Книга: Краткая история науки
Назад: Глава 33 Движущиеся континенты
Дальше: Глава 3 5 Откуда мы произошли?

Глава 34
Зарождение современной генетики

 

На кого вы похожи больше, на маму или папу? Может быть, на дедушку или тетю? Вдруг вы хорошо бегаете или умеете играть на скрипке или гитаре… кто-нибудь еще в вашей семье тоже обладает подобными талантами? Это должен быть кто-то, с кем вы связаны биологически, а не просто родственники благодаря браку, как мачеха или отчим.
И тот и другой могут быть отличными людьми, многое дать вам, но вы не в состоянии унаследовать их гены.
Теперь мы знаем, что вещи вроде цвета глаз или волос контролируются и передаются из поколения в поколение именно генами. Генетика – наука об этих генах. Слово «наследственность» мы обычно используем, чтобы описать ту информацию, которую они хранят и передают. Наши гены решают очень многое в том, какие мы есть.
Но как же люди узнали, что эти маленькие штуковины настолько важны?
Давайте на мгновение вернемся к Чарльзу Дарвину (глава 25); наследственность была центральной частью его работ, на нее опирались его гипотезы эволюции, пусть даже он не знал, как именно она работает. Биологи продолжили спорить по этому поводу долгое время после появления «О происхождении видов» в 1859 году.
В особенности они интересовались таким гипотетическим феноменом, как «мягкая» наследственность. Эту идею предложил французский натуралист Жан-Батист Ламарк (1744–1829), тоже веривший, что новые виды появляются благодаря эволюции.
Подумайте о длинной шее жирафа: как она могла появиться с течением времени? Ламарк утверждал, что она возникла потому, что жирафы постоянно тянулись вверх, чтобы добраться до листьев на высочайших деревьях, и небольшие изменения постепенно накапливались и передавались из поколения в поколение.
Если у вас есть достаточно времени и достаточно тянущего усилия, то из короткошеего животного в конечном счете получится длинношеее. Окружающая среда таким образом взаимодействует с организмом, формируя его в процессе адаптации и передавая признаки дальше и дальше.
Попытки экспериментально доказать мягкую наследственность сталкивались с трудностями. Кузен Дарвина. Френсис Гальтон (1822–1911) провел серию продуманных опытов, в которых он переливал кровь черных кроликов белым. Потомки белых кроликов, подвергшихся этой процедуре, не показывали ни малейших признаков черной шкуры. Отрезая хвосты крысам из поколения в поколение, он не смог вывести вид бесхвостых грызунов.
Обрезание, которое у некоторых народов делают мальчикам, не приводит к тому, что их дети рождаются уже обрезанными.
Аргументы за и против активно обсуждались до начала двадцатого века, а затем две вещи убедили большую часть биологов, что черты, приобретенные животными и растениями на протяжении жизни, не передаются их потомкам просто так. Первой стало обнаружение забытых работ монаха из Моравии. Грегора Менделя (1822–1884). Еще в 1860-х Мендель опубликовал (в мало кем читаемом журнале) результаты собственных экспериментов в монастырском саду.
Он активно интересовался садовым горошком, и происходило это еще до того, как Гальтон начал отрезать хвосты крысам. Мендель размышлял, что случится, когда растения с определенными характеристиками будут тщательно скрещены между собой (например, растения с одинаковым цветом горошин). Горошек хорошо подходил для опытов, поскольку он быстро растет и очень легко и просто перейти от поколения к поколению. А еще у стручков четко выражены различия: либо желтый, либо зеленый горох, либо сморщенный, либо с гладкой кожицей.
Мендель обнаружил, что эти черты наследуются с математической точностью, но таким образом, который не так легко объяснить. Если растение с зелеными горошинами (семенами, иначе говоря) скрещивали с растением с желтыми, все растения нового поколения были с желтыми, но когда уже они скрещивались друг с другом, то во втором поколении три растения из четырех имели желтый горох, а одно – зеленый.
Желтый признак-цвет доминировал в первом поколении, но во втором «рецессивный» признак (зеленый) вновь давал о себе знать. И что все это могло значить? Мендель сделал вывод, что наследственность делится на части, что растения и животные наследуют разные черты по отдельности. Вместо последовательного изменения мягкой наследственности или передачи среднего качества от двух родителей наследственность оказалась чем-то дискретным. Горошины были либо желтыми, либо зелеными.
В то время как работа Менделя лежала незамеченной. Август Вейсман (1834–1914) нанес второй мощный удар по теории мягкой наследственности. Там, где Менделя могли остановить религиозные убеждения. Вейсман в первую очередь оставался решительным ученым. Блестящий немецкий биолог, он до глубины души верил, что эволюционная теория Дарвина верна, но в то же время видел, что в ней есть существенная лакуна, касающаяся наследственности.
Чтобы ее заполнить. Вейсман обратился к своему увлечению клетками и процессом их деления.
Несколькими годами ранее, чем Мендель начал свои исследования с горохом. Рудольф Вирхов опубликовал свои теории по поводу того, как делятся клетки (глава 26). В 1880–90-х Вейсман увидел, что заставляет яйцеклетку или клетку спермы, «материнскую» клетку репродуктивной системы, делиться таким образом, который отличается от клеточного деления во всем остальном теле.
И в этом различии обнаружился ключ к наследственности.
Процесс мейоза состоит в том, что хромосомы делятся и половина хромосомного материала попадает в каждую из родившихся «дочерних» клеток. Во всех остальных случаях дочерняя клетка обладает точно тем же объемом хромосомного материала, что и материнская.
Если вы смущены, вспомните, что материнская клетка – просто любая клетка тела, разделившаяся на две. Они находятся по всему телу и не имеют отношения к настоящим матерям или дочерям.
Итак, когда яйцеклетка и клетка спермы сливаются, две половины хромосомного материала формируют полный набор и у нас получается оплодотворенная яйцеклетка. Репродуктивные клетки отличаются от всех прочих клеток нашего организма, и Вейсман утверждал, что не имеет значения происходящее со всеми остальными клетками тела, мускулов, костей, кровеносных сосудов, нервов, что только репродуктивные клетки содержат то, что можно унаследовать.
И в случае с жирафами предполагаемое вытягивание шеи не могло оказать воздействие на яйцеклетки или сперму животных, на содержащееся в них вещество, названное «зародышевой плазмой». Именно зародышевая плазма, хромосомы яйцеклетки и клетки спермы, и является тем, что наследуется, так что Вейсман назвал свою гипотезу «непрерывность зародышевой плазмы».
В 1900 году не один, а сразу три ученых стряхнули пыль с копий журнала, в котором была напечатана статья Менделя. Они и поведали научному миру о результатах экспериментов с горохом, и биологи поняли, что Мендель обеспечил лучшее экспериментальное доказательство для гипотезы «непрерывности» Вейсмана, и «менделизм», как его вскоре назвали, обрел прочную научную основу.
Но ученый мир быстро разделился на две группы, на поклонников Менделя и «биометристов». Последние, ведомые экспертом по статистике Карлом Пирсоном (1857–1936), верили в «непрерывную» наследственность, но полагали, что мы получаем нечто среднее от черт наших родителей.
Представители этой научной ветви провели обширную полевую работу, фиксируя отличия разных морских существ и улиток. Они показали, что небольшие вариации могут играть важную роль в том, какое количество потомков конкретного существа выживет, и в конечном счете в репродуктивном успехе вида.
Менделианцев возглавлял биолог из Кембриджа по имени Уильям Бэтсон (1857–1936), и именно он ввел в оборот термин «генетика». Менделианцы подчеркивали, что наследственность касается отдельных черт, как это и продемонстрировал монах, давший имя их направлению. Они утверждали, что биологические изменения происходят скачками, а вовсе не в процессе медленного, постепенного изменения, о котором говорили биометристы.
Обе группы верили в эволюцию, они спорили о том, как она движется.
Серьезные дискуссии продолжались почти двадцать лет, а затем в 1920-х несколько исследователей показали, что каждая группа в одно и то же время и была права, и заблуждалась. Они просто смотрели на две разные стороны одной и той же проблемы. Многие биологические характеристики наследуются в смеси, биометрическим образом: у высокого отца и маленькой матери может родиться ребенок среднего роста, хотя может родиться и такой высокий, как отец (и даже выше); но средний рост их детей будет находиться где-то между показателями родителей.
Другие характеристики, например, цвет глаз, или цвет горошин, наследуются в стиле «или-или», никогда не смешиваются. Разница между менделианцами и биометристами оказалась ликвидирована, когда стало возможным изучать целые популяции и приложить к проблеме математический аппарат.
Биологи нового поколения, такие как Д. Б. С. Холдейн (1892–1964), отдали должное гениальным озарениям Дарвина. Они сообразили, что в любой популяции есть вариация, которая может быть унаследована. Если она дает преимущество, то обладающие ей животные и растения выживут, а другие вариации отомрут.
Но то, как мы наследуем то, что наследуем – тоже очень важный вопрос, следующая часть загадки.
Большая часть работы над ней была проделана в лаборатории Томаса Ханта Моргана (1866–1945) в Колумбийском университете Нью-Йорка. Он начал карьеру, наблюдая за ранними стадиями развития живых существ, за их эмбрионами, и впоследствии никогда не терял интереса к эмбриологии, но в начале нового века стал заниматься еще и генетикой.
Лаборатория Моргана не была обычным местом, ее прозвали мушиной комнатой, поскольку она стала домом для тысяч поколений обычной плодовой мушки (Drosophila melanogaster). Дрозофила – очень удобное для экспериментов существо, у нее только четыре хромосомы в ядре клетки, и именно роль хромосом хотел узнать американский ученый: насколько они важны в процессе передачи наследственных черт? Хромосомы дрозофилы велики, и их легко изучать под микроскопом, сами мушки плодятся очень быстро; оставьте кусочек яблока на тарелке и просто наблюдайте, что произойдет.
Большое количество поколений может быть изучено за короткий период времени, и это позволяет увидеть, что происходит, когда мухи с определенными характеристиками скрещиваются с другими. Вообразите, как будет выглядеть работа такого рода со слонами, и вы поймете, почему Морган выбрал дрозофил.
Его мушиная комната стала знаменитой, привлекала внимание студентов и других ученых. Она стала первым образцом того, как большая часть науки делается в наше время: группа исследователей работает под руководством главы проекта – Моргана, который помогает определять проблемы, наблюдает, как идет дело у его более молодых подчиненных, ну а те ведут собственно эксперименты, каждый свою линию.
Морган побуждал коллег работать вместе и обсуждать все в открытую, так что было сложно определить, кто именно что сделал. Когда Морган выиграл Нобелевку, он разделил приз с двумя учеными из своей команды.
Почти случайно Морган сделал важное открытие, он заметил, что одна муха из очередного выводка имеет красные глаза вместо обычных белых. Он изолировал эту муху, а потом скрестил с другой, обычной, и занялся изучением их потомства. Вскоре стало ясно, что все отпрыски этой пары, унаследовавшие красные глаза – женского пола, то есть ген переносится половой хромосомой, той самой, которая определяет, к какому полу будет принадлежать существо. Ну и шаблон наследования в данном случае не отклонялся от найденных Менделем правил – глаза были либо белыми, либо красными, но никогда розовыми или еще какого-то смешанного цвета.
Морган исследовал и то, как у крошечных мух передаются по наследству и другие черты – размер и форма крыльев, например. Он и его коллеги изучили хромосомы дрозофил под микроскопом и начали составлять карты каждой из хромосом, отмечая, где расположены единицы наследования («гены», как они были названы) каждого из передаваемых признаков. Мутации (изменения), такие как неожиданное появление красных глаз, могли помочь в определении того, где лежит тот или иной ген, ну а ученые продолжали разбираться с тем, что происходит с хромосомами в процессе деления клетки.
Один из студентов Моргана, X. Дж. Мюллер (1890–1967) обнаружил, что рентгеновское излучение вызывает более быстрые мутации. Он получил Нобелевскую премию в 1948 году, и его работа изменила мир, показав всю опасность радиации, возникающей не только при взрыве атомной бомбы, но и при обычной рентгенографии.
Морган также продемонстрировал, что хромосомы иногда обмениваются материалом, когда делятся. Подобное событие именуется кроссинговер, или перекрест хромосом, и это еще один способ, каким природа увеличивает количество вариаций в животном и растительном мире.
Морган и его группа, а также многие другие ученые по всему миру сделали генетику одной из наиболее популярных наук между 1910-м и 1940-м. «Ген» постепенно признали как явление, имеющее вполне материальное воплощение. Локализованные в хромосоме гены передаются посредством яйцеклетки, оплодотворенной клеткой спермы, и вклад предков в потомство является одинаковым.
Доказанным стал факт, что мутации двигают вперед колесо эволюции, создают новые вариации и естественным образом это происходит так же легко, как и в лаборатории Мюллера. Новая генетика сосредоточилась на вопросах эволюции, пусть даже сам по себе ген остался ненайденным. Его реальность никто не подвергал сомнению.
Новое генетическое мышление в то же время оказало не самое благотворное влияние на общество. Если не существует мягкой наследственности, то занятия спортом, диета или хорошее поведение никак не смогут изменить гены ваших детей.
Но должны быть другие методы, позволяющие улучшить людей будущих поколений!
Искусственный отбор Дарвина люди практиковали столетиями, селекционеры выводили новые породы животных и сорта растений с такими характеристиками, какие им требовались: коровы, способные давать больше молока, томаты с более сочными плодами. В 1904 году Френсис Гальтон, кузен Дарвина, основал евгеническую лабораторию, он предложил слово «евгеника», образованное от древнегреческого словосочетания «хорошего рода».
В своей лаборатории Гальтон попытался изменить продуктивные привычки человеческих существ. Если ум, творческие способности, преступные наклонности, безумие или лень могут проявлять себя внутри определенных семей (а Гальтон верил, что могут), то есть смысл в том, чтобы поощрять «хороших людей» к тому, чтобы у них было больше детей (позитивная евгеника), и предотвращать то, чтобы «плохие» заводили много отпрысков (негативная евгеника).
Позитивная евгеника стала обычным делом в Британии, проводились агитационные кампании, убеждавшие пары из образованного среднего класса заводить больше детей, и все это опиралось на убеждение, что эти пары «лучше», чем обычные рабочие и их жены. В конце девятнадцатого века британское правительство оказалось поражено тем, насколько плохо выглядели рекруты, завербованные для войны с бурами в Южной Африке. Большое количество волонтеров было отвергнуто из-за непригодности, поскольку они не могли даже нести ружье.
Затем Первая мировая война, затянувшаяся на четыре года (1914-18) мясорубка в Европе. Многие предполагали, что на ее полях погибли как раз лучшие люди континента. Нации Запада оказались обеспокоены по поводу качества и силы их собственной популяции.
Негативная евгеника оказалась вещью куда более мрачной, но многие полагали, что разумным будет изолировать людей с ментальными нарушениями или отклонениями, преступников, инвалидов и всех остальных маргиналов. В США многие штаты приняли законы, вводившие стерилизацию, чтобы лишить подобных людей возможности иметь детей. С начала тридцатых до поражения в войне нацисты в Германии практиковали еще худшие жестокости. Во имя своих идей они сначала посадили в заключение, а затем и убили миллионы людей, не достойных, по их мнению жить, – евреев, цыган, гомосексуалистов, тех, кто имел умственные отклонения, преступников.
Их всех собрали и либо уничтожили, либо отправили в концентрационные лагеря.
Деяния, совершенные нацистами, сделали «евгенику» грязным словом, но как мы вскоре увидим, некоторые люди верят, что она может вернуться через заднюю дверь после того, как ученые узнают больше о наследственности, о том, как она влияет на то, что мы есть. Мы все нуждаемся в науке, но мы должны сделать так, чтобы она никогда не использовалась во зло.
Назад: Глава 33 Движущиеся континенты
Дальше: Глава 3 5 Откуда мы произошли?