Книга: Гравитация. Последнее искушение Эйнштейна
Назад: Часть I Ньютон
Дальше: 2. Последний из волшебников Как Ньютон создал систему мира и нашёл ключ к пониманию Вселенной.

1. Падающая Луна
О том, как Ньютон открыл первый универсальный закон, который действует в любом месте и в любое время.

Ибо в те дни я был в расцвете сил для изобретательства и более чем когда-либо впоследствии размышлял о математике и философии.
Исаак Ньютон
Ты потерял сознание, и я тебя подхватил. Впервые в жизни я держал в руках другого человека. У тебя такие тяжёлые кости. Я встал между тобой и гравитацией. Невероятно.
Элизабет Нокс. «Удача винодела»
— Итак, мистер Ньютон, как вам в голову пришла идея закона всемирного тяготения?
Разговор происходит в саду усадьбы Вулсторп спустя полвека после знаменательного события. Через стол от пожилого натурфилософа, о котором сегодня говорят все, сидит юный священник и археолог Уильям Стьюкли, взявший на себя тяжёлый труд написать первую биографию Исаака Ньютона. Где-то в саду журчит ручей, а в поле за оградой то и дело блеют ягнята. На густую траву перед ними садится ворон, что-то склёвывает с земли и улетает прочь.
Старик раздумывает над вопросом, отбрасывает свои длинные седые волосы с лица и произносит
— Мистер Стьюкли, видите вон то дерево?
— Вижу.
— Одним тёплым весенним днём 1666 года — погода стояла почти как сегодня — я сидел на этом самом месте со своими записями, и тут с дерева упало яблоко…
Великие люди создают свои легенды сами. Историю о яблоке Ньютон рассказал своему биографу уже под конец жизни в саду усадьбы Вулсторп, Линкольншир. «День был тёплый, поэтому после обеда мы отправились в сад выпить чаю в тени яблонь, — пишет Стьюкли в своих “Воспоминаниях о жизни сэра Исаака Ньютона”, опубликованных в 1752 году. — Он рассказал мне, что идея гравитации пришла ему в голову как раз в подобных обстоятельствах. Её вызвало к жизни упавшее яблоко, которое он увидел, когда размышлял в саду. “Почему яблоко всегда перпендикулярно падает на землю?” — задумался он...».
Однако Ньютон ни разу не упоминал о падающих яблоках в течение полувека после открытия закона всемирного тяготения. Произошло ли это на самом деле? Или Ньютон знал, что дни его научного творчества прошли, и заботился о своём наследии, а потому понял, что эта история запомнится потомкам и обеспечит ему бессмертие? В день смерти Стива Джобса, основателя компании Apple, кто-то написал в «Твиттере»: «Мир изменили три яблока: яблоко Адама, яблоко Ньютона и яблоко Стива».
Неизвестно, что заставило Ньютона провести эту важнейшую связь между землёй и небом, силой притяжения, удерживающей Луну возле Земли, и силой притяжения, заставляющей яблоко упасть. Всё, что мы знаем, — это что закон всемирного тяготения Ньютона родился в ужасное время, которое ярко описывает Даниэль Дефо в «Дневнике чумного года».
В августе 1665 года в Лондоне свирепствовала бубонная чума. Страх заражения был так велик, что в Кембридже, в 90 километрах к северо-востоку, закрыли университет. Никому не известному 22-летнему студенту Ньютону пришлось то пешком, то на повозках возвращаться на семейную ферму в Вулсторпе. В течение полутора лет он жил там без какого-либо контакта с окружающим миром и за это время не просто открыл закон всемирного тяготения, а изменил лицо современной науки.

Особенный

Исаак Ньютон родился на Рождество в 1643 году. Несмотря на такую символичную дату, «особенный» младенец был таким крошечным, что мог поместиться в кружку из-под кварты пива, и таким слабым, что родные предсказывали ему смерть через несколько дней.
Отец Ньютона умер за три месяца до его рождения, и мать осталась практически без средств к существованию. Когда мальчику исполнилось три года, она приняла предложение руки и сердца от богатого священника почти в два раза старше её. Тому требовалась жена, но не пасынок, поэтому мать Ньютона переехала в приход к новому мужу в соседнюю деревню, оставив сына на попечение бабки с дедом. Ньютон ненавидел эту замену родителей и позднее в своём дневнике признавался, как «угрожал матушке и отцу Смитам сжечь их вместе с их домом».
Через восемь лет муж матери Ньютона умер, и она вернулась в усадьбу Вулсторп вместе со сводными для своего сына братом и двумя сёстрами. Но к тому моменту слепая ярость от того, что мать его покинула, уже ярко разгорелась в душе Ньютона и так и не погасла до конца жизни.
Так как Ньютон был наследником семейной фермы, ему запрещали играть с «простыми» детьми крестьян. Исааку приходилось занимать себя самому, и он был одиноким ребёнком, затерянным в дебрях собственного воображения, постоянно что-то строящим и исследующим мир вокруг. Он создавал модели мостов и мельниц, вырезал солнечные часы и следил за движением их тени — час за часом, день за днём, с зимы до осени.
Семья оценила исключительные способности Ньютона и, когда ему было 12, нашла деньги, чтобы отправить его в королевскую школу в Грантеме. Расстояние между городом и фермой составляло тринадцать километров, и мальчик не смог бы проходить столько каждый день, так что его определили на постой к местному аптекарю. Теперь Ньютон был отрезан и от собственной семьи и чувствовал себя в ещё большей изоляции. Однако его взял под крыло директор школы, который особо интересовался математикой. Распознав в Ньютоне исключительный талант, он научил мальчика всему, что знал сам.
В 1659 году, когда Ньютону исполнилось 16, мать потребовала, чтобы он вернулся в Вулсторп и стал хозяином усадьбы со всеми её лесами, ручьями, ячменными полями и пасущимися овцами. Но Ньютон проводил своё время на семейной ферме за чтением книг и сбором трав. Пока его овцы портили посевы соседей, он строил водяные мельницы. Позволив своему стаду свиней зайти на чужую землю, он даже не удосужился починить заграждение, за что получил штрафы от суда. Ко всеобщему (включая и самого Ньютона) счастью, на следующий год он вернулся в грантемскую школу.
Ещё одним человеком, признававшим за Ньютоном необычные способности, был его дядя по материнской линии. Он служил приходским священником, получившим духовное образование в Кембридже, и в 1661 году помог своему 18-летнему племяннику занять место в университете. В то время Кембридж был всего лишь грязной деревенькой. Ньютон оплачивал учёбу в качестве «субстипендиата», прислуживая более богатым студентам, выполняя их поручения и доедая их объедки. В январе 1665 года начальный этап обучения закончился и ему присвоили степень бакалавра искусств.
Нам мало известно о том, каким Ньютон был в студенчестве. Судя по всему, он ни в чём себя не проявлял, как впоследствии и его последователь Альберт Эйнштейн. Тем не менее он упорно изучал математику и другие науки и поглощал труды греческих философов. Самое важное, однако, заключалось в критичности его подхода к чтению. Ньютон писал в своём дневнике: «Платон мне друг и Аристотель мой друг тоже, но мой лучший друг — истина».

Одинокое плавание по волнам мысли

Когда в 1665 году Ньютон снова вернулся в Вулсторп, стояло лето и воздух был наполнен жужжанием насекомых и пением птиц. Картина была столь идиллической, что трудно было поверить, будто всего в 160 километрах отсюда, в Лондоне, люди падали замертво на улицах. Они дрожали в ознобе и лихорадке, страдали от судорог и болей в конечностях, кто-то хватал ртом воздух, кто-то кашлял кровью. В подмышках и паху у них надувались бубоны — это чумные бактерии размножались в их лимфатических узлах. Вспышка чумы унесла тогда более 100 000 душ — четверть всего населения Лондона. Их тела увозили на повозках и без всяких церемоний сбрасывали в общие могилы.
Усадьба Вулсторп представляла собой несколько обветшалое двухэтажное здание из серого известняка, примостившееся с краю долины реки Уитэм и окружённое яблоневыми деревьями и овечьими пастбищами. Здесь, сидя за своим рабочим столом, Ньютон отгораживался от ужасов, происходящих в большом мире. Возможно, он не был способен к сопереживанию, и потому эта задача давалась ему легко. А возможно, он просто понимал, что ничего не может сделать. Зачем беспокоиться о том, что не можешь изменить? К чему переживать о вещах, которые находятся в руках Всевышнего?
В душе Ньютон был прагматиком, а прагматичный человек даже самое страшное время может использовать как передышку, как возможность заглянуть в мысли Творца. «Мой лучший друг — истина», — писал Ньютон. Её поисками он и занялся в Вулсторпе, пока ужасы чумы терзали Англию. Путешествуя в одиночестве по волнам мысли, он станет самым видным математиком в мире. Он откроет законы оптики и цвета, математику «счисления» и свой знаменитый бином. Но самое главное — он сформулирует универсальный закон притяжения.
Срок для этого подошёл, потому что к тому моменту уже существовала реалистичная модель, показывающая положение Земли в космосе. Однако так было не всегда.

Всё дело в массе

Когда-то люди считали Землю центром Вселенной. Легко понять, как они допустили такую ошибку. В конце концов, и Солнце, и Луна, и звёзды довольно очевидным образом вращаются вокруг Земли.
Если бы не несколько «но».
Пять планет, видных невооружённым глазом, — Меркурий, Венера, Марс, Юпитер и Сатурн — явно выделялись для наших предков на небесном своде тем, что медленно переползали с места на место на фоне других, неподвижных звёзд. Что самое интересное, они делали это с разной скоростью. Если следить за какой-нибудь из них каждую ночь, неделю за неделей, однажды она изменит направление движения, а потом снова пойдёт назад, вычерчивая в небе безумную петлю. Как это возможно, если все планеты движутся вокруг Земли?
Никак. Потому что они этого не делают.
Для объяснения аномального движения планет (кстати, само слово «планета» происходит от греческого слова, означающего «странник») была придумана хитроумная схема. Греки верили, что небеса, в отличие от земли, — это царство истинного совершенства. А совершенной фигурой они считали круг. Возможно, пока планета обходит вокруг Земли, она также совершает оборот меньшим радиусом вокруг собственного центра? Так родился эпицикл, или круг внутри круга. Вращение по меньшему кругу объясняет, почему иногда планеты начинают двигаться в обратном направлении по своей орбите.
На самом деле это решение загадки планетарного движения — один большой обман. Если взять достаточно много кругов внутри кругов внутри кругов, можно сымитировать любое движение. Кроме того, подобное решение слишком сложное и громоздкое, а главные качества современного научного объяснения — это простота и лаконичность.
Более эффективное объяснение необычному движению планет предложил в 1543 году польский астроном Николай Коперник. Что если центр всего не Земля, а Солнце и все планеты, включая нашу собственную, движутся по орбитам вокруг него? В этом случае, как писал Коперник в своём труде «О вращении небесных сфер», движение планет становится понятным. По мере обращения вокруг Солнца Земля часто догоняет и перегоняет более медленные планеты, например Марс. С точки зрения наблюдателя на Земле, такой обгон выглядит как движение Марса назад на фоне неподвижных звёзд.
Идеи Коперника оставили свой след. Теперь в космосе оказалось целых два небесных тела, вокруг которых вращались другие: Солнце с планетами, включая Землю, и сама Земля со своим спутником Луной. Ситуация ещё больше усложнилась, когда итальянский учёный Галилей смог рассмотреть Вселенную поближе с помощью своего астрономического телескопа. Он не только увидел звёзды, незаметные невооружённому глазу, горы на Луне и фазы Венеры, но и в 1610 году открыл четыре луны Юпитера. Получается, в Солнечной системе не два центра, а как минимум три!
Древние представления разваливались на глазах. Согласно верованиям древних греков, самым важным для понимания нашего мира и Вселенной в целом является местоположение. Каждая из четырёх стихий — земля, огонь, вода и воздух — имеет своё место и стремится к нему. Все они связаны с Землёй, а сама стихия земли, что неудивительно, направлена так, чтобы быть как можно ближе к центру нашей планеты. В новом же представлении о мире местоположение не играло такой роли. Иначе как во Вселенной могли появиться целых три точки, вокруг которых вращаются другие небесные тела?
Наблюдения за Солнечной системой преподали учёным урок: тела, имеющие массу, движутся по орбитам вокруг других таких же тел. Важно не местоположение. Ключ ко всему — это масса.

Клуб одиноких сердец Матери-Природы

Вопрос заключался вот в чём: как одна масса подчиняет себе другую? Ключом к разгадке стал магнетизм. Кусочки магнитного железняка обладают природным магнетизмом, кажется, будто какая-то неведомая сила притягивает некоторые из них друг к другу, преодолевая расстояние между ними. Отец греческой философии Фалес Милетский писал об этих необычных свойствах железняка ещё в VI веке до нашей эры.
В 1600 году английский учёный Уильям Гилберт предположил, что именно магнитные силы удерживают вместе все объекты в Солнечной системе. Он экспериментально доказал, что по мере увеличения массы магнитного железняка росла и сила притяжения, с которым он воздействовал на кусок железа. Гилберт также отметил, что притяжение было взаимным, то есть и сам кусок железа притягивал магнитный железняк с той же силой.
Открытия Гилберта захватили некоторых учёных, среди которых был и Роберт Гук — будущий главный соперник Ньютона. Однако известно, что Солнце горячее, а если нагреть куски железняка, они утрачивают свои магнитные свойства. Поэтому Гук рассматривал магнетизм лишь как модель той силы, которая движет телами в Солнечной системе. Как и магнитное взаимодействие, она направлена от одного тела, имеющего массу, через пространство к другому такому же объекту. Как и магнитное взаимодействие, она растёт с увеличением массы. И, как и магнитное взаимодействие, она направлена в обе стороны.
Гравитация действительно притягивает массы друг к другу, пытаясь прервать их бесконечную изоляцию. Гравитация — это сила клуба одиноких сердец Матери-Природы.
Итак, вот как обстояли дела в чумном 1666 году, когда Ньютон, сидя за своим рабочим столом в усадьбе Вулсторп, начал размышлять о силе, возникающей между объектами, имеющими массу. В то время он знал о гравитации не больше, чем о магнитных свойствах железняка, но незнание его не смущало. Как говорил великий физик XX века Нильс Бор, «задача физики — не понять, какова природа, но выяснить, что мы можем сказать о природе».
Ньютон инстинктивно понимал это. Пускай он не знал, что такое гравитация, но хотя бы мог задаться вопросом: как она себя ведёт?

Читая книгу природы (законы Кеплера)

Мы обладаем ключевыми знаниями о поведении гравитации благодаря открытиям немецкого математика Иоганна Кеплера, которые он сделал в период с 1609 по 1619 год на основании работ датского астронома Тихо Браге (известного, помимо прочего, тем, что ему отрубили нос на дуэли и он до конца жизни носил на лице искусственный медный нос). В своей лаборатории на острове Вен, который сейчас принадлежит Швеции, Браге провёл множество наблюдений невооружённым глазом за планетами. Просидев много дней и ночей над записями Браге, Кеплер вывел три закона, управляющих поведением небесных тел.
Первый закон Кеплера гласит, что каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце. Эллипс — это особая кривая, а не просто овал. Для того чтобы его нарисовать, можно воткнуть в лист бумаги две кнопки, намотать на них леску, затем натянуть эту леску карандашом и провести вдоль неё его остриём. Кнопки при этом будут фокусами эллипса. С математической точки зрения где бы на эллипсе ни находился объект, сумма расстояний от него до фокусов будет одинаковой.
Заявление Кеплера о том, что орбиты планет имеют эллипсоидную форму, означало разрыв с прошлым. Вера греков в совершенство кругов заставляла их искать концентрические формы во всём космосе. Но природа — это книга, которую мы читаем, а не пишем. Признавая это, Кеплер и его последователи проявляли большее смирение, чем их античные предшественники, — они изучали природу, чтобы понять, что она говорит им. В частности, Кеплеру (через скрупулёзные наблюдения Браге) она сказала о том, что планеты движутся вокруг Солнца не по круглым, а по яйцеобразным орбитам.
Второй закон Кеплера гласит, что планеты обращаются вокруг Солнца не с постоянной скоростью, они движутся быстрее вблизи него и медленнее — в отдалении. На самом деле закон выражает эту идею чуть точнее. Согласно ему, воображаемая линия, соединяющая планету и Солнце, всегда очерчивает одну и ту же площадь за одно и то же время. Возьмём, к примеру, промежуток времени десять дней. Две точки на орбите планеты, находящиеся на расстоянии десяти дней друг от друга, можно соединить с Солнцем, и мы получим треугольник. Площадь этого треугольника будет оставаться неизменной, вне зависимости от того, подошла планета близко к Солнцу или находится далеко от него. Невозможно не восхититься находчивостью Кеплера, который вывел такой странный закон из наблюдений Браге.
В своём вулсторпском заточении Ньютон много думал о втором законе Кеплера. Склонность к долгим размышлениям была секретом его гениальности. Да, он умел строить сложные механизмы и проводить запутанные эксперименты и делал это куда лучше многих. Но что действительно выделяло его на фоне современников, так это невероятная, феноменальная концентрация. В этом был его ключ к успеху.
Ньютон не заботился о своём теле, не предавался развлечениям, лишь безудержно работал: порой он писал по 18–19 часов в день. Шестерёнки в его голове вращались без перерыва, и каждый час, не проведённый за своими изысканиями, он считал потраченным впустую. В то время как другие не могли удержать абстрактную задачу в мозгу даже на пару минут, Ньютон был способен фокусироваться на ней часами, неделями, сколь угодно долго, пока не сумеет пробраться внутрь и найти решение. «Я постоянно держу предмет перед собой в своём сознании и жду, пока вместо первых лучей рассвета не займётся ясный день», — писал Ньютон.
Ньютон препарировал второй закон Кеплера своим острым, как лазерный луч, умом и в конце концов увидел, что тот пытался сказать ему о силе притяжения, испытываемой планетой. Самым важным было не значение этой силы и не её изменение по мере удаления от Солнца. Ньютон понял, что площадь треугольника может оставаться неизменной в любой момент времени лишь при одном условии: если сила, которая воздействует на планету, всегда направлена к Солнцу.
Третий закон движения планет Кеплера несколько отличается от первых двух. Вместо того чтобы описывать отдельные орбиты планет, он говорит об их взаимодействии друг с другом. Согласно третьему закону, чем дальше планета находится от Солнца, тем медленнее она движется и тем больше времени у неё занимает полное прохождение орбиты. Это ясно показывает, что сила гравитации, испытываемая планетой, становится слабее по мере удаления от Солнца. Но в этом законе есть и ещё кое-что. Кеплер был гением математики, и на самом деле его третий и последний закон утверждает, что квадраты периодов обращения планет соотносятся как кубы расстояний от них до Солнца. Например, если одна планета находится в четыре (22) раза дальше от Солнца, чем другая, прохождение орбиты займёт у неё в восемь (23) раз больше времени.
Третий закон Кеплера звучит ещё более заумно, чем второй, но нам с вами незачем вдаваться в детали. Главное здесь — точное математическое соотношение. А это значит, что и сила, которую описывает закон и которая действует между Солнцем и планетами, тоже должна объясняться математически. Это уже само по себе было откровением. Оказалось, что природа подчиняется математике, или, как это видел сам Кеплер, Бог — математик. Сидя за своим рабочим столом в Вулсторпе, Ньютон задавал себе вопрос: в чём состоит математический закон гравитации?
Он имел уникальную возможность ответить на этот вопрос, потому что сам сформулировал определение силы, превратив её из чего-то эфемерного в точнейшее научное понятие. Ньютон сумел сделать это благодаря трудам Галилея, который умер за год до его рождения.

Объясняя книгу природы (законы Ньютона)

Тела, падающие под воздействием силы тяжести, движутся так быстро, что Галилею сложно было измерить время такого падения, пользуясь доступными ему на тот момент инструментами. Поэтому он придумал хитрый способ уменьшить силу гравитации и притормозить стремительное движение падающих объектов. Галилей ставил на стол доску под небольшим углом и спускал по ней шарики. Чем меньше был угол наклона, тем больше «размывалась» сила притяжения и тем медленнее двигался шар. Но самое важное наблюдение Галилея в этом эксперименте состояло в том, что, когда шарик достигал конца уклона, он продолжал катиться с постоянной скоростью, пока не падал с края стола.
На ровной столешнице без уклона сила притяжения «размыта» до нуля и не действует на шарик. Галилей заключил, что в отсутствие силы тело движется с постоянной скоростью.
Это заключение кажется совсем не очевидным. В повседневной жизни предметы обычно не движутся с неизменной скоростью. Если пнуть камень, он прокатится некоторое время по земле и снова станет неподвижным. Ньютон объяснил это тем, что на камень в данном случае действует ещё и тормозящая сила — сила трения с землёй. В её отсутствие — например, если бы мы пнули камень, стоя на идеально ровном льду, — он продолжил бы двигаться.
Тот факт, что движение по инерции является естественным для любого тела, даёт нам ответ на загадку, которую люди не могли разгадать с тех пор, как поняли, что не звёзды движутся вокруг Земли, а вращается сама планета. Мы знаем размеры Земли и то, что она делает полный оборот за 24 часа. Значит, на экваторе скорость на поверхности Земли составляет 1670 километров в час! Почему же люди, которые там живут, этого не замечают? Почему, если бросить мяч на землю на экваторе, планета просто не проворачивается под ним и он не падает куда восточнее, чем его бросали? Ответ заключается в том, что и мы с вами, и мяч, и воздух вокруг нас — это порождения движущегося мира и мы движемся вместе с вращением Земли, потому что именно так взаимодействуют подвижные тела.
На самом деле даже сегодня мы не знаем, почему движение по инерции — это естественное состояние тела. Но Ньютон, опираясь на необычное заключение Галилея, выразил его идею в первом из трёх своих законов движения.
Первый закон Ньютона гласит, что любое тело либо находится в состоянии покоя, либо движется вперёд по прямой с постоянной скоростью, если на него не оказывает воздействия внешняя сила (этот закон не следует путать с законом кошачьей инерции, который звучит так: «Кот, находящийся в состоянии покоя, стремится остаться в состоянии покоя, если на него не воздействует внешняя сила, как то: звук открываемой банки с кормом или пробегающая мышь»). Согласно Ньютону, сила — это нечто, что сталкивает тело с предусмотренного природой пути, заставляя его менять скорость, или направление, или и то и другое. Эту идею Ньютон выразил в своём втором законе, который утверждает, что тело реагирует на приложение силы ускорением (изменением скорости) по направлению приложения данной силы и что значение такого ускорения обратно пропорционально массе тела. Иными словами, тело небольшой массы ускорится под влиянием заданной силы сильнее, чем более массивное.
Точная формулировка второго закона Ньютона такова: «Производная импульса тела равна значению прилагаемой к нему силы». Ньютон определял импульс как произведение массы тела и скорости его движения в определённом направлении. Производя такие расчёты, он закладывал основы динамики — математической теории движения.
Тот факт, что движение по прямой с постоянной скоростью является естественным для тела, открыл Ньютону всё, что ему требовалось знать о движении планеты вокруг Солнца. Во-первых, для того, чтобы толкать её вперёд по орбите, не нужна сила. Это удачное обстоятельство, ведь, как уже упоминалось ранее, Ньютон толковал второй закон Кеплера по-своему: сила притяжения направлена только в сторону Солнца и ни один из её компонентов не обусловливает движение планеты. Планета движется лишь потому, что для объектов, обладающих массой, естественным состоянием является движение.
Вдумайтесь, какое это было невероятное открытие. Практически каждый, кто когда-либо размышлял над вопросом о движении планет, полагал, что существует какая-то сила, толкающая их вперёд по своим орбитам. Кто-то считал, что невидимые ангелы летят рядом с планетами и направляют их своим дыханием или биением крыльев. Кеплер представлял себе магнитные «спицы», исходящие от Солнца и заставляющие планеты поворачиваться вместе с ним. Французский математик Рене Декарт предпочитал идею солнечного водоворота, в котором планеты вращаются, как мусор, выброшенный в воду. Но Ньютон выбросил все эти идеи на свалку истории. Он понял, что второй закон Кеплера доказывает: никакая сила не заставляет планеты вращаться по своим орбитам.
Тот факт, что для тел, обладающих массой, естественным является движение по прямой, подсказал Ньютону, что именно делает сила тяготения, удерживающая планету на орбите вокруг Солнца. Она постоянно искривляет эту прямую, превращая её в круг.
Разумеется, исходя из первого закона Кеплера, Ньютон понимал, что траектории планет — это не круги, а эллипсы. Но эллипс — более сложная фигура, а эллиптические орбиты планет очень близки по форме к окружностям, поэтому Ньютон решился на такое обобщение.
Затем он задался вопросом: какая сила требуется, чтобы заставить тело двигаться по кругу, то есть чтобы постоянно изгибать естественный прямой путь своего движения? Другие учёные, включая Гука, уже знали ответ, но Ньютону об этом ничего не было известно.
Итак, Ньютон уселся за стол с листом пергаментной бумаги и нарисовал окружность радиусом r с лежащей на ней точкой, имеющей массу m. Он предположил, что эта масса движется со скоростью v. Оставалось лишь применить немного геометрии, чтобы рассчитать силу, необходимую для того, чтобы постоянно сбивать массу с её прямого пути. Она равняется произведению массы на квадрат скорости, делённому на радиус, или mv2/r.
На самом деле эта формула «центростремительной силы» основывается на здравом смысле. Предположим, вы привязали камень к концу верёвки и вращаете им над головой. Здравый смысл подсказывает, что чем тяжелее будет камень, тем сильнее вам придётся натягивать верёвку (то есть тем большую силу нужно будет приложить), чтобы камень не слетел со своей круговой траектории. Чем быстрее вы вращаете камень, тем выше будет значение необходимой сдерживающей силы. А чем короче верёвка, тем больше должно быть натяжение. Гравитация — это невидимая верёвка, которая удерживает планеты, не давая им разлететься по космосу.
Затем Ньютон задался ещё одним важным вопросом: если центростремительную силу, воздействующую на планеты, обеспечивает гравитация, как именно она должна изменяться по мере удаления от Солнца, чтобы обеспечить выполнение третьего закона Кеплера? Он понял, что сила уменьшается пропорционально квадрату расстояния. То есть если одна планета находится в два раза дальше от Солнца, чем другая, то сила, с которой на неё воздействует Солнце, окажется в четыре раза меньше. Если расстояние больше в три раза, то сила будет в девять раз меньше и так далее.
На небесах существовало ещё одно место, где Ньютон мог бы проверить свой закон обратных квадратов. Астрономы наблюдали за четырьмя лунами, вращающимися вокруг Юпитера (Ио, Европой, Ганимедом и Каллисто), с момента их обнаружения Галилеем в Падуе в 1610 году. Сравнительные расстояния между этими лунами и Юпитером уже были измерены, равно как и время, за которое каждая из них делает полный оборот вокруг планеты. Астрономы выяснили, что луны движутся по орбитам вокруг Юпитера точно так же, как планеты вокруг Солнца, то есть их периоды обращения различаются в зависимости от расстояния до Юпитера, как и предсказывает третий закон Кеплера. Итак, другие учёные уже сделали за Ньютона всю тяжёлую работу. Третий закон Кеплера — это неизбежное следствие того, что сила гравитации уменьшается с расстоянием в соответствии с принципом обратных квадратов.

Падающая Луна

Третий закон Кеплера, действующий в высоких небесных сферах, был далёк от повседневной жизни в Вулсторпе с её стадами овец на пастбищах, возами сена, подскакивающими на дорожных выбоинах, и петушиным пением холодными серыми утрами. Однако в мозгу Ньютона рождалась поистине революционная мысль, мысль, от которой у него замирало сердце. Что, если сила притяжения, действующая в космосе, точно так же работает и на Земле? До него ни один учёный ещё не высказывал подобного предположения, но что, если существует единый закон, действующий и в небесах, и в низменном земном мире? Что, если гравитация — это универсальная сила, влиянию которой подвержены все частицы материи без исключения?
Ньютон был прагматиком и понимал, что его озарение не будет ничего стоить, пока он сам не придаст ему ценность — то есть пока он не сможет использовать его для расчётов.
Как я уже упоминал, история с яблоком Ньютона, скорее всего, просто выдумка. Но суть её состоит в том, что Ньютон понял: яблоко притягивает к Земле та же самая сила, которая удерживает Луну на её орбите.
Подобная связь между яблоком и Луной вовсе не очевидна. По крайней мере Луна на Землю пока не падает. Лишь гений Ньютона сумел увидеть истину за обманчивыми внешними проявлениями.
Представьте себе пушку, из которой выстрелили ядром. Некоторое время оно будет лететь горизонтально, а затем упадёт. Но давайте возьмём пушку побольше, которая придаст ядру большее ускорение. Теперь оно пролетит дольше. А теперь вообразите себе огромную пушку, при выстреле из которой ядро будет двигаться со скоростью 28 080 километров в час. Для такого ядра большую роль будет играть искривление земной поверхности. Как бы быстро ядро ни падало на землю, земля будет уходить из-под него и оно так и останется в постоянном падении, ни разу не коснувшись поверхности Земли. Такое ядро будет двигаться по орбите вокруг нашей планеты, вечно падая по кругу. Как писал Дуглас Адамс, «секрет полёта — в том, чтобы научиться бросать себя на землю и промахиваться».
Луна постоянно падает по кругу. То есть и Луна, и яблоко всё-таки делают одно и то же. Это не совсем очевидно, потому что яблоко не имеет скорости, направленной параллельно Земле, а Луна имеет и, словно ядро из гигантской пушки, всё время движется вокруг нашей планеты.
Дети часто задают взрослым вопросы: «Почему Луна не падает? Почему не падают спутники? Что держит их в небе?». Правильный ответ — ничего. На самом деле они падают постоянно! Многие люди верят, что космонавты в космосе ничего не весят, потому что там нет гравитации. Однако даже на Международной космической станции гравитация составляет около 89% земной. Космонавты на её борту оказываются в невесомости не потому, что гравитация больше не влияет на них, а потому, что они находятся в непрерывном падении.
Всё, что оставалось сделать Ньютону, чтобы доказать, что гравитация — это универсальная сила, действующая на объекты, обладающие массой, как на Земле, так и в небесах, — это сравнить воздействие притяжения Земли на яблоко и Луну. Если он был прав, то разница между таким воздействием должна была объясняться законом обратных квадратов, то есть удалённостью от планеты.
Итак, Ньютон сосредоточился на яблоке. Учёные вроде Галилея уже провели необходимые измерения до него, и он знал, что в первую секунду яблоко падает на 490 сантиметров. Нужно было найти ответ на следующий вопрос: какое расстояние за одну секунду падения проходит Луна?
Ньютон знал, что расстояние от Луны до центра Земли составляет 384 400 километров. Это позволило ему рассчитать длину окружности лунной орбиты. Так как Луна полностью проходит её за 27,3 дня, Ньютон смог вычислить и скорость Луны.
Для Луны естественным движением является перемещение с данной скоростью по прямой линии. Однако эта линия в случае Луны постоянно изогнута в сторону Земли под влиянием силы притяжения. С помощью геометрии можно рассчитать, какое расстояние Луна проходит за одну секунду отклонения со своего прямого пути в сторону Земли. У Ньютона получился результат 0,136 сантиметра. Теперь он знал, что сила притяжения Земли на расстоянии до Луны составляет 0,136/490 = ~1/3600 земной (символ ~ означает «примерно»).
Поверхность Земли находится на расстоянии 6370 километров от её центра, а Луна, как уже говорилось выше, — на расстоянии 384 400 километров. Иными словами, Луна отстоит от центра Земли примерно в 60 раз дальше, чем поверхность нашей планеты. Обратите внимание, что 602 равно 3600, то есть тому числу, на которое гравитация на расстоянии лунной орбиты меньше гравитации на Земле. Ньютон доказал, что и на земные яблоки, и на небесные тела влияет одна и та же сила, которая уменьшается с расстоянием. Гравитация оказалась универсальным явлением.
Здесь стоит сделать паузу, чтобы осознать, что это значит. Сила притяжения воздействует на каждый клочок материи во Вселенной. Гравитация возникает между вами и проходящим мимо человеком, между вами и мобильным телефоном у вас в кармане, между мочкой вашего левого уха и большим пальцем вашей правой ноги. В таких повседневных ситуациях сила гравитации слишком мала, чтобы произвести видимый эффект. Но чем больше масса, тем она становится сильнее. Она накапливается. Вот почему гравитация Земли массой 5,98 миллиона миллионов миллионов миллионов тонн становится заметной и притягивает ваши стопы к полу.
Поскольку гравитация — это универсальная сила, она стремится сжать массивные частицы в максимально компактную форму, то есть в сферу. Это получается только в том случае, если материя становится тягучей, как патока, а для этого материальное тело должно быть очень сильно сжато своей собственной силой тяготения. Так как лёд проще сжать, чем камень, пороговая масса ледяных тел отличается от пороговой массы каменных. В Солнечной системе все ледяные тела более 600 километров в диаметре являются круглыми, а меньшие имеют форму картофелин. Для каменных тел пороговый диаметр равен примерно 400 километрам.
Итак, форма небесного тела определяется силой гравитации, которая сжимает материю, а также электромагнитной силой, делающей материю твёрдой, чтобы та могла противостоять гравитации. Значение электромагнитной силы, действующей между протоном и электроном в атоме водорода, самого лёгкого из всех элементов, примерно в 1040 (10 с 40 нулями) раз больше, чем значение силы притяжения между ними. Поэтому для того, чтобы сила притяжения перевесила, в одном месте должно собраться очень много атомов. Вот почему гравитация побеждает только для тел диаметром 400–600 километров.
Здесь есть ещё один тонкий момент. Сила притяжения действительно увеличивается по мере наращивания массы материи. Именно масса нашей планеты прижимает ваши ступни к земле. Но гравитация — это не только сила, с которой объекты побольше воздействуют на объекты поменьше. Это взаимная сила, с которой тела, обладающие массой, влияют друг на друга. Земля воздействует на наши тела с силой тяготения, и наши тела отвечают ей тем же. Но, несмотря на это, мы знаем, что можем упасть в направлении Земли, а вот Земля почему-то не падает в направлении нас. Здесь в дело вступает инерция — присущая всем телам, обладающим массой, реакция сопротивления любым изменениям в своём движении.
Тела с большей массой сильнее сопротивляются попыткам сдвинуть их с места (на самом деле в этом и заключается определение массы). Земля во много раз массивнее человека, поэтому и сдвинуть её нелегко. Британский комик Энди Гамильтон был прав, когда шутил: «Так вот почему меня всё время тянет к крупным женщинам, а их ко мне — нет!». Вообще, крупных женщин тоже тянет к Гамильтону, но из-за того, что их масса больше, его гравитационное влияние на них меньше. Земля действительно начинает падать навстречу вам или яблоку, только это движение практически незаметно. Философ Э. Грейлинг говорил: «Сидя в своём саду, Ньютон увидел то, чего никто не замечал до него: как яблоко притягивает к себе весь мир, а весь мир — яблоко, и что это происходит благодаря силе взаимодействия, охватывающей в своём бесконечном объятии все тела, вплоть до звёзд и планет».
«Миллионы людей видели, как падают яблоки, — говорил американский финансист Бернард Барух, — но лишь Ньютон задался вопросом почему».

Вера в простоту

Для того чтобы понять, что Луна падает и в то же время остаётся для наших глаз на месте и что при этом на неё действует та же сила, которая заставляет яблоко упасть с дерева, требовалось огромное воображение. В те времена небо считалось обиталищем ангелов и самого Бога, которые, по представлениям греков, состоят из эфира, пятого элемента, полностью отличного от четырёх земных стихий — земли, огня, воздуха и воды. Но Ньютон не делал никаких различий между земным и небесным миром. В мире, где всё ещё преобладала религиозная догма, он оказался достаточно смелым, чтобы спустить небо на землю. Поведение тел на Земле управляется теми же законами, что и во всей Вселенной. Существуют универсальные законы, то есть такие, которые действуют в любом месте и в любое время. И Ньютон, человек, живший на заре научной мысли, чей отец не умел писать и вместо подписи ставил крестик, проник своим умом в самое сердце природы и увидел один из таких законов.
Это было первое из великих научных объединений. Позже Чарльз Дарвин объединит человечество со всем животным царством, Джеймс Клерк Максвелл соединит электричество, магнетизм и свет, а Альберт Эйнштейн скажет, что пространство, время и гравитация — это одно целое. Современные физики мечтают о всеобщем объединении (как бы они его ни понимали) гравитации и квантовой теории, описывающей мир атомов и субатомных частиц.
Но закон Ньютона был не просто универсальным, он был простым. «Истина всегда в простоте, а не в приумножении и беспорядке вещей», — писал Ньютон. Если бы закон гравитации не был так прост, житель XVII века, пускай даже и обладающий ньютоновской гениальностью, никогда бы его не открыл. Только подумайте, как удачно всё сложилось. Вселенная на фундаментальном уровне вполне могла бы управляться сложными законами, совершенно недоступными небольшому мозгу прямоходящей обезьяны, чьи предки ещё недавно жили на деревьях в Восточной Африке. Но это не так. Законы Вселенной просты.
Следуя примеру Ньютона, другие учёные тоже начали искать и находить простые законы. Вера в то, что они существуют, — это непризнанная религия физики, путеводная звезда, освещающая физикам путь во мгле. Никто не знает, почему фундаментальные законы Вселенной так просты и доступны для математики. Но 350 лет назад Ньютон первым показал человечеству, что это так.
Универсальный закон Ньютона описывает гравитационную силу, действующую между частицами материи. На самом деле, как первым из учёных понял Ньютон, частицы и силы — это всё, из чего состоит Вселенная. «Силы гравитации, магнетизма и электричества распространяются на существенные расстояния, и мы наблюдаем их действие, — писал Ньютон. — Но могут существовать и другие силы, действующие на малых расстояниях и потому избегающие нашего взгляда... Может существовать сила, которая при близком контакте окажется очень мощной для проведения химических операций, но при этом распространяется на малые расстояния от частиц». Сегодня мы знаем, что за «химические операции», как называл их Ньютон, отвечает электромагнитная сила и что существует ещё две фундаментальные силы природы, которые «избегают нашего взгляда», но действуют очень активно на небольших расстояниях.
Задача физиков, как точно подметил Ньютон, имеет две стороны. Во-первых, это поиск фундаментальных природных сил, а во-вторых, познание того, как эти фундаментальные силы, действуя сообща, сумели собрать из базовых частиц невероятную Вселенную вокруг нас, наполненную галактиками, звёздами, планетами, лунами, деревьями и людьми.

Двадцать два года молчания

Ньютон открыл закон всемирного тяготения в 1666 году, но ещё 22 года не заявлял о нём миру. Никто не знает, почему так произошло, однако существует несколько версий. Одна из них состоит в том, что, когда Ньютон сравнил влияние силы притяжения Земли на расстоянии Луны и на Земле, он не смог получить подтверждения закона обратных квадратов. Возможно, его расчёт расстояния, произведённый в XVII веке, оказался неверен. К тому моменту, когда он это понял и провёл повторные вычисления, он уже переключился на другие научные задачи.
Ещё одна возможная причина, по которой Ньютон не опубликовал свой труд о всемирном тяготении сразу же: он полагал притяжение Земли таким, как будто вся её масса сконцентрирована в центре. Напомню, что при доказательстве закона обратных квадратов Ньютон сравнивал расстояние до Луны от центра Земли с расстоянием от яблока до центра Земли.
Суть теории Ньютона о всемирном тяготении состоит в том, что гравитация — это сила, действующая между всеми элементами материи. Это означает, что сила притяжения, с которой Земля воздействует на Луну, равна силе притяжения, с которой на Луну воздействует и Эверест, и каждая песчинка на каждом берегу каждого земного континента... По сути, гравитационное воздействие на Луну равно сумме гравитационных воздействий всех бесчисленных частиц материи, из которых состоит Земля.
Ньютон полагал, что значение этого притяжения всегда одинаково, как если бы вся материя на Земле была сконцентрирована в одной точке в её центре. Разумеется, он не мог это подтвердить, но, как говорил физик XX века Ричард Фейнман, можно знать больше, чем ты в состоянии доказать. С Ньютоном дело обстояло именно так.
Сила его интуиции была попросту пугающей. После нескольких часов, или дней, или даже недель концентрации он ясно видел перед собой решение задачи во всей его неизбежности, очевидности и правильности. Но знать правду недостаточно — нужно ещё и убедить в ней остальных. А это означало, что ему нужно было проводить много часов за столом с пером и листами бумаги и облекать свою интуицию в слова, шаг за шагом объясняя собственные идеи на языке обычных людей, то есть математики.
Одна вещь была для Ньютона совершенно очевидна. Мир имеет форму мяча, разделённого на две части, а между ними располагается невидимая нить, соединяющая Луну с центром Земли. Благодаря этой симметрии гравитационные силы, с которыми все частицы материи в одном полушарии воздействуют на все частицы материи в другом, компенсируются гравитационными силами, исходящими от всех частиц другого полушария. Они поглощают друг друга. Соответственно, сила притяжения, с которой Земля влияет на Луну, будет направлена вдоль линии, соединяющей Луну с центром нашей планеты. Этого достаточно для начала, но до утверждения о том, что притяжение будет действовать таким образом, как если бы вся масса Земли была сконцентрирована в одной точке, ещё далеко. В 1666 году Ньютон понимал, что это так, но не мог доказать.
Или, возможно, мог, но никто из живших в 1666 году просто не понял бы его доказательства.
В мае 1666 года Ньютон изобрёл интегральное исчисление, которое назвал обратным методом флюксий. Это элемент математической магии, с помощью которого он смог суммировать значения силы, исходящей от бесчисленного количества бесконечно маленьких масс (на самом деле не только масс, а вообще чего угодно). Данный метод позволял доказать, что сила притяжения Земли равна той силе, которая исходила бы от неё, если бы вся её масса была сконцентрирована в центре. Но так как Ньютон изобрёл это исчисление недавно и никому о нём не рассказал, то и доказательство, полученное с его помощью, мог бы понять только он сам. Вряд ли можно произвести хорошее впечатление на других, если сказать им: «У меня есть блестящее доказательство, но чтобы вы его поняли, для начала я должен обучить вас новой отрасли математики, которую я только что открыл».
Ньютон был сложным и противоречивым человеком, а потому против представления его закона всемирного тяготения в 1666 году могли иметься не только научные, но и психологические мотивы. Начну с того, что он был безумно скрытным. В грантемской школе над ним издевался местный хулиган, вероятно понявший, что Ньютон не такой, как все. Сам Ньютон вспоминает, как однажды этот мальчик ударил его в живот, а будущий учёный в ответ схватил его за ухо, отволок к церкви и приложил носом о стену. Несмотря на победу в конфликте, после этого травмирующего опыта Ньютон начал бояться открытости — не только физической, но и интеллектуальной. Будучи крайне чувствительным человеком, Ньютон был не в состоянии рассматривать скептицизм своих коллег как часть научного процесса и считал его личными нападками глупцов на свои идеи. Он даже не пытался их защищать, так как был уверен в собственной правоте.
Ньютон был обидчивым, вспыльчивым и довольно мстительным человеком, и со многими своими коллегами он вёл долгую и изнурительную вражду. Когда читаешь высказывание Ньютона: «Мы строим слишком много стен и недостаточно мостов», хочется воскликнуть: «Кто бы говорил!». В его утверждении: «Я могу рассчитать движение небесных тел, но не безумие людей» — тоже чувствуется некоторая ирония.
«Такт — это искусство настоять на своём, не нажив себе врага», — говорил Ньютон. К сожалению, сам он так и не научился этому искусству. Он понимал, как нужно себя вести, но не умел действовать в соответствии с этим пониманием.
Разумеется, в каждом человеке есть свои противоречия. Живший в XX веке физик Георгий Гамов рассказывал о Ньютоне такую историю (которая, конечно же, может быть выдумкой). Ньютон очень любил свою кошку и, чтобы та в любой момент могла попасть в его кабинет, вырезал в двери дыру. Затем у кошки появились котята. Что же сделал Ньютон? Вырезал в двери несколько дыр поменьше, по числу котят. Он был величайшим гением всех времён, но не смог понять, что все котята могли бы проходить через одну большую дыру.
Одержимость Ньютона секретностью могла иметь и более глубинные мотивы. Несмотря на то что он родился раньше срока и был слабым ребёнком, учёный дожил до преклонного возраста и до самой старости сохранил идеальное зрение и все зубы, кроме одного. После смерти от него осталась коробка с бумагами, которые следовало опубликовать для потомков. Содержание этих документов было настолько скандальным, что священник, открывший коробку, чтобы бегло просмотреть бумаги, в ужасе захлопнул её. Помимо прочего, в документах содержались рассуждения Ньютона о религии. Он был глубоко верующим человеком и признавал только одного Бога. Он полностью отрицал догмат о Святой Троице — Отце, Сыне и Святом Духе. Изучив источники, он пришёл к выводу, что идея «трёх богов в одном» была хитростью навязана церкви на Первом соборе в Никее, созванном в 325 году императором Константином I.
Ньютон знал, что одних его еретических унитаристских взглядов было бы достаточно, чтобы сделать его изгоем. Существовавшие в то время в Англии законы запрещали людям, разделявшим веру Ньютона, занимать важные государственные посты, а в некоторых случаях предусматривали и тюремное заключение. Ньютон был членом совета Тринити-колледжа (колледжа Святой Троицы) в Кембридже, и ни один человек даже на секунду не заподозрил, насколько он презирал основные принципы данного учебного заведения. Возможно, Ньютон был вынужден держать свою жизнь в секрете, потому что в мире, где доминировала строгая церковная догматика, от этого зависела его жизнь. Так или иначе, он был полностью пропитан секретностью.
Итак, Ньютон прогуливался по изъезженным дорогам вокруг Вулсторпа, бродил по его лесам и тропинкам, делал невероятные открытия об окружающем мире и держал их при себе. Он ни разу не выпрыгнул из ванной с криком «Эврика!», вместо этого оставаясь в молчании.
Разумеется, можно делать разные предположения относительно того, почему Ньютон не опубликовал данные о своём открытии сразу же, в 1666 году, но факт остаётся фактом — между открытием и его обнародованием прошло 20 лет.

Для дополнительного чтения

Ackroyd P. Newton. — London: Vintage, 2007.
Feynman R., Leighton R., Sands M. The Feynman Lectures in Physics, Volume I. — Boston: Addison-Wesley, 1989.
Gleick J. Isaac Newton. — London: HarperCollins, 2004.
Goodstein D., Goodstein J. Feynman’s Lost Lecture: The Motion of the Planets around the Sun. — London: Jonathan Cape, 1996.
Gott R., Vanderbei R. Sizing up the Universe. — Washington DC: National Geographic, 2010.
Pask C. Magnificent Principia. — New York: Prometheus Books, 2013.
Shu F. The Physical Universe. — Mill Valley: University Science Books, 1982.
Назад: Часть I Ньютон
Дальше: 2. Последний из волшебников Как Ньютон создал систему мира и нашёл ключ к пониманию Вселенной.