часто бывает на удивление кратким – даже для Гипериона оно составляет всего несколько десятилетий, что в астрономических масштабах весьма немного.
Истинная причина существования хаоса заключается в том, что большие квантовые системы сложно изолировать от окружения. Даже «поток фотонов» с Солнца (вторичное излучение которого дает свет, благодаря чему мы видим Гиперион) разрушает деликатную интерференцию, лежащую в основе квантовой регулярности. Большие квантовые системы очень чувствительны к неконтролируемым внешним воздействиям – этот эффект называется декогеренцией. В границах применимости классической теории квантовое подавление хаоса само по себе подавляется декогенерцией, в результате чего хаос появляется снова в качестве знакомой черты крупномасштабного мира.
Квантовые системы меньшего размера, такие как атомы в сильных магнитных полях, сильно вибрирующие молекулы или заключенные в «квантовые точки» с несимметричными границами электроны, можно успешно изолировать от окружения. Следовательно, декогеренция в них не возникает, а потому не существует и квантового хаоса, хотя соответствующие им классические системы хаотичны. Тем не менее эти квантовые системы целым рядом способов отражают классический хаос, изучением чего и занимается квантовая хаология.
Энергетические уровни сильно возбужденных состояний формируют набор чисел, которые можно изучить статистически. Эта статистика (например, вероятность, определяющая расстояние между соседними уровнями) различна в условиях хаоса и в условиях регулярности. Точно так же различен и рисунок, описывающий состояния квантовых волн. Удивительным и даже загадочным открытием стало то, что расположение энергетических уровней в квантовой хаологии связано с одной из глубочайших проблем математики и свойствами простых чисел.