Результат игры в пул
Представьте, как мы с помощью мощного компьютера пытаемся предсказать, что случится в игре в пул, делая предсказание в ту секунду, когда биток ударяется о пирамиду. Каждый шар на столе в этот момент начинает катиться в своем направлении, причем большая часть шаров претерпевает более одного столкновения и отталкивается от бортов. Само собой, компьютер должен знать точную силу первого удара битка и точный угол, под которым он сталкивается с первым шаром пирамиды. Но достаточно ли этого? Когда все шары наконец остановятся – а некоторые из них, возможно, даже закатятся в лузы, – насколько близким к реальности окажется предсказание компьютера? В то время как предсказать результат столкновения двух шаров вполне вероятно, учесть все сложные траектории движения множества шаров практически невозможно. Если хотя бы один шар покатится под немного иным углом, то другой шар, который он мог миновать в изначальной картине, теперь сможет коснуться его, в результате чего обе траектории существенным образом изменятся. И итоговый результат вдруг окажется совсем другим.
Похоже, нам необходимо сообщить компьютеру не только сведения о начальном состоянии битка, но и точное расположение остальных шаров на столе: касаются ли они друг друга, каковы точные расстояния между ними и бортами и так далее. Но даже этого недостаточно. Крошечной пылинки на любом из шаров хватит, чтобы изменить его траекторию на некоторую долю миллиметра или чуть снизить его скорость. И снова это приведет к эффекту домино, который изменит итоговую расстановку. В теории хаоса это называется «эффектом бабочки» – идея заключается в том, что бабочка машет крыльями и тем самым едва заметно изменяет атмосферное давление, что в результате постепенно приводит к серьезному отклонению от того сценария, который развернулся бы, если бы бабочка не взмахнула крыльями, к примеру, вызывая несколько позже грозу на другом конце света, хотя в ином случае этой грозы не случилось бы.
Следовательно, нам нужно предоставить компьютеру точные данные о состоянии поверхности стола. Возможно, в некоторых местах сукно протерто сильнее. Минимальное влияние окажут даже температура и влажность воздуха.
И все же вам может показаться, что в этом нет ничего невозможного. Что в принципе это выполнимо. Само собой, если бы между шарами и столом не было трения, они бы продолжили сталкиваться и расходиться в разные стороны гораздо дольше, а следовательно, нам нужно было бы еще более точно знать изначальное положение шаров, чтобы определить, где они окажутся, наконец остановившись.
«И что?» – скажете вы. В конце концов, раз уж мы никогда не сможем узнать все о конкретной системе, нам приходится высчитывать вероятности различных результатов. Чем больше мы знаем, тем с большей уверенностью мы можем сказать, что именно произойдет.
Иногда мы не можем сделать верное предсказание не только из-за собственной неосведомленности, но и из-за неспособности контролировать изначальные условия. Мы не можем даже дважды одинаково подбросить монетку, чтобы повторить полученный в первый раз результат. Пускай мы подбросили монетку и получили решку. Подбросить ее второй раз точно так же, чтобы она перевернулась то же самое количество раз и снова легла решкой вверх, очень и очень сложно.
И снова мы приходим к выводу, что у нас недостаточно информации о системе. В примере с игрой в пул я ни за что не смогу повторить удар и толкнуть биток точно таким же образом, чтобы добиться идентичного итогового результата, при котором все шары окажутся точно на тех же позициях, что и в первый раз. Тем не менее такая повторяемость является сутью ньютонианского мира. Такое детерминистское поведение представляет собой черту ньютоновой, или классической, механики. В квантовой механике все совершенно иначе.