4. Карта невидимого мира
Как закон всемирного тяготения Ньютона не только объясняет видимое, но и открывает нам невидимое.
Законы Кеплера пускай и не полностью верны, но достаточно близки к истине, чтобы привести к открытию закона о притяжении тел в Солнечной системе. Их неточность объясняется тем, что планеты также имеют массу, а потому влияют на орбиты друг друга.
Исаак Ньютон
Сорви цветок на Земле — и ты сдвинешь с места дальнюю звезду.
Поль Дирак
Поиски продолжались уже почти целый час, и все действия их участников стали автоматическими. Иоганн Галле всматривался через огромный медный телескоп-рефрактор в небо над Берлином, поворачивая ручки настройки до тех пор, пока в перекрестье не появлялась звезда, а затем выкрикивал её координаты. Его молодой ассистент Генрих Д’Арре, сидевший за деревянным столом в другом конце помещения под куполом обсерватории, просматривал карту звёздного неба, освещённую масляной лампой, и кричал в ответ: «Эта звезда нам известна». Галле снова принимался крутить ручки, направляя телескоп на следующую звезду. Из-за холодного ночного воздуха у него уже побаливала шея, и он начинал сомневаться в успехе предприятия.
Галле и Д’Арре находились в Королевской обсерватории в Берлине из-за необычного письма, которое они получили днём. Оно было подписано Урбеном Леверье, математиком и астрономом из парижской Политехнической школы. За год до этого Галле отправил Леверье копию своей научной работы, но ответа не получил. Теперь Леверье, очевидно, жалел об этом, ведь ему требовалась помощь прусских коллег. Поэтому текст письма был полон запоздалых благодарностей.
Галле мог бы отомстить коллеге, сказав, что его письмо случайно затерялось в куче бумаг у него на столе. Судя по всему, астрономы из Парижской обсерватории так и поступили, иначе зачем Леверье было писать в Берлин? Но Галле был выше этого, а кроме того, услуга, о которой просил Леверье, заинтересовала его. Леверье просил коллегу с помощью знаменитого телескопа Фраунгофера, установленного в Берлинской обсерватории, посмотреть на область между созвездиями Козерога и Водолея и поискать там объекты, которых нет на картах звёздного неба.
Директор обсерватории Иоганн Франц Энке считал это задание просто потерей времени. Но в ту ночь он собирался праздновать свой 55-й день рождения, а не пользоваться рефрактором, поэтому решил, что вреда не будет, и разрешил Галле выполнить странную просьбу Леверье. Галле быстро привлёк к делу студента-астронома Д’Арре. Вот так эти двое оказались в одной обсерватории ночью 24 сентября 1846 года, рассматривая небо в огромный механический телескоп Фраунгофера, самый точный астрономический инструмент того времени во всём мире.
Они начали поиски в полночь, когда на улицах Берлина погасли газовые фонари и город погрузился во мрак. Сейчас был уже почти час ночи. Галле навёл перекрестье телескопа на очередную звезду и выкрикнул её координаты. Ожидая ответа Д’Арре, он мечтал поскорее отправиться домой, к жене и тёплой постели. Но Д’Арре молчал. Чем, интересно знать, он там занимается?
Галле вырвал из размышлений грохот упавшего стула. Оторвавшись от окуляра, он увидел силуэт своего помощника в свете масляной лампы. Д’Арре бежал к нему, размахивая картой звёздного неба, как обезумевшая птица. Было слишком темно, чтобы разглядеть лицо Д’Арре, но Галле на всю жизнь запомнил его слова в тот миг: «Этой звезды нет на карте!».
Тщетно пытаясь успокоиться, чтобы их руки не дрожали, двое учёных ещё раз навели телескоп на неизвестное небесное тело. Сомнений не было — такой объект отсутствовал на карте звёздного неба. И не без оснований, ведь это была не звезда. Звёзды на их огромных расстояниях от Земли обычно выглядят как крошечные точки, и даже приближение с помощью телескопа не даёт рассмотреть их как следует. Но этот объект выглядел не точкой, а крошечным сияющим диском.
Это была планета, неизвестная планета. Со времён появления Земли она двигалась по своей орбите вокруг Солнца на периферии нашей системы, в полной темноте, и до этого момента никто не имел о ней представления. В тот момент у неё ещё не было имени, а о её существовании знали всего два человека. Но очень скоро всё человечество будет знать её под названием Нептун.
Растяжение во все стороны
То, что Д’Арре и Галле обнаружили новую планету, кажется невероятным событием, почти чудом. Коллега из Парижа написал Галле и попросил начать поиски нового мира, дав очень чёткие инструкции на этот счёт. Заинтригованный, но не очень-то верящий в успех Галле выполнил эти указания. Всего час работы — и он уже видит в телескоп совершенно новую планету, которая находится ровно на том месте, про которое говорил Леверье. Это был триумф астрономии, триумф предсказательной науки, но самое главное — триумф Исаака Ньютона и теории, которую он разработал почти за два века до этого.
Чтобы закон всемирного тяготения можно было использовать для предсказания различных явлений, Ньютон делал некоторые допущения. Как мы уже говорили выше, при расчёте воздействия Земли на Луну он представлял себе нашу планету так, как если бы вся её масса была сконцентрирована в одной точке в её центре. На самом деле, разумеется, Земля имеет большую площадь, и из-за разницы в воздействии Луны на разные её части форма Земли изменяется, что приводит к появлению приливов. Но предположение о Земле как об одной точке — это не единственное допущение, сделанное Ньютоном. Он также предположил, что на планеты распространяется лишь притяжение Солнца. Благодаря такому допущению он смог доказать, что, если планета движется под воздействием силы, которая ослабевает с квадратом расстояния (то есть в соответствии с законом обратных квадратов), её орбита имеет форму эллипса, как и предсказал Кеплер.
Но главная характеристика гравитации состоит в её универсальности. Это означает, что даже самые крохотные клочки материи воздействуют друг на друга с помощью силы тяготения. Следовательно, планета подчиняется влиянию не только Солнца, но и остальных планет. Возьмём в качестве примера Землю. Максимальное гравитационное воздействие на неё оказывают Юпитер (самая большая планета в Солнечной системе, масса которой равна примерно 1/1000 массы Солнца) и Венера, находящаяся рядом с нашей планетой. Их влияние различается в разные временные периоды, потому что Юпитер движется по орбите вокруг Солнца медленнее Земли, а Венера — быстрее. Но когда Юпитер находится на минимальном расстоянии от нашей планеты, его сила притяжения составляет 1/16 000 силы притяжения Солнца. Когда же расстояние между Венерой и Землёй максимально сокращается, сила притяжения Венеры становится примерно в полтора раза меньше этой цифры.
Поскольку гравитационное воздействие планет Солнечной системы друг на друга значительно меньше, чем влияние Солнца, Ньютон в своих расчётах планеты не учитывал. Но, строго говоря, планета размером с Землю движется под влиянием множества других небесных тел. В результате её орбита вокруг Солнца не является идеальным эллипсом. Первый закон Кеплера верен лишь приблизительно. Гравитационные силы, воздействующие на планету, постепенно изменяют её ориентацию в космосе, и участок орбиты, максимально приближённый к Солнцу, постоянно изменяется.
Давайте представим, будто мы ничего не знаем о существовании в Солнечной системе других планет. Если мы будем долго наблюдать за орбитой Земли, мы заметим, что она немного отклоняется от формы идеального эллипса. Обдумав эту ситуацию, мы придём к выводу, что в космосе существуют и другие массивные объекты, «дёргающие» нашу планету, когда она проходит мимо них, как дети, которые дёргают мать за пальто, чтобы она не шла слишком быстро. Применив огромные компьютерные мощности и приложив массу интеллектуальных усилий (это очень сложные вычисления), мы поймём, что гравитационное воздействие на Землю оказывают ещё семь планет, каждая из которых имеет свою массу и движется по своей орбите вокруг Солнца.
Закон всемирного тяготения Ньютона помог нам составить карту невидимого мира. Именно этот принцип использовал Леверье, чтобы исследовать рубежи Солнечной системы и вычислить местоположение восьмой планеты, Нептуна. И всё это из-за того, что одна из планет не двигалась по идеально эллиптической орбите.
Планета по имени Георг
Уран был открыт Уильямом Гершелем, бывшим музыкантом родом из Германии. В 1757 году 19-летний Уильям и его сестра Каролина переехали в Бат, английский город, основанный римлянами на месте, где бьют термальные источники. Гершель работал церковным органистом, но его страстью была астрономия. В саду у своего дома он построил один из лучших телескопов того времени; 13 марта 1781 года он рассматривал в него звёздное небо и заметил странную размытую звезду. Сначала Гершель решил, что это комета, но в последующие несколько ночей она переместилась в созвездие Близнецов. Учёный понял, что она движется не по удлинённой орбите кометы, а по планетарной орбите, больше напоминающей окружность.
Открытие новой планеты стало международной сенсацией. С момента зарождения науки людям были известны лишь шесть планет. Теперь же их оказалось семь.
Гершель был иммигрантом и хотел признания в своей новой стране. Поэтому он окрестил планету звездой Георга в честь короля Георга III. Это очень разозлило французских астрономов, которые были против именования небесного тела в честь английского короля. Вместо этого они стали называть её Гершелем. Миротворцами в этом споре выступили, как ни удивительно, немцы. Астроном Иоганн Боде предложил дать новой планете имя в честь Урана, отца римского бога Сатурна, и эта идея прижилась. Только представьте себе, как выглядел бы перечень планет в Солнечной системе, если бы этого не произошло: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн… и Георг.
Почти за век до открытия Урана его наблюдал английский астроном Джон Флемстид. В 1690 году он ошибочно занёс Уран в свой каталог как 34-ю звезду в созвездии Тельца. Благодаря записям Флемстида и его коллег, подкреплённым более поздними наблюдениями, к началу XIX века орбита Урана уже была известна учёным настолько хорошо, что её можно было сравнить с предсказанной на основании закона всемирного тяготения Ньютона.
Вот тут-то и начались загадки.
Факт наличия эллиптической орбиты не соответствовал результатам наблюдений. Как только она была рассчитана, Уран тут же начал отклоняться от неё. Шли годы, наблюдений становилось всё больше, а Уран отклонялся всё сильнее.
Лишь немногие сомневались в законе всемирного тяготения Ньютона. Его успех за последние два столетия был таким всеобъемлющим и масштабным, что его считали чем-то вроде Священного Писания. Учёные предположили, что за Ураном может находиться ещё одна планета, чья гравитация и сбивает Уран с правильного эллиптического пути.
Охота на невидимую планету
В 1841 году Джон Кауч Адамс, математический гений из Корнуолла, Англия, решил вычислить, где именно в Солнечной системе должна находиться новая планета, чтобы она могла оказывать наблюдаемое воздействие на Уран. Его расчёты были ужасающе сложными, но уже через четыре года он был готов представить результаты своего труда королевскому астроному Джеймсу Челлису. Тот, однако, не принял Адамса всерьёз. Помимо прочего, доверие к нему подрывала его привычка постоянно уточнять свои расчёты и то и дело менять предсказания относительно местоположения новой планеты.
Адамс не знал, что в то же самое время во Франции Леверье проводил похожие вычисления. Чтобы упростить пугающе сложные расчёты, Леверье сделал несколько обоснованных допущений. Например, он предположил, что новая планета должна находиться далеко от Солнца, иначе астрономы уже заметили бы её. Он также решил, что её масса должна быть сравнима с массой Урана, который по этому показателю примерно в 15 раз превышает Землю. Наконец, Леверье решил, что невидимая планета должна двигаться по орбите вокруг Солнца в той же плоскости, что и другие планеты.
Удивительно, но Леверье, как и Адамса, не принимали всерьёз. Директор Парижской обсерватории Франсуа Араго не считал поиски новой планеты первоочередной задачей. Когда Леверье понял, что не добьётся от Араго точных сроков для выполнения своей задачи, он потерял терпение и 18 сентября 1846 года отослал свои расчёты, указывающие на примерное местонахождение планеты, в Берлин. Ещё через пять дней Иоганн Галле, единственный человек, поверивший Леверье, вошёл в историю как первооткрыватель Нептуна.
Как и Уран, Нептун наблюдался и ранее, но его не принимали за планету. Его едва можно разглядеть невооружённым глазом. Существуют некоторые свидетельства того, что уже в декабре 1612 года в Падуе Галилей видел Нептун в свой недавно созданный телескоп, но посчитал его просто звездой.
После обнаружения Нептуна между Англией и Францией разгорелся спор о том, кого именно считать его первооткрывателем. Интересно, что этот спор никак не повлиял на отношения между самими Адамсом и Леверье, хотя последнего многие считали заносчивым и агрессивным человеком. После первой же встречи они стали друзьями — возможно, из уважения к математическим талантам друг друга, а возможно, из-за усилий, которые обоим пришлось приложить, чтобы им поверили. Сегодня открытие Нептуна приписывают Адамсу и Леверье в равной степени.
Обнаружение Урана было настоящей сенсацией. Это была первая планета, открытая в эру телескопов и науки. Расстояние от Урана до Солнца в два раза больше, чем от Солнца до Сатурна, а значит, всего за один день размеры известной человечеству Солнечной системы увеличились вдвое. Открытие Нептуна также было сенсационным, но в несколько другом смысле. Если Уран был замечен астрономами случайно, существование Нептуна, включая его массу, внешний вид и местоположение, было точно предсказано. Наука наделила человека возможностями божества. Закон Ньютона теперь не только объяснял то, что мы видим, но и предсказывал невидимое.
И в XXI веке эта история может повториться.
Девятая планета
В начале 2016 года два астронома из США поразили весь научный мир, заявив, что вокруг Солнца по удалённой орбите обращается ещё одна, ранее не известная планета, масса которой в десять раз превышает земную. До тех пор пока ей не найдут имени получше, Константин Батыгин и Майк Браун из Калифорнийского технологического института в Пасадине предложили называть её просто девятой планетой. До 2006 года девятой планетой был Плутон, но затем его понизили в должности до статуса карликовой планеты.
Доказательства, которые привели Батыгин и Браун, касаются не аномального движения других планет, а странного поведения объектов в поясе Койпера. Как мы уже упоминали, этот пояс состоит из десятков тысяч ледяных обломков, оставшихся после создания планет и вращающихся вокруг Солнца за орбитой Нептуна. Батыгин и Браун отметили, что шесть самых далёких объектов пояса Койпера имеют очень вытянутые орбиты, которые не растянуты в разные стороны, как можно было бы предположить, а вместо этого направлены примерно в одну точку. Кроме того, они имеют одинаковое отклонение (примерно 30 градусов) от плоскости, в которой движутся остальные восемь планет. Если верить Батыгину и Брауну, эти аномалии объясняются гравитационным воздействием далёкой невидимой планеты.
Данная планета должна быть не только огромной, но и очень далёкой — расстояние от неё до Солнца должно в 20 раз превышать расстояние между Солнцем и Нептуном. Батыгин и Браун предполагают, что девятая планета движется по крайне вытянутой орбите, то приближаясь к Солнцу на расстояние, равное семи расстояниям до Нептуна, то удаляясь на дистанцию, превышающую расстояние до Нептуна в 30 раз. Из-за такой длинной орбиты она делает полный оборот вокруг Солнца не раз в 165 лет, как Нептун, а раз в 15 000 лет.
Девятая планета могла сформироваться вместе с остальными планетами 4,55 миллиарда лет назад, а затем отлететь на дальнюю орбиту после столкновения с зародышем одного из гигантов Солнечной системы (Юпитера или Сатурна). Кроме того, есть вероятность, что раньше она обращалась вокруг другой звезды. В «звёздной колыбели», где родилось наше Солнце, появились на свет и сотни других звёзд, располагавшихся на близком расстоянии друг от друга, и вполне возможно, что, когда две такие звёзды встречались, они обменивались планетами. Тот факт, что в Солнечной системе может существовать ранее неизвестная планета, напоминает нам, что жизнь порой оказывается удивительнее научной фантастики.
Учитывая расстояние между девятой планетой и Солнцем, она, скорее всего, почти не отражает солнечный свет, и поэтому её сложно разглядеть даже в самый большой телескоп. Но в те моменты, когда она подходила к Солнцу максимально близко, она должна была быть видна и занесена на карты звёздного неба. Когда же она находится на наибольшем удалении от Солнца, для того, чтобы рассмотреть её, нужен крупнейший телескоп на Земле, например пара десятиметровых телескопов в обсерватории Кек, Мауна-Кеа, Гавайи. Есть и ещё один способ. По предположениям учёных, диаметр девятой планеты в 3,7 раза превышает земной, а температура на поверхности составляет −226 градусов Цельсия. Соответственно, её можно засечь с помощью инфракрасного телескопа, чувствительного к тепловым волнам.
Если девятая планета действительно существует, это делает нашу Солнечную систему похожей на ещё примерно 2000 планетарных систем, вращающихся вокруг других звёзд. Типичная планета в такой системе имеет массу от 1 до 17 земных. Если подобная Суперземля когда-то существовала, но затем была вытолкнута за пояс Койпера, это объясняет отличие Солнечной системы от её звёздных собратьев.
По иронии судьбы Браун сыграл важную роль в понижении Плутона до статуса карликовой планеты. В 2005 году он открыл Эрис, удалённое от Солнца ледяное небесное тело, примерно равное по размерам Плутону. Это открытие показало, что Плутон, который с 1930 года считался самой далёкой планетой Солнечной системы, — на самом деле не что иное, как крупнейший объект из множества в поясе Койпера. Возможно, предлагая новое небесное тело взамен Плутона, Браун пытается извиниться за то, что «уничтожил» целую планету.
Разумеется, может оказаться, что никакой девятой планеты на самом деле нет. Некоторые астрономы всё ещё скептически относятся к этому предположению. Как бы там ни было, закон всемирного тяготения Ньютона до сих пор помогает нам видеть невидимое.
Экзопланеты
На сегодняшний день нам известно несколько тысяч планет, вращающихся вокруг других звёзд. При этом лишь малую долю из них астрономы действительно видели. Существование большей части было рассчитано, исходя из их воздействия на свои солнца. Всё снова сводится к закону всемирного тяготения Ньютона. Солнце притягивает планету с той же силой, что и планета — солнце. Разумеется, звезда имеет существенно бо́льшую массу и сдвинуть с места её труднее. Тем не менее некоторое движение всё же происходит.
Строго говоря, планеты не вращаются вокруг неподвижного солнца. Это всего лишь одно из допущений, сделанных Ньютоном для более удобной системы расчётов. На самом деле и планета, и её солнце движутся вокруг их общего центра массы. Так как масса солнца куда больше, чем масса планеты, этот центр располагается ближе к центру звезды (обычно внутри неё). Пока планета перемещается вокруг него по большой орбите, солнце движется по крошечной.
Можно описать это движение и другим способом: находясь в одной части орбиты, планета тянет своё солнце на себя, а перейдя на другую половину орбиты, начинает тянуть в противоположном направлении. Из-за этого звезда подрагивает, и, используя высокочувствительные приборы, учёные на Земле могут засечь эти колебания. Вы наверняка заметили, что частота или тональность сирены повышаются, когда полицейская машина приближается к вам, и понижаются, когда она отдаляется. Точно так же и частота света, выделяемого звездой, повышается или понижается в зависимости от того, движется эта звезда в сторону Земли или от неё. Измерив величину допплеровского смещения для атомов самых распространённых элементов, например водорода, астрономы могут рассчитать скорость звезды при приближении или удалении от нашей планеты.
В тех случаях, когда на звезду действует гравитация планеты, максимальная скорость колебания составляет несколько метров в секунду для планет размером с Юпитер и всего десяток сантиметров в секунду для небесных тел, схожих по размерам с Землёй. Иными словами, шар раскалённого газа, зачастую имеющий в диаметре более миллиона километров, перемещается в нашем направлении со скоростью бегущего человека, а от нас — со скоростью черепахи. Это кажется невероятной технической задачей, но астрономы могут измерять такие скорости, используя высокочувствительные спектрографы. Именно так мы узнаём о существовании невидимых планет. Только в середине 1990-х их было открыто более 2000, а прямо сейчас учёные занимаются поисками второй Земли.
Самый яркий пример того, как с помощью закона всемирного тяготения Ньютона мы можем увидеть невидимое, относится не к звёздам и планетам, а к более крупным объектам во Вселенной. В конце XX века учёные, к своему изумлению, обнаружили, что звёзды и галактики, которые раньше считались основными компонентами космоса, составляют лишь малую его часть. Оказалось, что во Вселенной есть гораздо больше объектов, чем мы могли вообразить, и что значительная их часть скрыта от человеческого взора.
Невидимая Вселенная
В конце 1960-х – начале 1970-х годов астрономы Вера Рубин и Кент Форд из отдела земного магнетизма в Институте Карнеги в Вашингтоне занимались изучением спиральных галактик. Эти звёздные водовороты составляют примерно 15% от всех галактик, и к этому типу относится наш Млечный Путь. Рубин и Форд хотели выяснить, с какой скоростью звёзды в спиральных галактиках вращаются относительно их центра.
Они выбрали для изучения те галактики, которые повёрнуты к Земле ребром, потому что в них звёзды перемещаются вдоль линии прямой видимости. Использовав сверхчувствительный спектрограф, они сумели измерить скорость звёзд с непревзойдённой точностью.
Чем дальше от центра галактики, тем меньше должно быть значение силы притяжения. Соответственно, Рубин и Форд ожидали, что звёзды на границе спирали будут вращаться медленнее, как планеты в Солнечной системе, скорость движения которых уменьшается по мере удаления от Солнца.
Но они обнаружили нечто совсем иное.
Насколько учёные могли видеть, на всех орбитах вокруг центра спиральной галактики скорость звёзд оставалась постоянной. Звёздный водоворот был слишком быстрым. Казалось бы, при такой скорости их должно было бы отбрасывать в стороны, как сиденья на цепочной карусели. Они давно должны были оторваться от галактики и пуститься в свободное космическое плавание. Сила притяжения к центру галактики не должна была их удерживать.
Но удерживала.
Современные астрономы, как и их коллеги в XIX веке, непоколебимо верят в закон всемирного тяготения Ньютона, который за все эти годы принёс им столько успешных открытий. Поэтому Рубин и Форд придумали этому аномальному поведению звёзд объяснение, которое недалеко ушло от рассуждений Адамса и Леверье о странном движении Урана. Видимо, звёзды в спиральных галактиках не разлетаются потому, что их удерживает сила гравитации, присущая большему объёму материи, чем можно увидеть в телескоп. Гораздо большему объёму.
Судя по всему, каждая спиральная галактика окружена сферическим облаком тёмной материи (чтобы представить это наглядно, вообразите себе компакт-диск в центре пчелиного роя). Тёмная материя либо вообще не излучает свет, либо излучает недостаточно, чтобы его могли зафиксировать современные приборы, а её масса превышает массу видимых звёзд примерно в десять раз.
Открытие Нептуна показало учёным, что они долгое время не замечали целой планеты в Солнечной системе. Открытие тёмной материи имело куда более серьёзное значение. Оно показало нам, что мы долгое время не замечали почти всю Вселенную.
Мнение о том, что Вселенная больше, чем нам кажется, высказывалось ещё в 1930-х годах. Фриц Цвикки, американский астроном швейцарского происхождения из Калифорнийского технологического института в Пасадине, наблюдал за скоплениями галактик. К своему удивлению, он обнаружил, что галактики, из которых состоят подобные скопления, вращаются с такой скоростью, что давно должны были бы разлететься. Примерно в то же время в Голландии Ян Оорт открыл, что звёзды, находящиеся недалеко от нашего Солнца, вращаются быстрее ближе к центру Млечного Пути, что можно объяснить притяжением видимой материи внутри солнечной орбиты.
Цвикки заключил, что в скоплениях галактик на самом деле имеется больше материи, а Оорт понял, что не всю материю в нашей собственной Галактике можно рассмотреть в телескоп. Именно дополнительное притяжение этой тёмной материи, как назвал её Цвикки (он использовал немецкий термин Dunkle Materie), удерживает вместе звёзды и галактики.
Идея о невидимых массах во Вселенной по каким-то причинам оказалась непопулярной в астрономических кругах (возможно, потому, что в неё сложно было поверить). Но ситуация изменилась, когда Рубин и Форд представили свои наблюдения за звёздами в спиральных галактиках. Множество звёзд вели себя аномальным образом, и закрывать на это глаза было нельзя.
Гравитация не только указывает на наличие тёмной материи, но и позволяет рассчитать её распределение. Дело в том, что по пути к Земле свет от дальних галактик искривляется за счёт силы притяжения тёмной материи. По искажению, или «линзированию» изображений, таких галактик можно понять, как тёмная материя была распределена на их пути. Прямо сейчас в горах Чили идёт создание телескопа, который поможет учёным исследовать этот эффект. Большой обзорный телескоп (Large Synoptic Survey Telescope) станет чем-то вроде телескопа наоборот. Его задачей будет собирать свет и создавать изображения тьмы.
Свидетельствами существования тёмной материи являются не только спиральные галактики. Есть и ещё одно важное место. Вселенная появилась 13,82 миллиарда лет назад в результате Большого взрыва и с тех пор расширяется и остывает. Из обломков материи после взрыва родились около 100 миллиардов галактик, включая и наш Млечный Путь. Единственный минус этого сценария в том, что он не учитывает одну довольно важную характеристику Вселенной — существование людей.
Галактики появились на свет потому, что какие-то области гигантского огненного шара во время Большого взрыва оказались более плотными, чем другие (считается, что эти «колебания плотности» в первые доли секунды после взрыва оставили свой отпечаток на всей Вселенной в виде квантовых процессов, но это уже совсем другая история). Так как более плотные области имели чуть бо́льшую силу притяжения, она накапливали материю быстрее, чем другие. Дополнительная масса увеличивала силу притяжения и так далее по замкнутому кругу. Но дело в том, что этот процесс идёт очень медленно; 13,82 миллиарда лет, прошедших с момента зарождения Вселенной, было бы недостаточно для формирования таких больших галактик, как Млечный Путь. Значит, во Вселенной должно существовать больше материи, которую мы не можем увидеть в телескопы. Материи, чья гравитация ускорила рождение галактик. Тёмной материи.
Масса всей тёмной материи во Вселенной превышает массу видимой материи (включая галактики, звёзды и прочие объекты, состоящие из атомов, вроде нас с вами) примерно в 5–6 раз. На самом деле благодаря европейскому телескопу «Планк», который регистрирует «остаточное свечение» Большого взрыва, мы можем назвать даже более точную цифру. В то время как атомы составляют 4,9% энергии массы в нашей Вселенной, 26,8% приходится на тёмную материю. Оставшиеся 68,3% известны также как «тёмная энергия». Они были открыты в 1998 году, невидимы для человеческого глаза, заполняют собой весь космос и обладают отталкивающей гравитацией, но это тоже совсем другая история.
Если вы спросите меня, что такое тёмная материя, я не смогу ответить вам ничего по существу. Некоторые считают, что она состоит из ещё неизвестных человечеству субатомных частиц. Некоторые физические теории, например теория суперсимметрии, постулируют существование доселе неизвестных фундаментальных частиц, которые не «чувствуют» электромагнитную силу и потому не испускают электромагнитных волн, то есть света. Ещё одно предположение состоит в том, что чёрная материя — это множество чёрных дыр, каждая весом с Юпитер и размером с холодильник, которые возникли под воздействием сил Большого взрыва.
Если тёмная материя состоит из «допотопных» чёрных дыр и они равномерно распределены по всей Вселенной, то до ближайшей такой дыры нам придётся лететь 30 световых лет, почти в десять раз дальше, чем до самой близкой к Земле звезды, Альфе Центавра. Если же она состоит из субатомных частиц, то прямо сейчас тёмная материя проходит сквозь вас, не встречая сопротивления, как пуля через сгусток тумана. Лишь одно можно сказать о тёмной материи с полной определённостью: если вы разгадаете её природу, в Стокгольме вас будет ждать ваша Нобелевская премия.
Говоря современным языком, Нептун был тёмной материей своего времени. Но если мы перенесёмся на машине времени в XIX век, то узнаем, что он был не один. Существовала и ещё одна загадочная ускользающая планета, и называлась она Вулкан.
Вулкан
Наверняка многие из вас при слове Вулкан вспомнили родную планету Спока из сериала «Звёздный путь». Джин Родденберри, создавший его ещё в 1960-х годах, выбрал название не случайно. Такая планета действительно существовала, по крайней мере в воображении астрономов XIX века, в частности Леверье.
После триумфального предсказания о существовании Нептуна звезда Леверье взошла на небосклоне науки, и в 1854 году его назначили директором Парижской обсерватории. Но никакая работа, никакие достижения не давали ему того чувства восторга, которое он испытал, чудесным образом найдя новый мир на окраине Солнечной системы. За это открытие монаршие особы искали его расположения, а научный мир и вовсе боготворил. Слава и преклонение вскружили ему голову, и он хотел получать их снова и снова. Если бы только он мог повторить свой успех, если бы ещё раз сумел сделать невероятное предсказание, которое поразит всё человечество. Для этого Леверье решил обратить своё внимание на внутреннюю, а не на внешнюю часть Солнечной системы.
Он задался амбициозной целью: полностью изучить орбиты Меркурия, Венеры, Земли и Марса. Если он сделает это, то, возможно, найдёт какую-нибудь аномалию, которая приведёт его к новому блестящему открытию.
Как я уже упоминал, на каждую планету действует не только сила притяжения Солнца, но и гравитация прочих планет. В результате такого влияния планета не вращается постоянно по одному и тому же пути. Вместо этого её эллиптическая орбита смещается с течением времени, заставляя планету двигаться по розетковидному маршруту. Из-за прецессии во время подхода к Солнцу на минимальное расстояние (перигелий) путь планеты плавно его огибает. Астрономы называют такую точку прецессией перигелия.
В 1843 году, за три года до открытия Нептуна, Леверье впервые занялся четырьмя внутренними планетами Солнечной системы. Чтобы рассчитать орбиту каждой из них, он мучительно складывал значения гравитационного воздействия всех остальных планет Солнечной системы. К сожалению, его предположения не соответствовали наблюдениям. Леверье подозревал, что дело было в недостаточно точной информации о расстояниях и массах планет. Итак, через десять лет после своего триумфа с Нептуном он решил внести ясность в планетарную статистику.
В 1852 году самым точным средним значением расстояния от Земли до Солнца считались 95 миллионов миль. К 1858 году Леверье уточнил эту цифру — 92,5 миллиона миль (что лишь на половину процента отличается от результатов современных измерений). Ещё через год, вооружённый этим знанием, Леверье ещё раз принялся за расчёт планетарных орбит.
Это было долгое и утомительное предприятие, и, как и 16 лет назад, Леверье не удалось добиться успеха. Его расчёты не сходились с результатами наблюдений, полученными астрономами. Но Леверье верил в закон всемирного тяготения Ньютона и в собственную математическую интуицию, а потому продолжил расчёты. Ему всё ещё казалось, что дело в недостаточно точных данных относительно масс планет и расстояний между ними. Он попытался корректировать их по одному. Эта задача отняла у него очень много времени, но в конце концов его усилия принесли свои плоды. Нужно было внести лишь небольшое изменение, чуть увеличив массы Земли и Марса, и можно было точно рассчитать орбиты всех внутренних планет.
Всех, кроме одной.
Меркурий — самая близкая к Солнцу планета, а также самая маленькая в Солнечной системе. Даже луна Юпитера Ганимед превышает её по размеру.
Согласно расчётам Леверье, притяжение ближайшей к Меркурию планеты, Венеры, заставляет его перигелий приближаться к Солнцу примерно на 1/5000 длины его орбиты каждые 100 лет. Астрономы при описании подобного явления использовали бы ещё более непонятные термины. Они бы сказали, что Венера заставляет перигелий Меркурия сдвигаться на 280,6 угловой секунды в столетие (одна угловая секунда равна 1/60 угловой минуты, а угловая минута — 1/60 градуса). Леверье рассчитал, что притяжение газового гиганта Юпитера добавляет к этому ещё 152,6 угловой секунды в 100 лет, Земли — 83,6 угловой секунды, а оставшихся планет — всего 9,9 угловой секунды. Сложив все эти числа, Леверье получил значение для прецессии перигелия Меркурия — 526,7 угловой секунды за 100 лет.
Вот только это значение было неправильным. Тщательные наблюдения за Меркурием показали, что его перигелий сдвигается примерно на 565 секунд в столетие. Это означает отличие от расчётных значений, равное 38 угловым секундам (современное значение составляет 43 угловых секунды за 100 лет).
Расхождение было крошечным, но Леверье проводил достаточно точные расчёты, чтобы показать, что оно действительно существует. Каждые 100 лет прецессия перигелия Меркурия составляла на 38 угловых секунд больше необходимого. Иными словами, даже если бы все прочие планеты Солнечной системы покинули её и улетели в космос, то есть не оказывали бы никакого влияния на Меркурий, он всё равно двигался бы по своему розеточному пути, который повторяется примерно раз в три миллиона лет и который совершенно невозможно объяснить.
Леверье не верил своим глазам. Аномалия с Ураном повторялась! На Меркурий должно было действовать скрытое от человеческих глаз небесное тело, расположенное внутри орбит внутренних планет. Леверье пришлось собраться с духом, чтобы озвучить своё предположение. Возможно ли, что этим телом была новая планета?
Чтобы рассчитать её скорость, Леверье предположил, что она движется по орбите на полпути между Меркурием и Солнцем. Если её масса была примерно равна массе Меркурия, её воздействие как раз могло бы объяснить его необычную прецессию. На этом этапе тут же возник вопрос: почему такую большую планету ещё не заметили астрономы? Разумеется, рассмотреть её было бы сложно из-за солнечного света, но она должна была быть видна во время полных солнечных затмений, когда Луна полностью закрывает собой солнечный диск и становятся видны даже очень близкие к нему звёзды.
А если дело не в планете, в чём ещё оно могло бы быть? Леверье задумался, может ли странное поведение Меркурия объясняться воздействием группы астероидов, движущихся по орбите между ним и Солнцем. Если так, то некоторые из этих объектов могли быть достаточно большими, чтобы можно было увидеть их прохождение (транзит) по солнечному диску.
Удивительно, но проходящие таким образом объекты уже наблюдались ранее. Сельский врач из Франции по имени Эдмон Модест Лескарбо увлекался астрономией. Задумавшись о поясе астероидов между Марсом и Юпитером, открытом в начале XIX века, он решил выяснить, где ещё в Солнечной системе могут находиться подобные объекты. Он уже видел Меркурий (чёрную точку на фоне Солнца) в свой рефракторный телескоп диаметром четыре дюйма, установленный в Оржер-ан-Бос, что примерно в 70 километрах от Парижа. Естественно было бы предположить, что, если между Меркурием и Солнцем имеются астероиды, их тоже можно рассмотреть подобным образом.
В субботу 26 марта 1858 года Лескарбо работал в своей клинике. У него появилось свободное время между приёмами, и он решил посвятить его наблюдениям за Солнцем. Чтобы не ослепнуть, он проецировал изображение солнечного диска на бумагу. На этой проекции его внимание привлекла крошечная чёрная точка, расположенная на самом краю Солнца. Разумеется, Лескарбо не терпелось увидеть её перемещение, но наступило время принимать следующего пациента. Когда астроном смог вернуться к своему телескопу, он с облегчением обнаружил, что точка никуда не делась. Лескарбо следил за ней до тех пор, пока она не скрылась за пределами солнечного диска. Он засёк время транзита — 1 час 17 минут 19 секунд. Именно такой скорости орбитального движения стоило ожидать от астероида во внутренней части Солнечной системы.
Поразительно, но Лескарбо никому не сообщил о своём открытии. Только через девять месяцев, прочитав статью Леверье о возможном существовании между Меркурием и Солнцем ещё одного объекта или объектов, он решился написать в Парижскую обсерваторию.
Леверье отнёсся к заявлениям доктора крайне скептически, но стремление повторить успех с Нептуном пересилило. Он вынужден был встретиться с коллегой. Тридцать первого декабря 1859 года Леверье сел на поезд из Парижа в Оржер-ан-Бос, даже не предупредив Лескарбо о своём приезде. Он ожидал увидеть провинциального любителя, но вместо этого обнаружил первоклассного учёного, создавшего высокоточные научные инструменты. Подробно расспросив Лескарбо о его наблюдениях, Леверье уверился в правдивости его слов.
Невероятно, но ему снова улыбнулась удача. Успех, пришедший к нему с открытием Нептуна, повторился. Он верно предсказал существование ещё одной планеты между Меркурием и Солнцем. Поистине он был богом среди людей.
Вернувшись в Париж, Леверье перевёл открытие Лескарбо на язык цифр. Если новая планета вращается вокруг Солнца по окружности, то она должна полностью проходить свою орбиту за 21 день. Соответственно, несколько раз в году можно наблюдать её транзит по солнечному диску.
Леверье объявил об открытии новой планеты, вызвав этим восхищение всего мира. К февралю 1860 года у неё появилось имя. Планеты называют именами древних богов, а кузнецом на горе Олимп, где они жили, был Вулкан. Это имя прекрасно подходило, ведь новую планету постоянно опалял солнечный жар. Итак, она стала Вулканом.
Другие астрономы, в частности специализировавшиеся на пятнах на Солнце, быстро заявили, что тоже наблюдали транзит Вулкана, но не распознали в нём планету. Следующий случай увидеть её прохождение по солнечному диску должен был представиться между 29 марта и 7 апреля 1860 года. Астрономы в индийском Мадрасе и в Австралии (Сиднее и Мельбурне) внимательно наблюдали за Солнцем всё это время. Но ничего не произошло.
Шли годы. Некоторые учёные заявляли, что видели новую планету, но большинство других её не замечали. Кроме того, наблюдения свидетелей ни разу не подтверждались независимыми третьими лицами.
После полного солнечного затмения 7 августа 1869 года некоторые наблюдатели снова заявили, что видели Вулкан. К счастью, свидетелем этого события был и пионер космической фотографии Бенджамин Апторп Гулд из Берлингтона, штат Айова. Он сделал 42 снимка туманной белой «короны» вокруг Солнца, которая видна только во время полных затмений. Ни на одной из фотографий не было и следа новой планеты.
Решающий удар по открытию Леверье нанесло полное затмение 29 июля 1878 года. Множество астрономов на поездах железной дороги Union Pacific отправились на Средний Запад в город Роулингс, штат Вайоминг. Среди них были и величайшие наблюдатели того времени, в том числе Саймон Ньюком из Военно-морской обсерватории в Вашингтоне (к сожалению, история запомнит его в первую очередь как человека, провозгласившего, что предметы тяжелее воздуха не могут летать, прямо накануне первого полёта братьев Райт) и Норман Локьер, который 20 октября 1868 года, сидя в своём саду в лондонском пригороде Уимблдоне, открыл в составе Солнца гелий — первый элемент, который сначала обнаружили в космосе, а потом выявили на Земле. Даже знаменитый на весь мир изобретатель Томас Эдисон принял участие в этом предприятии.
Добравшись до Роулингса, учёные разбрелись по подходящим для наблюдения точкам и начали устанавливать свою аппаратуру. Небо было затянуто облаками, а глаза их постоянно слезились от пыли и песка, которые ветер швырял им в лицо. Тем не менее, несмотря на погоду и помехи в работе оборудования, многие из них увидели и даже сфотографировали затмение. Новую планету заметил только один.
Джеймс Крейг Уотсон, директор обсерватории Энн-Арбор в штате Мичиган, сообщил, что видел небольшой красноватый объект, вращавшийся вокруг Солнца внутри орбиты Меркурия. Новость немедленно облетела весь мир. Возможно ли, что через 20 лет после того, как Леверье предсказал существование новой планеты, она наконец-то явила себя людям?
Проблема состояла лишь в том, что никто больше её не заметил. Многие наблюдатели видели маленькое красное пятнышко, но опознали в нём тусклую звезду Тета Рака. Уотсон стоял на своём, даже когда уже было довольно очевидно, что его коллеги правы, а он ошибается. Он умер от болезни в 42 года в 1880 году и до самой кончины был уверен, что своими глазами видел Вулкан.
Расклад сил поменялся, и учёные пришли к мнению, что Вулкана не существует и никогда не существовало. Он оказался лишь фантазией, памятником человеческим заблуждениям, символом того, какой силой обладают желания. От Вулкана остались лишь полузабытые исторические сведения и имя планеты, на которой родился Спок.
Неразгаданная загадка
На самом деле предположение о существовании Вулкана вовсе не было таким уж безумным. Только в нашей Галактике вокруг звёзд вращаются тысячи планет, и многие из них похожи на Вулкан.
Одним из самых неожиданных открытий современной астрономии стало обнаружение газовых гигантов, которые находятся ближе к своим звёздам, чем Меркурий к Солнцу. Эти «горячие юпитеры» не могли сформироваться на таком расстоянии от звёзд. Газ нагрелся бы слишком сильно, и его атомы начали бы двигаться с такой скоростью, что сила притяжения не смогла бы удержать их вместе. Астрономы полагают, что «горячие юпитеры» рождаются гораздо дальше от своих солнц. Трение между ними и диском из космического мусора и обломков, из которого рождаются другие планеты, заставляет их двигаться по спирали и подходить ближе к звезде. Считается, что такая планетарная миграция произошла в доисторические времена и в нашей Солнечной системе. Судя по всему, Юпитер и Сатурн некоторое время играли в космические «музыкальные стулья», прежде чем занять свои места.
Глядя на планетарные системы вокруг других звёзд, можно заметить, что наша Солнечная система слишком вытянута. Орбиты более чем половины экзопланет находятся ближе к своим звёздам, чем орбита Меркурия к Солнцу. Вулканы в изобилии встречаются в нашей Галактике. Возможно, это иллюзия, вызванная ошибкой восприятия. Астрономы находят экзопланеты по колебаниям звёзд или потускнению их света, а планеты, близкие к своему солнцу, заметить легче всего, потому что они обычно быстро проходят полный круг по своим орбитам.
Возможно, что и наша Солнечная система стала необычной лишь какое-то время назад. Если верить компьютерным симуляциям её зарождения, изначально в непосредственной близости от Солнца могло вращаться несколько планет, которые затем столкнулись, и Меркурий оказался единственным выжившим. Если этот сценарий верен, то Вулкан действительно существовал. Вот только он разминулся с человечеством на 4,55 миллиона лет.
Леверье умер 23 сентября 1877 года. Он разгадал секрет необычного движения Урана, открыл Нептун и расширил границы Солнечной системы. Но Вулкан ускользнул от него, и он понимал, что не нашёл объяснения необычному движению Меркурия.
Наступил XX век, полный чудес: рентгеновских лучей, радиоактивности и летающих машин, подчиняющихся воле человека. Аномальное поведение Меркурия считалось любопытной, но не такой уж важной задачкой. Никто не думал о ней день и ночь, мало кто вообще о ней задумывался. Потому-то никто и не заподозрил, что подобное поведение подсказывает нам: как это ни удивительно, но Ньютон был не прав насчёт гравитации.
Человека, который понял это и создал дополненную теорию гравитации, звали Альберт Эйнштейн. Но ещё до того, как он осознал неправоту Ньютона в отношении силы тяготения, Эйнштейн понял, что его великий предшественник неверно понимал характер её основ — пространства и времени.
Для дополнительного чтения
Aw T. Map of the Invisible World. — London: Fourth Estate, 2010.
Levenson T. The Hunt for Vulcan... And how Albert Einstein destroyed a planet, discovered relativity and deciphered the Universe. — London: Head of Zeus, 2015.
Schilling G. The Hunt for Planet X. — New York: Copernicus Books, 2009.