Книга: Мозг Брока. О науке, космосе и человеке
Назад: Глава 20 В защиту роботов
Дальше: Глава 22 Поиск внеземного разума

Глава 21
Прошлое и будущее американской астрономии

Сделано еще мало – это только лишь начало; но это много по сравнению с абсолютной пустотой прошлого столетия. И наши знания – в этом легко убедиться – покажутся, в свою очередь, полным невежеством тем, кто придет после нас. Но не следует презрительно относиться к этим знаниям, ибо с их помощью мы можем дотянуться и нащупать край одеяния Всевышнего.
Агнес Клерк. Общедоступная история астрономии (1893)
Мир изменился с 1899 г., но мало областей, которые изменились больше – если судить по развитию фундаментальных представлений и открытию новых явлений, – чем астрономия. Вот несколько названий статей, опубликованных за последнее время в научных журналах The Astrophysical Journal и Icarus: «G240-72: новый магнитный белый карлик с необычной поляризацией», «Релятивистская стабильность звезд: эффекты, связанные с выбранной системой отсчета», «Обнаружение межзвездного метиламина», «Новый список 52 вырожденных звезд», «Возраст альфы Центавра», «Есть ли у убегающих OB-звезд сколлапсировавшиеся спутники?», «Влияние конечных размеров ядра на тормозное излучение пар нейтрино в нейтронных звездах», «Гравитационное излучение при коллапсе звезды», «Поиск космологического компонента фонового мягкого рентгеновского излучения в направлении М31», «Фотохимия углеводородов в атмосфере Титана», «Содержание урана, тория и калия в горных породах Венеры, измеренное “Венерой-8”», «Радиоизлучение синильной кислоты от кометы Когоутека», «Яркостное и высотное радиолокационные изображения части Венеры» и «Атлас фотографий спутников Марса, полученных “Маринером-9”». Наши предки-астрономы мало что поняли бы из этих названий, но, думаю, их главной реакцией было бы недоверие.
Когда меня попросили возглавить комитет по празднованию 75-летия Американского астрономического общества в 1974 г., я подумал, что это даст мне приятную возможность ознакомиться с состоянием нашей области знаний на конец прошлого столетия. Мне было интересно узнать, где мы были, где мы находимся сегодня и, если возможно, что-нибудь о том, куда мы можем прийти. В 1897 г. состоялось официальное торжественное открытие Йеркской обсерватории с самым крупным для того времени телескопом, и по этому поводу было проведено научное собрание астрономов и астрофизиков. Второе собрание проводилось в обсерватории Гарвардского колледжа в 1898 г., а третье – в Йеркской обсерватории в 1899 г. К тому времени уже было официально основано Американское астрономическое общество.
Астрономия 1897–1899 гг., похоже, была энергичной, боевой, возглавлялась несколькими сильными личностями и характеризовалась быстрыми публикациями. Среднее время между подачей и публикацией статей в журнале Astrophysical Journal в это время явно меньше, чем в Astrophysical Journal Letters сегодня. Возможно, это было связано с тем, что много статей было из Йеркской обсерватории, где журнал готовили к печати. Открытие Йеркской обсерватории в Уильямс-Бэй, штат Висконсин, на которой выгравировано «1895», задержали более чем на год из-за того, что провалился пол, чуть не убив астронома Э. Барнарда. Этот случай упомянут в Ap. J. (6:149), но там ничего не сказано о халатности. Однако в британском журнале Observatory (20:393) явно подчеркивается небрежное строительство и укрывательство ответственных за него. Мы также обнаруживаем на той же странице Observatory, что церемонии открытия были отложены на несколько недель, чтобы подстроиться под график поездок мистера Йеркса, спонсора и барона-разбойника. В Astrophysical Journal говорится, что «церемонии открытия были вынужденно отложены с 1 октября 1897 г.», но не сказано почему.
Редакторами Ap. J. были Джордж Хейл, директор Йеркской обсерватории, и Джеймс Килер, который в 1898 г. стал директором Ликской обсерватории на горе Гамильтон в Калифорнии. Однако обсерватория в Уильямс-Бэй занимала главенствующее положение в Astrophysical Journal, возможно, потому, что Ликская обсерватория в то же самое время главенствовала в журнале Publications Тихоокеанского астрономического общества (PASP). В пятом томе Astrophysical Journal опубликовано не менее тринадцати снимков из Йеркской обсерватории, включая здание электростанции. На первых пятидесяти страницах шестого тома еще дюжина снимков из Йеркской обсерватории. Преобладание астрономов с Восточного побережья США в Американском астрономическом обществе также отражено в том, что первым президентом Астрономического и астрофизического общества Америки был Саймон Ньюком из Военно-морской обсерватории в Вашингтоне, а первыми вице-президентами – Янг и Хейл. Астрономы Западного побережья жаловались на то, что им сложно приехать на третью конференцию астрономов и астрофизиков, проходящую в Йеркской обсерватории, и, похоже, были рады, что обещанная демонстрация 40-дюймового телескопа-рефрактора в ходе этого мероприятия была отложена из-за облачной погоды. Это самое большее, что можно найти в обоих журналах о противоборстве двух обсерваторий.
Но в то же время у Observatory был нюх на сплетни, связанные с американскими астрономами. Из Observatory мы узнаем, что в Ликской обсерватории были «гражданская война» и «скандал», связанный с Эдвардом Холденом (директор этой обсерватории до Килера), который, как говорят, допустил, что в питьевой воде на горе Гамильтон оказались крысы. В журнале также опубликована история о пробном химическом взрыве в районе залива Сан-Франциско, за которым должно было вестись наблюдение с помощью сейсмического устройства на горе Гамильтон. В назначенный момент никто из сотрудников не заметил отклонения стрелки, кроме Холдена, который быстро отправил гонца вниз, чтобы предупредить мир о большой чувствительности Ликского сейсмометра. Но вскоре на гору поднялся другой посланник с новостями, что тестирование было отложено. Тогда еще более быстрый гонец был отправлен вдогонку первому, и Ликской обсерватории, как отмечает Observatory, едва удалось избежать конфуза.
Юность американской астрономии в этот период красноречиво отражается в гордом заявлении 1900 г., что астрономический факультет в Беркли впредь будет независим от факультета гражданской инженерии Калифорнийского университета. Профессор Джордж Эри, впоследствии британский королевский астроном, сожалел о том, что не может ничего доложить об астрономии в Америке в 1832 г., потому что, по сути, ее не было. В 1899 г. ситуация изменилась.
В этих журналах не чувствуется вмешательства внешней (в противоположность академической) политики, кроме редких случаев, таких как назначение президентом Маккинли, профессором математики Военно-морского флота США Томаса Си и некая затянувшаяся холодность в научных спорах между сотрудниками Ликской и Потсдамской (Германия) обсерваторий.
Однако время от времени все же просачиваются некоторые признаки преобладающих течений 90-х гг XIX в. Например, вот как описывается экспедиция, отправившаяся в Силоэм, штат Джорджия, 28 мая 1900 г. для наблюдения затмения: «Даже некоторые белые мало что знали о затмении. Многие думали, что это был способ получения прибыли, и меня часто спрашивали, сколько я собираюсь брать за возможность присутствовать. Еще бытовало мнение, что затмение можно увидеть только из моей обсерватории… Здесь я хотел бы выразить восхищение высокой моралью местного сообщества, поскольку с населением лишь 100 человек, включая соседние районы, у него имеется две церкви для белых и две для цветных, и во время моего пребывания там я не слышал ни одного нечестивого слова… Как неискушенный янки на Юге, не привыкший к традициям южан, я, естественно, делал много маленьких ошибок, которые были некстати. Когда я увидел улыбки, вызванные тем, что я называл моего цветного помощника “мистер”, я стал обращаться к нему “полковник”, что полностью всех удовлетворяло».
В Военно-морскую обсерваторию США была направлена комиссия, чтобы решить некоторые (публично не афишируемые) проблемы. Отчет этой группы, которая состояла из двух малоизвестных сенаторов и профессоров Эдварда Пикеринга, Джорджа Комстока и Хейла, многое объясняет, потому что в нем отражены суммы в долларах. Мы обнаруживаем, что ежегодные текущие расходы главных обсерваторий в мире были следующие: Военно-морская обсерватория – 85 000 долларов, Парижская обсерватория – 53 000 долларов, Гринвичская обсерватория (Англия) – 49 000 долларов, Гарвардская обсерватория – 46 000 долларов и Пулковская обсерватория (Россия) – 36 000 долларов. Зарплаты двух директоров Военно-морской обсерватории США составляли по 4000 долларов у каждого, а Гарвардской обсерватории – 5000 долларов. Высокопоставленная комиссия порекомендовала, что в «перечне зарплат, которые могут привлечь астрономов желаемого класса», зарплата директоров обсерваторий должна быть 6000 долларов. В Военно-морской обсерватории сотрудникам, делающим расчеты (исключительно вручную, без компьютеров в то время), платили 1200 долларов в год, а в Гарвардской обсерватории – только 500 долларов в год, и это были почти исключительно женщины. На самом деле все зарплаты в Гарварде, кроме директора, были значительно ниже, чем в Военно-морской обсерватории. Комитет заявил: «Большая разница в зарплате между Вашингтоном и Кембриджем, особенно у сотрудников более низких должностей, вероятно, неизбежна. Отчасти это связано с правилами гражданской службы». Еще один признак безденежья астрономов – объявление о должности «научного ассистента-волонтера» в Йерксе, которая будет неоплачиваемая, но, как обещали, послужит хорошим опытом для студентов постдипломного образования.
Тогда, как и сейчас, астрономию осаждали парадоксалисты, сторонники маргинальных или сумасшедших идей. Кто-то предложил телескоп с девяносто одной линзой в ряд в качестве альтернативы телескопу с меньшим количеством линз большей апертуры. Британцам в это время досаждали таким же образом, но, возможно, не так сильно. Например, некролог в Monthly Notices Королевского астрономического общества (59:226), посвященный Генри Перигалу, оповещает нас о том, что ушедший отпраздновал свой 94-й день рождения, став членом Королевского института, но был избран членом Королевского астрономического общества в 1850 г. Тем не менее «в наших публикациях нет ничего, принадлежащего его перу». В некрологе описывается «каким удивительным образом очарование мистера Перигала позволило ему получить место, которое, казалось бы, не может занимать человек его взглядов, поскольку ни для кого не секрет, что он был явным парадоксалистом, его главным убеждением было то, что Луна не вращается, и главная астрономическая цель в его жизни заключалась в том, чтобы убедить остальных, и особенно молодых людей, не утвердившихся в обратном, в их серьезной ошибке. С этой целью он рисовал диаграммы, конструировал модели и писал стихи, с героической стойкостью перенося постоянное разочарование, поскольку все они оказывались бесполезными. Тем не менее он проделал отличную работу, кроме этого горького заблуждения».
Число американских астрономов в этот период было очень мало. Устав Американского астрономического и астрофизического общества утверждает, что кворум состоит из двадцати членов. К 1900 г. в Америке было получено только девять докторских степеней по астрономии. В том же 1900 г. было получено четыре докторские степени в области астрономии: две получили ученые из Колумбийского университета Дж. Бауэр и Кэролин Фернес, одну – Форест Мултон из Чикагского университета и одну – Генри Рассел из Принстонского университета.
Некоторое представление о том, что считалось важным научным трудом в этот период, можно получить, посмотрев на премии, которые тогда присуждались. Э. Барнард получил Золотую медаль Королевского астрономического общества (КАО) отчасти за открытие спутника Юпитера Юпитер-5 и за астрономическую фотографию, сделанную с помощью объектива для портретной съемки. Однако его пароход попал в атлантический шторм, и он не прибыл вовремя на церемонию награждения. Говорят, что он попросил несколько дней, чтобы оправиться после шторма, поэтому КАО гостеприимно организовало еще один обед в его честь. Лекция Барнарда, похоже, была эффектным зрелищем, и в ней использовалось новейшее аудиовизуальное устройство – диапроектор.
Рассказывая о своей фотографии области Млечного Пути рядом с Тета Змееносца, он сделал вывод, что «вся основа Млечного Пути… состоит из туманной материи». (Тем временем Г. Палмер сообщил о том, что на фотографиях шарового скопления М13 туманность отсутствует.) Барнард, который был отличным визуальным наблюдателем, выразил глубокие сомнения по поводу точки зрения Персиваля Лоуэлла относительно того, что Марс населен и испещрен каналами. Благодаря Барнарда за его лекцию, президент Королевского астрономического общества, сэр Роберт Болл, выразил обеспокоенность тем, что отныне он «должен рассматривать каналы на Марсе с некоторым подозрением, мало того, даже моря [Марса, темные участки] отчасти оказались под запретом. Возможно, происшествие в Атлантическом океане, в которое попал лектор, может объяснить его недоверие». Взгляды Лоуэлла тогда не поддерживались в Англии, как указывает другая заметка в Observatory. В ответ на вопрос, какие книги наиболее понравились и заинтересовали его в 1896 г., профессор Норман Локьер ответил: «“Марс” Персиваля Лоуэлла, “Сентиментальный Томми” Дж. Барри. (Нет времени на серьезное чтение.)»
Одну из премий по астрономии за 1898 г. Французская академия присудила Сету Чандлеру за открытие изменения широт, одну – Белопольскому – отчасти за спектроскопические исследования двойных звезд и еще одну – Шотту за исследование земного магнетизма. Также проводился конкурс на соискание премии за лучший трактат по «теории возмущений Гипериона», спутника Сатурна. Нам сообщают, что «единственным, кто подал работу, был доктор Дж. Хилл из Вашингтона, кому и была присуждена премия».
Медалью Брюс, учрежденной Тихоокеанским астрономическим обществом, был награжден в 1899 г. доктор Артур Ауверс из Берлина. Посвящающее обращение включало следующие ремарки: «Сегодня Ауверс стоит во главе немецкой астрономии. В нем мы видим высший тип исследователя нашего времени, который, возможно, в Германии лучше развит, чем в любой другой стране. Работа людей этого типа характеризуется детальными и тщательными исследованиями, неустанным усердием в сборе фактов, осторожностью в выдвижении новых теорий или объяснений и прежде всего отсутствием усилий получить признание, сделав открытие первым». В 1899 г. впервые за семь лет была вручена Золотая медаль Генри Дрейпера Национальной академии наук. Ее получил Килер. В 1898 г. Брукс, чья обсерватория находилась в Женеве, штат Нью-Йорк, объявил об открытии своей двадцать первой кометы, которую он описал как «достижение своего совершеннолетия». Вскоре Брукс получил премию имени Лаланда Французской академии наук за свой рекорд по открытию комет.
В 1897 г. в связи с выставкой в Брюсселе бельгийское правительство предложило выдать премии за решения определенных проблем в астрономии. Эти проблемы включили численное значение ускорения свободного падения на Земле, вековое ускорение Луны, общее движение Солнечной системы сквозь космос, изменение широты, фотографирование поверхности планет и природу каналов Марса. Последней темой было изобретение метода наблюдения солнечной короны не во время затмения. Журнал Monthly Notices (20:145) прокомментировал: «…если эта денежная премия побудит кого-нибудь решить последнюю проблему или, на самом деле, любую другую, мы считаем, что деньги будут потрачены не зря».
Однако, когда читаешь научные статьи того времени, складывается впечатление, что фокус сместился с тех тем, за которые давали премии, на другие. Сэр Уильям Хаггинс и его жена леди Хаггинс выполнили лабораторные эксперименты, которые показали, что при низком давлении в эмиссионном спектре кальция присутствуют только так называемые линии H и K. Они сделали вывод, что Солнце состоит главным образом из водорода, гелия, «корония» и кальция. Хаггинс ранее установил спектральную последовательность звезд, которая, по его мнению, была эволюционной. Влияние Дарвина в науке было очень сильным в то время, и среди американских астрономов это влияние хорошо заметно в исследованиях Т. Си. Интересно сравнить спектральную последовательность Хаггинса с нынешними спектральными классами Моргана – Кинана:

 

 

Примечание. Современная последовательность спектральных классов звезд идет от «ранних» к «поздним» спектральным классам в таком порядке: O, B, A, F, G, K, M. Последовательность Хаггинса очень близка к современной.
Здесь мы можем проследить происхождение современных терминов «ранний» и «поздний», спектральные классы, которые отражают дарвиновский дух ушедшей викторианской науки. Также здесь мы видим достаточно непрерывную последовательность спектральных классов и зарождение – через диаграмму Герцшпрунга – Рассела – современных теорий звездной эволюции.
В этот период были сделаны главные разработки по физике, и читателей Ap. J. оповещали о них, перепечатывая аннотации важных статей. Все еще проводились эксперименты по основным законам излучения. В некоторых статьях уровень физической сложности был не высшего калибра, как, например, в статье в PASP (11:18), где импульс Марса вычисляется как произведение массы планеты и линейной скорости поверхности и делается вывод «планета, кроме шапки, имеет импульс 183 и 3/8 септиллионов футофунтов/с». Экспоненциальное представление больших чисел явно не использовалось широко.
В это время появляются публикации визуальных и фотографических кривых блеска, например звезд в Мессье 5, и экспериментов Килера по фотографированию с фильтрами. Явно захватывающей темой было изучение изменяющихся с течением времени объектов, которые, видимо, вызывали то же волнение, что сегодня пульсары, квазары и источники рентгеновских лучей. Было много исследований переменных лучевых скоростей, что позволило найти орбиты спектрально-двойных звезд, так же как и периодические изменения скорости Омикрон Кита, благодаря доплеровскому смещению линии водорода Hγ и других спектральных линий.
Первые измерения инфракрасного излучения звезд выполнил в Йеркской обсерватории Эрнест Николс. Вывод исследования: «От Арктура мы получаем не больше тепла, чем от свечи на расстоянии пяти или шести миль». Больше никаких вычислений не дано. Первые экспериментальные наблюдения непрозрачности углекислого газа и водяного пара для инфракрасного излучения сделали в это время Рубенс и Ашкинасс, которые открыли основную полосу поглощения углекислого газа на 15 мкм и чисто вращательный спектр воды.
Есть предварительная фотографическая спектроскопия туманности Андромеды, выполненная Юлиусом Шейнером из Потсдама, который делает правильный вывод, что «существовавшие ранее подозрения о том, что спиральные туманности – это звездные скопления, сейчас стали определенностью». В качестве примера уровня перехода на личности, допускаемого в то время, приведу отрывок из статьи Шейнера, в котором он критикует У. Кэмпбелла: «В ноябрьском номере Astrophysical Journal профессор Кэмпбелл с большим возмущением оспаривает некоторые мои замечания, критикующие его открытия… Такая чувствительность как-то удивительна со стороны того, кто сам склонен делать другим серьезный выговор. Более того, астроном, который часто наблюдает явления, которые другие не могут увидеть, и не может увидеть те, которые другие могут, должен быть готов к тому, что его мнения будут оспариваться. Если, как жалуется профессор Кэмпбелл, я подтвердил свои взгляды только одним примером, я воздержался добавить еще один только из учтивости. А именно, тот факт, что профессор Кэмпбелл не может различить линии водяного пара в спектре Марса, которые сначала увидели Хаггинс и Фогель, а после того, как мистер Кэмпбелл поставил их существование под сомнение, мы с профессором Вилсингом снова их увидели и с определенностью идентифицировали». Количество водяного пара, которое, как сейчас известно, имеется в марсианской атмосфере, совершенно невозможно было бы распознать посредством спектроскопических методов, которые тогда использовались.
Спектроскопия была доминирующим элементом в науке конца XIX столетия. Ap. J. усердно публиковал солнечный спектр Роуланда, который охватывал до 20 000 длин волн, каждая до семи значащих цифр. Он опубликовал большой некролог на смерть Бунзена. Время от времени астрономы делали записи о необычной природе своих открытий: «Просто поразительно, что слабый мерцающий свет звезды может сам записать информацию о веществе и его состоянии в немыслимо далеком светиле». Главной темой споров в Astrophysical Journal был вопрос, где в спектрах должен находиться красный – слева или справа. Те, кто предпочитал красный слева, проводили аналогию с пианино (где высокие частоты находятся справа), но Ap. J. храбро выбрал красный справа. Некая свобода для компромисса была в вопросе, где в списках длин волн должен находиться красный – вверху или внизу. Страсти разгорались, и Хаггинс писал, что «любое изменение… было бы недопустимо». Но Ap. J. все равно победил.
Другой главной темой для дискуссий в этот период была природа солнечных пятен. Джордж Стони предположил, что они вызваны слоем конденсационных облаков в фотосфере Солнца. Но Уилсон и Фицджеральд выдвинули против этого возражение, опираясь на то, что никакие возможные конденсаты не могли бы существовать при таких высоких температурах, разве что углерод. Вместо этого они предложили очень расплывчатую идею о том, солнечные пятна образуются вследствие «отражения конвективных потоков газа». У Эвершеда была более оригинальная идея. Он думал, что солнечные пятна – это дыры во внешней фотосфере Солнца, позволяющие нам заглянуть в гораздо более глубокие и горячие глубины. Но почему они темные? Он предположил, что все излучение смещается с видимой в невидимую ультрафиолетовую зону спектра. Это, конечно, было до того, как Планком был открыт закон распределения энергии в спектре излучения горячего тела. В то время считалось, что распределения энергии в спектре черных тел различной температуры могут пересекаться, и некоторые экспериментальные кривые этого периода в самом деле показывали такое пересечение, как мы знаем сейчас, из-за разных коэффициентов излучения и поглощения.
Рамзай недавно обнаружил элемент криптон, у которого, как говорили, среди четырнадцати распознаваемых спектральных линий была одна в области 5570 Å, совпадающая с «главной линией полярного сияния». Э. Фрост сделал вывод: «Таким образом, похоже, было обнаружено истинное происхождение той, до сих пор озадачивающей линии». Сейчас мы знаем, что она объясняется присутствием кислорода.
Было много статей по разработке инструментария; одна из наиболее интересных принадлежит Хейлу. В январе 1897 г. он написал, что нужны и телескопы-рефракторы, и телескопы-рефлекторы, но заметна тенденция в большей степени использовать рефлекторы, особенно экваториальные телескопы с фокусом кудэ. В исторических мемуарах Хейл упоминает, что 40-дюймовый объектив появился в Йеркской обсерватории только потому, что предыдущий план построить большой рефрактор рядом с Пасаденой, Калифорния, провалился. Интересно, какой бы была история астрономии, если бы план был реализован? Любопытно также, что Пасадена предложила Чикагскому университету построить Йеркскую обсерваторию там. Это была бы долгая поездка на работу для 1897 г.
В конце XIX столетия исследования Солнечной системы были такими же обнадеживающими и сумбурными, как и исследования звезд. Одна из наиболее выдающихся статей этого периода принадлежит Генри Расселу и называется «Атмосфера Венеры» (The Atmosphere of Venus). Это обсуждение удлинения острых концов серпа Венеры, основанное отчасти на наблюдениях автора в 5-дюймовый искатель «большого экваториального» телескопа в обсерватории Холстеда в Принстоне. Возможно, молодому Расселу пока опасались доверять большие телескопы в Принстоне. Суть анализа верна по нынешним стандартам. Рассел сделал вывод, что отражение солнечного света не влияет на рост серпа и что причину нужно искать в рассеивании солнечного света: «…атмосфера Венеры, как и наша, содержит какие-то взвешенные частицы пыли или тумана, и…то, что мы видим, – это верхняя часть этой туманной атмосферы, освещенной лучами, которые прошли рядом с поверхностью планеты». Далее он говорит, что видимая поверхность может быть плотным слоем облаков. Он вычислил, что толщина слоя тумана составляет около 1 км над тем, что мы бы сейчас назвали главным облачным слоем, – величина, которая как раз соответствует фотографии лимба, сделанной космическим аппаратом «Маринер-10». Рассел думал, основываясь на исследованиях других ученых, что имеются спектроскопические доказательства присутствия водяного пара и водорода в тонкой атмосфере Венеры. Но основная часть его рассуждений прошла проверку временем.
Было объявлено об открытии Фебы, самого удаленного спутника Сатурна, сделанном Уильямом Пикерингом, и Эндрю Дуглас из обсерватории Лоуэлла опубликовал наблюдения, позволившие ему заключить, что период вращения Юпитера-3 на 1 час больше периода его обращения; при этом он ошибся как раз на 1 час.
Другие ученые, которые оценивали периоды вращения, мало чего добились. Например, был такой Лео Бреннер, который проводил наблюдения в обсерватории Манора в местечке под названием Люссинпикколо. Бреннер жестко критиковал оценку периода вращения Венеры, произведенную Персивалем Лоуэллом. Сам Бреннер сравнил два рисунка Венеры в белом свете, сделанные двумя разными людьми с разницей в четыре года, по которым он вывел, что период вращения составляет 23 часа 57 минут 36,37728 секунды, что, по его словам, соответствовало его собственным «самым надежным рисункам». Считая так, Бреннер не понимал, как все еще могут быть сторонники периода вращения в 224,7 сут., и сделал вывод, что «неопытный наблюдатель, неподходящий телескоп, неудачно выбранный окуляр, очень малый диаметр планеты, недостаточное увеличение и низкое склонение – все вместе объясняло своеобразные рисунки мистера Лоуэлла». Истина, конечно, находится не между крайностями Лоуэлла и Бреннера, а скорее, на другом конце шкалы со знаком минус, обратный период, равный 243 суткам.
Другое обращение господин Бреннер начинает так: «Джентльмены, я имею честь сообщить вам, что миссис Манора обнаружила новое деление в системе колец Сатурна», – из чего мы узнаем, что в обсерватории Манора есть некая миссис Манора и что она выполняет наблюдения вместе с господином Бреннером. Затем следует описание того, как следует понимать деления Энке, Кассини, Антониади, Струве и Манора. Только первые два прошли проверку временем. Господин Бреннер, похоже, растворился в туманах XIX столетия.
На второй конференции астрономов и астрофизиков в Кембридже был сделано «предложение» выводить вращение астероида, если оно есть, из кривой блеска. Но никаких изменений яркости во времени не было обнаружено, и Генри Паркхерст заключил: «Я думаю, можно легко проигнорировать эту теорию». Сейчас это краеугольный камень астероидных исследований.
Изучив тепловые свойства Луны независимо от одномерного уравнения теплопроводности, но основываясь на лабораторных измерениях излучательной способности, Франк Вери пришел к выводу, что типичная температура Луны в дневное время составляет около 100 °C – совершенно правильный ответ. Его заключение стоит процитировать: «Только самые ужасные пустыни Земли, где горячие пески покрывают волдырями кожу и люди, звери и птицы падают замертво, могут приблизиться к полдню на безоблачной поверхности нашего спутника. Только крайние полярные широты Луны могут иметь терпимую дневную температуру, не говоря уже о ночи, когда нам нужно стать пещерными людьми, чтобы защититься от такого сильного холода». Как видим, комментарии нередко были высокохудожественными.
Немного раньше в том же десятилетии Морис Леви и Пьер Пюизё из Парижской обсерватории опубликовали атлас лунных фотографий, теоретические выводы из которого рассматривались в Ap. J. (5:51). Парижская группа предложила модифицированную вулканическую теорию происхождения лунных кратеров, борозд и других форм рельефа, которую позже раскритиковал Э. Барнард, после того как он изучил планету в 40-дюймовый телескоп. Затем Барнарда раскритиковало Королевское астрономическое общество за его критику и так далее. Один из аргументов в этом споре был обманчиво прост: в вулканах образуется вода, на Луне нет воды – следовательно, лунные кратеры не вулканические. Хотя большинство лунных кратеров не вулканические, это не убедительный аргумент, потому что он не учитывает возможность отложения воды. Можно извлечь пользу из выводов Вери о температуре на лунных полюсах. Вода там замерзает в форме инея. Другая вероятность – вода может испаряться с Луны в космос.
Это объяснил Стони в замечательной статье «Об атмосфере на планетах и спутниках» (Of Atmospheres upon Planets and Satellites). Он пришел к выводу, что лунной атмосферы не существует, потому что газы очень быстро улетучиваются в космос из-за низкой лунной гравитации или из-за большого скопления легких газов, таких как водород и гелий, на Земле. Он считал, что в марсианской атмосфере нет водяного пара и что атмосфера Марса и шапки, вероятно, состоят из углекислого газа. Он предполагал, что на Юпитере следует ожидать обнаружения водорода и гелия и что у Тритона, самого большого спутника Нептуна, может быть атмосфера. Каждый из этих выводов соответствует современным данным или воззрениям. Он также заключил, что на Титане не должно быть воздуха – прогноз, с которым соглашаются некоторые современные теоретики, – хотя у Титана, похоже, своя точка зрения (см. главу 13).
В этот период также появляются фантастические гипотезы: например, высказанная его преподобием Дж. Бэконом, что было бы хорошо совершать астрономические наблюдения с больших высот (например, с неуправляемого аэростата). Он предположил, что это будет иметь по крайней мере два преимущества: лучший обзор и ультрафиолетовая спектроскопия. Позже Годдард внес похожие предложения для запуска космических обсерваторий (глава 18).
Ранее Герман Фогель с помощью визуальной спектроскопии обнаружил линию поглощения 6183 Å в спектре Сатурна. Впоследствии Международная компания цветной фотографии Чикаго выпустила фотографические пластинки, которые были настолько хороши, что позволяли зарегистрировать такие длины волн, как H-альфа в красной области спектра у звезды пятой величины. Эту новую эмульсию использовали в Йеркской обсерватории, и Хейл докладывал, что у колец Сатурна не было обнаружено линии поглощения 6183 Å. Линия, которая, как сейчас известно, находится в области 6190 Å, – это линия 6v3 метана.
Другую реакцию на труды Персиваля Лоуэлла мы видим в обращении Джеймса Килера на открытии Йеркской обсерватории:
Очень жаль, что именно обитаемость планет, предмет, о котором астрономы знают немного, выбрал своей темой исследования фантазер, для которого от обитаемости до обитателей – лишь один очень короткий шаг. В результате его изобретательности факт и вымысел стали неразрывно связаны в уме любителя, который приучается рассматривать контакт с жителями Марса как проект, заслуживающий серьезного изучения (для которого он может даже пожелать дать деньги научным сообществам), и который не знает, что его считают причудой те самые люди, чьи труды воспламенили воображение романиста. Когда его заставляют понять истинное состояние наших знаний об этих предметах, он чувствует сильное разочарование и определенное возмущение по отношению к науке, как будто эти представления были ему навязаны. Наука не ответственна за ошибочные идеи, которые, не имея твердой почвы, постепенно отмирают и забываются.
Обращение Саймона Ньюкома по этому случаю содержит некоторые замечания, которые относятся, возможно, немного идеалистически к этому научному труду:
Должен ли человек, таким образом привлеченный к исследованию природы непреодолимой страстью, вызывать зависть или сочувствие? Ни в какой другой работе не приходит такая уверенность к тому, кто ее заслуживает. Никакая жизнь не доставляет такого удовольствия, как та, чья энергия посвящена следованию врожденным импульсам природы человека. Исследователь истины мало подвержен разочарованиям, которые ждут амбициозного человека в других сферах деятельности. Приятно принадлежать братству, охватывающему весь мир, в котором не существует соперничества, кроме того, чтобы стараться сделать работу лучше других, в то время как взаимное восхищение подавляет ревность… Так же как великим капитаном промышленности движет любовь к богатству, политиком – любовь к власти, так астрономом движет любовь к знаниям ради знаний, а не ради их применения. Все же он гордится тем, что его наука послужила больше человечеству, чем себе… Он чувствует, что человек живет не хлебом единым. Если знание того, какое место мы занимаем во Вселенной, – это не более чем хлеб, то это определенно что-то, что мы должны поместить сразу после средств к существованию.
Прочитав публикации астрономов, сделанные три четверти столетия назад, я почувствовал непреодолимое искушение представить собрание Американского астрономического общества – или какое название оно будет носить к тому времени – по случаю 150-летней годовщины и предугадать, как будут оцениваться наши нынешние проекты.
Когда мы изучаем литературу конца XIX в., нас забавляют некоторые споры о солнечных пятнах и впечатляет, что эффект Зеемана считался не лабораторной диковинкой, а тем, чему астрономы должны уделить особое внимание. Эти две нити переплелись, как будто служили прообразом в сделанном несколько лет спустя открытии Дж. Хейлом сильных магнитных полей в солнечных пятнах.
Также мы находим бесчисленное количество статей, в которых существование звездной эволюции предполагается, но ее природа остается нераскрытой, в которых гравитационное сжатие Кельвина – Гельмгольца считалось единственным возможным источником энергии звезд и ядерную энергию даже не предвидели. Но в то же время и иногда в том же выпуске Astrophysical Journal упоминается любопытное исследование по радиоактивности некого Беккереля во Франции. Здесь мы снова видим, как две, казалось бы, не связанные нити, которым предназначено переплестись сорок лет спустя, проходят сквозь наш обзор астрономии за несколько лет в конце XIX в.
Есть много связанных примеров: например, в интерпретации серии спектров неводородных элементов, увиденных в телескоп и изученных в лаборатории. Новая физика и новая астрономия были взаимодополняющими сторонами зарождающейся науки астрофизики.
Соответственно, сложно не задуматься о том, сколько глубоких споров в настоящем – например, о природе квазаров, или свойствах черных дыр, или геометрии пульсаров – должны ждать переплетения с новыми разработками в области физики. Если опыт семидесятипятилетней давности способен служить ориентиром, то сегодня уже есть люди, которые смутно догадываются, какая физика соединится с какой астрономией. И через несколько лет эта связь будет считаться очевидной.
Мы также видим в материалах XIX столетия ряд случаев, где методы наблюдения или их интерпретации по нынешним стандартам явно ошибочны. Один из худших примеров – периоды вращения планет, выведенные до десяти значащих цифр путем сравнения сделанных разными людьми двух рисунков, показывающих такие характерные черты, которых, как мы теперь знаем, вообще не существует. Но есть и многие другие, включая изобилие «измерений двойных звезд», объектов, находящихся на большом расстоянии друг от друга, которые в основном физически не связаны между собой; интерес к воздействию давления и других факторов на частоты спектральных линий, когда никто не обращает внимание на анализ кривой роста; и желчные споры о наличии или отсутствии некого вещества, основанные только на визуальной спектроскопии.
Также любопытна разобщенность физики и поздневикторианской астрофизики. В разумных пределах сложная физика является почти исключительно сферой геометрической и физической оптики, фотографического процесса и небесной механики. Строить теории звездной эволюции, основанные на звездных спектрах, и не задумываться о зависимости намагничивания и ионизации от температуры или пытаться вычислить температуру лунного грунта, не решив уравнение теплопроводности Фурье, кажется мне странным. Когда современный читатель видит детальные лабораторные спектры, полученные в ходе эксперимента, ему не терпится, чтобы Бор, Шрёдингер и их последователи пришли и разработали квантовую механику.
Интересно, сколько наших нынешних споров и самых известных теорий будут отличаться с точки зрения 2049 г. некачественными наблюдениями, посредственными интеллектуальными достоинствами или недостаточным пониманием физики. Мне кажется, что сегодня мы более самокритичны, чем были ученые в 1899 г., что благодаря большему количеству астрономов мы проверяем результаты друг друга чаще и что отчасти благодаря существованию таких организаций, как Американское астрономические общество, стандарты обмена результатами и их обсуждения значительно повысились. Я надеюсь, что наши коллеги в 2049 г. согласятся с этим.
Главными достижениями 1899–1974 гг. были технологии. Но в 1899 г. был создан самый большой в мире рефрактор. Он все еще является самым большим в мире. Начали разрабатывать зеркальный телескоп с апертурой 100 дюймов. За прошедшие годы мы увеличили апертуру только в два раза. Но что наши коллеги из 1899 г. – живущие после Герца, но до Маркони – сделали бы с помощью обсерватории Аресибо, или Очень большой антенной решетки, или радиоинтерферометрии со сверхдлинными базами (РСДБ)? Или если бы стали разрешать споры о периоде вращения Меркурия посредством радиолокационной спектроскопии Доплера? Или проверяли бы природу лунной поверхности, привезя грунт на Землю? Или исследовали бы проблему природы и обитаемости Марса, обращаясь вокруг него по орбите в течение года и сделав 7200 фотографий, качество каждой из которых выше, чем лучшие фотографии Луны 1899 г.? Или высадились бы на планету с системами формирования изображений, оборудованием для микробиологических исследований, сейсмометрами и газовым хроматографом / масс-спектрометрами, которых в 1899 г. не существовало даже в мыслях? Или тестировали бы космологические модели посредством орбитальной ультрафиолетовой спектроскопии межзвездного дейтерия, когда в 1899 г. не были известны ни модели для тестирования, ни существование атома, который их тестирует, не говоря уже о методах наблюдения?
Ясно, что за прошедшие 75 лет американская и мировая астрономия продвинулась далеко от даже самых смелых размышлений астрономов поздневикторианской эпохи. А за следующие 75 лет? Мы можем делать только скучные прогнозы. Мы полностью изучим электромагнитный спектр от довольно коротких гамма-лучей до довольно длинных радиоволн. Мы пошлем автоматические космические аппараты на все планеты и большинство спутников Солнечной системы. Мы запустим космический аппарат к Солнцу, чтобы экспериментальным путем изучить строение звезды, начав, возможно, – из-за низких температур – с солнечных пятен. Хейл бы это оценил. Я считаю вполне возможным, что через 75 лет мы запустим субрелятивистский космический корабль, путешествующий со скоростью около 0,1 скорости света, к ближайшим звездам. Среди других преимуществ такие миссии позволят непосредственно изучить межзвездную среду и дать нам более длинную базовую линию для РСДБ, чем многие могут вообразить сегодня. Нам нужно будет изобрести новую превосходную степень, чтобы обозначать «очень», – возможно, «ультра». Природа пульсаров, квазаров и черных дыр должна быть к тому времени хорошо изучена, а также получены ответы на некоторые фундаментальные космологические вопросы. Даже возможно, что мы установим регулярное сообщение с цивилизациями на планетах других звезд и будем получать знания об астрономии, а также многих других науках из своего рода Галактической энциклопедии, которую будут посылать на очень высоких скоростях на некую огромную систему радиотелескопов.
Но, когда люди будут читать про астрономию спустя три четверти века, я думаю, кроме межзвездных контактов, эти достижения, хотя и интересные, будут считаться довольно старомодной астрономией и что реальные границы и фундаментальный научный интерес будет сосредоточен в областях, которые зависят от новой физики и новых технологий, о которых сегодня мы можем в лучшем случае догадываться.
Назад: Глава 20 В защиту роботов
Дальше: Глава 22 Поиск внеземного разума