Книга: Карнавал молекул. Химия необычная и забавная
Назад: Кратко о самом лауреате
Дальше: Создать главу в химической науке

Провести реакцию – как кликнуть мышкой

Добившись успехов в асимметрическом катализе, Шарплесс изменил область интересов. Все началось с того, что он сформулировал набор требований к органическим реакциям нового типа. Список выглядел следующим образом:

а) условия проведения реакции должны быть простыми, желательно без нагрева;

б) исходные реагенты должны быть доступны и охватывать широкий круг реакций;

в) используемые растворители должны быть распространенными и нетоксичными (предпочтительна вода);

г) выделение продукта из реакционной смеси должно быть простым;

д) реакция должна протекать с высоким выходом основного продукта;

е) продукт реакции в процессе синтеза не должен вступать в побочные реакции;

ж) побочные продукты вообще нежелательны, а если они образуются, то должны быть инертными;

з) реакция должна протекать быстро.

При знакомстве с этим списком требований возникает ощущение, что Шарплесс просто изложил мечту каждого химика. Вероятно, многие химики-органики могли бы составить похожий список как символ несбыточных грез. Но Шарплесс сумел найти реакцию, удовлетворяющую перечисленным параметрам. Оказалось, что это давно известная реакция Артура Михаэля, открытая еще в 1893 г.: взаимодействие алкинов (производных ацетилена) с азидами (соединениями, содержащими группировку N3). В результате образуется триазольный цикл, т. е. цикл с тремя атомами N (рис. 6.5).





Ранее эта реакция не представляла никакого интереса, поскольку протекала очень медленно (в течение суток при 120 °С) и с низким выходом основного продукта.

Все резко изменилось после того, как в 2002 г. замысел Шарплесса решил реализовать его коллега Валерий Фокин (рис. 6.6), о котором следует рассказать немного подробнее. Выпускник Нижегородского государственного университета, а сейчас профессор калифорнийского Института Скриппса, В. Фокин работает еще и в Московском физико-техническом институте над совместным проектом, а также возглавляет открытую недавно лабораторию химического синтеза на базе этого института. В 2013 г. международные агентства предсказывали ему получение Нобелевской премии за работу, о которой далее пойдет речь, но пока этого не произошло.







Итак, В. Фокин нашел катализатор реакции Михаэля – это соединения одновалентной меди Cu+. С такими катализаторами реакция протекает в воде почти мгновенно и без образования побочных продуктов, т. е. требования к «идеальной» реакции, перечисленные Шарплессом, удалось реализовать. Шарплесс назвал ее клик-реакцией (click-reaction) по аналогии с нажатием на клавишу компьютерной мыши.

Буквально сразу же многие химики-органики стали изучать эту реакцию, используя различные производные алкинов и азидов. По общему мнению, успех был ошеломляющий, и скоро в литературе появился новый термин «клик-химия» (click-chemistry).

На самом деле Шарплесс, формулируя перечисленные выше требования, имел в виду не всю химию вообще, он мысленно ориентировался на биохимические исследования. Особую ценность найденной реакции придает то обстоятельство, что азиды и триазолы (участники клик-реакции) не встречаются в живых организмах и инертны к веществам, которые присутствуют в биологических средах. Поэтому если в природную молекулу ввести ацетиленовый фрагмент – С≡СН, то органический азид N3–R будет присоединяться исключительно к этой определенной молекуле. При этом присоединившийся азид может содержать метку: например, такую, которая флуоресцирует в ультрафиолетовом свете. Специалисты по клик-реакциям называют подобные «довески» молекулами-репортерами, которые позволяют следить за объектом и при этом не нарушают идущие в нем процессы (в отличие от обычной жизни, где различные репортеры иногда мешают какому-нибудь мероприятию ☺).

В результате клик-реакции нашли множество применений: зондирование и ингибирование ферментов, наблюдение за синтезом протеинов и ДНК, прикрепление флуоресцентных меток к вирусам и многое другое.

Тем не менее найденный метод, превосходно «работающий» на препарированных образцах, оказался непригоден для изучения живых организмов, поскольку катализаторы – соединения Cu+ – токсичны. Эту трудность удалось преодолеть; оказалось, что если изменить строение реагента, содержащего ацетиленовый фрагмент, например ввести – C≡C- в состав восьмичленного углеродного цикла, то клик-реакция протекает столь же быстро и однозначно без катализаторов (рис. 6.7).

В результате появилось направление «клик-химия без меди» (Copper-free Click Chemisty). В настоящее время созданы крупные базы исходных реагентов для клик-реакций, содержащих фрагменты аминокислот, нуклеотидов, флуоресцентных красителей. Все это позволяет направленно модифицировать биологические объекты и наблюдать за их превращениями в клетках.







Клик-реакции «вошли» также в полимерную химию, в этом случае присутствие каталитических ионов меди уже не было препятствием. При взаимодействии молекул, содержащих по две реагирующие группы (две азидных и две ацетиленовых группировки), образуются полимерные молекулы. Это особый способ формирования полимерных цепей, отличающийся от традиционных, таких как полимеризация кратных связей или поликонденсация, которая сопровождается выделением побочных продуктов, а при использовании клик-реакции побочные продукты отсутствуют (рис. 6.8).







Если каждый исходный реагент содержит не две, а три реагирующие группы, то их взаимодействие приводит к образованию сшитой полимерной сетки (рис. 6.9).

Попутно выяснилось, что в качестве катализатора можно использовать также металлическую медь. Благодаря этому скорость образования сшитых полимерных цепей можно весьма эффектно продемонстрировать: на торцевую поверхность медного цилиндра наносят азидсодержащий реагент, а на торец второго цилиндра – ацетиленсодержащий, затем торцы плотно соединяют. Склеивание происходит почти мгновенно, а получающийся шов необычайно прочен.







Если в прежние годы имя Шарплесса связывали с асимметрическим катализом окисления, то в настоящее время Барри Шарплесса и Валерия Фокина называют создателями клик-химии.

Назад: Кратко о самом лауреате
Дальше: Создать главу в химической науке