Книга: Краткая история науки
Назад: Глава 25 Величайшее шоу на Земле
Дальше: Глава 27 Кашель, чихание и заболевание

Глава 26
Маленькие коробочки жизни

 

Существуют вещи, которые мы просто не в состоянии увидеть или услышать. Многие звезды находятся за пределами нашего взгляда, нам недоступны атомы или даже крошечные создания, кишащие в лужицах дождевой воды. Мы не различаем звуки, которые способны уловить многие птицы или обыкновенные мыши.
Но мы можем исследовать эти явления тоже, задавать вопросы и использовать инструменты, которые позволяют нам увидеть или услышать то, что недоступно невооруженному глазу или уху. И точно так же как телескопы дают возможность изучать бездны космоса, микроскопы становятся для нас окошками в микромир, населенный крошечными строительными блоками, из которых состоят живые существа.
В семнадцатом веке пионер микробиологии Антони ван Левенгук использовал небольшой микроскоп, чтобы взглянуть на клетки крови или на волоски, украшающие ногу мухи. Столетием позже более совершенные приборы позволяли натуралистам изучать эти анатомические детали в подробностях и взяться за множество крошечных живых существ.
«Составной» микроскоп позволил добиться еще большего увеличения: он представляет собой трубу с двумя линзами, вторая увеличивает изображение, созданное первой, так что вы получаете дважды увеличенный образ.
Многие мыслители прошлого не доверяли микроскопам всецело, ранние образцы составных микроскопов создавали искажения или даже иллюзии разных видов – например, странные цвета или линии там, где ничего не было. Но в то время имелись только грубые методы подготовки образцов для изучения – отделения их и закрепления на предметном стекле (тонкой стеклянной пластине). Вследствие этого отдельные ученые считали, что возня с подобными приборами не стоит усилий.
Но все же врачи и биологи хотели понять, как функционируют наши тела, причем со всей возможной точностью. Во Франции Ксавье Биша (1771–1802) начал исследовать разные субстанции – то, что мы называем «тканями», – твердые наподобие костей, мягкие, как жир, или жидкие вроде крови, все, из которых состоит человеческое тело.
Биша понял, что некоторые разновидности тканей ведут себя сходным образом вне зависимости от того, в какой части организма находятся. Таким образом, все мускулы состоят из похожей ткани, и не важно, что их сокращения приводят в движение руки, ноги или голову. Все сухожилия (то, что соединяет мускулы и кости) или тонкая прослойка, именуемая серозной тканью (она, например, окружает сердце) – одинаковы по всему телу.
Изучение клеток и тканей получило имя «гистология», и Биша назвали «отцом гистологии». Но при этом французский ученый с подозрением относился к микроскопам, он использовал простое увеличительное стекло.
Работы Биша вдохновили других ученых заняться растениями и животными и теми крохотными «строительными блоками», из которых состоят эти существа. В самом начале девятнадцатого века существовало несколько конкурирующих гипотез по поводу того, какими являются эти самые блоки. Затем технические проблемы, имевшиеся у составных микроскопов, были разрешены во Франции и Британии (в 20-х годах), и с этого времени ученые, использующие эти инструменты, могли быть уверены, что они видят то, что есть на самом деле.
В 1830-х новые микроскопы помогли двум немецким исследователям доказать, что «кирпичики жизни» на самом деле клетки и что все растения и животные состоят из клеток. Одним из этой пары был ботаник Маттиас Шлейден, другим – врач Теодор Шванн (1810–1872). Шванн изучал то, как функционируют клетки и как они появляются.
В клетках растений и животных имеет место активность, делающая возможными такие феномены, как движение, переваривание пищи, дыхание и восприятие окружающего мира. Клетки действуют вместе, и понимание того, как это происходит, является ключевым, если вы хотите понять, как функционируют живые существа всех видов.
Когда вы наносите себе повреждение – скажем, порезали палец, – вырастает новая кожа, чтобы исцелить рану. Но если ткани состоят из клеток (а кожа тоже вид ткани), то откуда берутся новые клетки?
Шванн интересовался химией, и он предположил, что новые клетки кристаллизуются из особой жидкости, точно так же как в лаборатории кристаллы выращивают из определенных растворов. Он хотел выяснить, как формируется зародыш в яйце или в утробе животного, и также размышлял о том, откуда возникают клетки, когда вы зарабатываете царапину или синяк.
Как врач Шванн видел, что область вокруг повреждения становится красной и может раздуваться от клеток гноя. Эти клетки, считал он, кристаллизуются из жидкости, которая появляется при возникновении опухоли. Это интересная гипотеза, в которой сочетаются достижения химии и биологии, но быстро стало ясно, что она слишком проста.
По мере того как улучшались микроскопы, больше и больше ученых начинало наблюдать за жизнью клеток. Одним из наиболее известных исследователей в этой области стал Рудольф Вирхов (1821–1902). Человек широких интересов, большей частью патолог, он также активно занимался общественным здоровьем, политикой, антропологией и археологией (он помогал на раскопках древней Трои, о которой Гомер написал за восемь веков до н. э.).
В пятидесятых годах девятнадцатого века Вирхов начал размышлять, что клеточная теория может значить для медицины и для науки о болезнях, именуемой патологией. Подобно Шванну он считал клетки основой любого живого существа, и человека тоже. Понимание их функций и при здоровом, и при больном состоянии помогло бы создать новый вид медицины, научной в полном смысле слова.
Свои идеи Вирхов изложил в очень важной книге, названной «Целлюлярная патология» (1858). Он показал, что болезни, от которых доктора лечат пациентов и последствия которых могут позже наблюдать во время аутопсии (изучая тела после смерти), всегда являются последствием того, что происходит в мире клеток. Например, рост раковых опухолей (которыми Вирхов интересовался в особенности), воспаление, когда возникают гной и опухоль, и даже сердечные хвори.
«Учись смотреть микроскопически», – всегда учил он своих студентов во время занятий по патологии: обязательно заглядывай на клеточный уровень.
Вирхов комбинировал результаты великолепных собственных наблюдений с глубокими размышлениями в области биологии. Он считал, что «все клетки происходят от других клеток», и именно в этом пошел дальше Шванна.
Вирхов имел в виду, что гнойные клетки в воспаленной опухоли – после занозы или царапины, например – на самом деле порождаются другими клетками, а не кристаллизуются из некоей жидкости. Он также сделал заключение, что клетки рака вырастают из других клеток, которые по каким-то причинам стали вести себя неправильно и продолжили делиться, когда настало время остановить этот процесс.
Каждая клетка, которую мы можем рассмотреть под микроскопом, произведена уже существующей клеткой (известной как «материнская клетка»), разделившейся на две «дочерние» клетки. И в самом деле, по мере того как биологи продолжали наблюдения, они чаще и чаще видели процесс деления. Еще они заметили, что внутренности клеток, по всей видимости, изменялись; когда клетка делилась на две, происходило нечто особенное.
Исследования более раннего времени уже показали, что клетка не просто мешок, наполненный однородным веществом. В 1830-х британский ботаник Роберт Браун (1773–1858) доказал, что в каждой клетке имеется некий центральный компонент, ядро, и он выглядит темнее, чем окружающая субстанция.
Браун изучил большое число клеток под микроскопом и убедился, что ядро есть у всех. Вскоре все ученые приняли идею ядра, и остальная материя, находящаяся внутри клетки, получила название «протоплазма».
Это слово обозначает буквально «первоформа», нечто, оформившееся первым, и его использовали, поскольку в то время протоплазму воспринимали как живое вещество внутри клетки, чья функция – дать жизнь разным существам. Со временем в клетке были обнаружены другие структуры, помимо ядра, и все они получили свои имена.
Ученые быстро приняли открытие ядра и прочих частей клетки, но совсем другая история оказалась с очень старым спором вокруг гипотезы «самопроизвольного возникновения». Ее сторонники утверждали, что гниющее мясо и застойная вода порождают множество разновидностей крошечных, но живых существ. Люди издавна знали, что если оставить кусок мяса на столе, то через пару дней в нем появятся личинки. Они не знали, что мухи откладывают яйца и личинки выводятся уже из тех, и поэтому не могли придумать никакого другого объяснения, кроме самопроизвольного возникновения.
Рассмотрите каплю воды из пруда под микроскопом, и вы увидите, что в ней просто кишит всякая мелочь.
Откуда она там взялась?
Ученые девятнадцатого века чаще всего отвечали, что все эти существа возникли или были рождены вскормившей их окружающей средой с помощью некоего химического процесса. Это был общий подход к проблеме, и на первый взгляд в нем содержалось рациональное зерно.
Поскольку личинок не было в мясе, когда его оставляли на столе, как еще объяснить их появление, если не принять, что разлагающаяся плоть породила этих отвратительных маленьких существ? При этом мало кто думал, что более сложные организмы – такие как слоны или дубовые деревья – возникают самопроизвольно, но самые простые формы жизни, по всей видимости, зарождались сами по себе исключительно потому, что изменялась окружавшая их среда.
Даже гипотеза Шванна о клетках, кристаллизующихся из жидкости, была частью идеи о самопроизвольном возникновении, в ней живые клетки появлялись из неживого материала.
Натуралисты семнадцатого и восемнадцатого веков думали, что доказали – такой процесс невозможен, но проблема не исчезла. Самопроизвольное возникновение стало темой горячего спора, разгоревшегося в середине девятнадцатого века между двумя французскими учеными. Триумфатор в конечном счете убедил научное сообщество, что такого феномена не существует, но не все так просто, дело в том, что победитель (он оказался прав) играл не совсем честно.
Первым из этих двух ученых был химик Луи Пастер (1822–1895), и в 1850-х он начал подозревать, что живые клетки способны на удивительные вещи. Он занимался изучением химических свойств различных соединений, но работал и с ферментацией, процессом, с помощью которого виноград превращается в вино, а мука становится готовым для выпечки тестом, но в том и другом случае требуется добавить дрожжи.
До Пастера думали, что ферментация – один из видов химических реакций, где дрожжи выступают в качестве катализатора, ускоряя процесс, но сами при этом не меняясь. Пастер показал, что ферментация – биологический процесс, причиной которого являются дрожжи как живые организмы, их жизненный цикл, основанный на сахарах винограда или муки.
Клетки дрожжей делились, чтобы произвести новые клетки, и в процессе своей активности либо производили алкоголь в вине, либо делали тесто пышным и легким. Конечно, эти процессы нужно было прервать вовремя посредством нагревания материала. Если позволить дрожжам размножаться дальше, то вино превратится в уксус, а тесто потеряет вкусовые качества.
И Пастер задумался – если так все обстоит при ферментации, то почему бы микроорганизмам вроде дрожжей не быть вовлеченным в реакции, которые считаются химическими, вроде самопроизвольного возникновения? И он вступил в публичный спор со своим соратником, который был сторонником древней гипотезы, с Феликсом Пуше (1800–1872).
В серии экспериментов Пастер кипятил смесь воды и соломы, чтобы сделать их стерильными. Затем он оставлял этот «суп» на открытом воздухе, чтобы в него могли осаждаться частички пыли. Обычно, если исследовать оставленную в таких условиях жидкость через несколько дней, то будет видно, что она кишит микроорганизмами. Пастер же продемонстрировал, что если не дать частичкам пыли попадать в раствор, тот так и останется стерильным.
Чтобы показать, что микроорганизмы приносятся пылью извне, а не воздухом самим по себе, он спроектировал особый сосуд с изогнутым горлышком – как шея лебедя, – через которое проходил воздух, но не проходила пыль.
Когда Пуше провел тот же самый опыт, то в его сосуде через несколько дней обнаружились микроорганизмы. Он воспринял это как доказательство гипотезы самопроизвольного возникновения, ну а Пастер заявил, что его конкурент недостаточно тщательно проводил стерилизацию перед экспериментом, и вообще всегда отличался ленью.
Пастер тогда победил, пусть он даже замалчивал результаты собственных экспериментов, если они не показывали то, что он хотел, а демонстрировали правоту Пуше. Триумфа он добился частью потому, что был упорным, решительным ученым, верившим в свою правоту, но частью и потому, что утверждение Вирхова «все клетки порождаются клетками» в то время набирало популярность.
Люди хотели верить Пастеру потому, что его теории были большим шагом вперед по сравнению со всем остальным, и это иногда тоже очень важно в науке.
Использование микроскопов позволило биологической и врачебной науке очень сильно продвинуться вперед. Совершеннее стали как сами приборы, так и инструменты для подготовки образцов. Большое значение приобрели химикалии, дававшие красящий эффект, поскольку они помогали окрашивать и выделять те части клеточной структуры, которые в противном случае ускользнули бы от рассмотрения.
После «окрашивания» ядра, например, стало ясно, что внутри него расположены нитеподобные объекты, позже названные «хромосомами» («хромо» по-гречески означает «цвет»). Когда клетка делится, то хромосомы выглядят так, словно они распухают.
Значение этого открытия и функции других частей клетки, открытых в то время учеными, были осознаны только в двадцатом веке, но врачи и биологи века девятнадцатого начали их изучение. Сверх всего они показали, что, если ты хочешь понять, как функционирует организм животного или растения в здоровом или больном состоянии, ты должен начать с клеток, из которых этот организм состоит.
Один вид клеток – одноклеточный организм, именуемый «бактерией» – оказался исключительно важным в нашем понимании болезней.
На этом мы не расстаемся с Луи Пастером, поскольку он сыграл центральную роль в установлении связи между микробами и болезнями и благодаря ему мы узнали гораздо больше о том, какое значение имеют микроорганизмы во многих аспектах повседневной жизни.
Назад: Глава 25 Величайшее шоу на Земле
Дальше: Глава 27 Кашель, чихание и заболевание