Книга: Человек + машина. Новые принципы работы в эпоху искусственного интеллекта
Назад: Глава 6. Сверхрезультаты обычных людей
Дальше: Глава 8. Расширение взаимодействия человека и машины

Глава 7. Руководство по переосмыслению бизнес-процессов от лидеров

* * *

Пять шагов для успешного старта
В предыдущих двух главах мы тщательно проанализировали вопрос о том, как в одной части «недостающей середины» люди строят машины и управляют ими, а в другой машины фактически наделяют людей сверхспособностями. Концепция «недостающей середины» лежит в основе наших размышлений о том, что в эпоху искусственного интеллекта люди и машины лучше всего работают вместе, а также что понимание этого факта играет важнейшую роль в переосмыслении бизнес-процессов. Однако остается один важный вопрос: в чем заключаются реальные шаги по переосмыслению бизнес-процессов? Как должны действовать руководители?
На основании наблюдений за компаниями, находящимися на переднем крае внедрения самых современных технологий, мы обнаружили пять важнейших методов управления. Трансформация бизнеса под воздействием искусственного интеллекта все еще находится на начальном этапе, однако мы убеждены в том, что эти методы определят направление трансформации. Пять методов, о которых идет речь, — это элементы упомянутой во введении модели MELDS. В этой главе мы сфокусируемся на первых четырех методах:

 

• Руководители должны придерживаться определенного образа мышления, сосредоточившись не просто на совершенствовании бизнес-процессов, а скорее на полном их переосмыслении и на способах выполнения работы.

 

• Руководители должны способствовать формированию культуры экспериментирования с искусственным интеллектом, позволяющей им быстрее понимать, как и где эта технология может изменить процесс, а также где целесообразно его масштабировать.

 

• При продвижении ответственного искусственного интеллекта важно лидерство, которое будет проявляться через создание атмосферы доверия, а также через решение юридических и этических проблем с учетом социальных последствий грядущих изменений.

 

• Руководителям необходимо осознать исключительную важность данных, причем не только внутренней информации, обеспечивающей работу систем искусственного интеллекта, но и более широкого диапазона данных.

 

Иначе говоря, в данной главе рассматривается фрагмент MELD нашей модели MELDS (на навыках, то есть фрагменте S, от англ. skills, мы сосредоточимся в следующей главе). Мы расскажем, как ведущие компании внедряют четыре указанных метода, а также предложим рекомендации по внедрению систем искусственного интеллекта с ориентацией на долгосрочный рост. Наши рекомендации выходят за пределы того, что обычно содержат методики применения информационных технологий и трансформации бизнеса, и касаются непосредственно самых современных систем искусственного интеллекта и сопутствующих аспектов (в том числе тех, которые обычно не принимаются во внимание), таких как корпоративная культура, этика, доверие потребителей и доверие сотрудников.

1. Мышление: представьте, какими могут быть процессы

Переосмысление бизнес-процессов требует совершенно иного мышления — говоря словами инженера-исследователя Шошаны Зубофф, «разрыва с тем миром, который мы воспринимаем как должное». Именно такой «разрыв» с действующими подходами к выполнению работы позволяет компаниям представить новые бизнес-модели и создать революционные инновации. Другими словами, когда люди просто принимают существующий процесс как должное, а затем используют искусственный интеллект для его автоматизации, они могут добиться разве что небольших улучшений. Для перехода на новый уровень эффективности необходимо внедрить новые способы выполнения работ, а затем определить, где и в чем может помочь искусственный интеллект. Мы рекомендуем руководителям использовать трехфазный подход: определение и описание, совместное создание ценности, масштабирование и обеспечение устойчивости.
Определение и описание
Вполне естественно, что при попытке переосмыслить процесс людям трудно отказаться от прежних паттернов, и это мешает представить иные возможности. Чтобы избежать этого, следует всегда помнить о различиях между традиционными бизнес-процессами и новым подходом, основанным на использовании искусственного интеллекта. Наши исследования показывают, что в настоящее время результат носит не линейный, а экспоненциальный характер. Изменения больше не осуществляются эпизодически под руководством людей; они представляют собой адаптивный процесс, основанный на информации, предоставляемой в режиме реального времени как людьми, так и машинами. Рабочие обязанности больше не делятся на те, что предназначены исключительно для людей, и те, что поручаются только машинам; они должны охватывать также работу, выполняемую людьми и машинами совместно и попадающую в область «недостающей середины». А решения необходимо принимать, не только когда работу выполняют люди, но и при взаимодействии человека и машины.
С учетом подобной перспективы руководители могут приступить к определению и описанию того, как мог бы выглядеть переосмысленный бизнес-процесс. Эффективно применять один из таких методов, как дизайн-мышление или эмпатический дизайн, для выявления продукта или процесса, который действительно необходим пользователю. Цель — изменить негативный (в прошлом) опыт общения потребителей с компанией на позитивный, предложив инновационный продукт, отвечающий их потребностям. В этом контексте особую важность приобретают любые «болевые точки» в клиентском опыте. Впервые обнаружив такие проблемные области, можно проанализировать способы их устранения на основе использования искусственного интеллекта и данных в режиме реального времени. В прошлом устранение многих «болевых точек» было нецелесообразным или даже невозможным, поскольку это требовало слишком больших расходов или же еще не существовало технических возможностей. Однако в настоящее время благодаря развитию технологий искусственного интеллекта компании получили возможность устранить те самые «болевые точки», которые в прошлом становились для них препятствием.
Возможности для переосмысления процессов можно найти как внутри, так и за пределами организации. «Болевой точкой» может оказаться громоздкий длительный внутренний процесс (например, HR-отдел слишком долго закрывает штатные вакансии). Кроме того, это может быть раздражающий и отнимающий много времени внешний процесс (например, клиентам приходится заполнять множество бланков, чтобы страховая компания возместила расходы на лечение). Во многих случаях обнаружение возможностей для переосмысления процессов носит итеративный характер.
Рассмотрим кейс крупной аграрной компании, которая разрабатывала систему искусственного интеллекта, чтобы помочь фермерам улучшить работу. Эта система получила доступ к огромному объему данных из разных источников, в том числе к информации о свойствах почвы, данным метеорологических наблюдений за весь период сбора данных и прогнозирования погоды и т. д. Первоначально планировали создать приложение, которое помогало бы фермерам лучше прогнозировать урожайность культур. Однако дальнейшие исследования и наблюдения выявили более актуальную проблему, которую смогла решить система искусственного интеллекта: на самом деле фермеры нуждались в адаптивных рекомендациях, предоставляемых в режиме реального времени. Им были нужны конкретные, действенные советы, какие культуры выращивать и где, сколько азотных удобрений вносить в почву и т. д. Обнаружив «болевую точку», компания разработала систему и испытала ее примерно на тысяче полей. Первоначальные результаты были многообещающими, поскольку фермеры были довольны полученным урожаем. Затем данные первоначальных испытаний использовали для усовершенствования алгоритмов.
Из этого примера можно извлечь важный урок. Обнаружение возможностей для переосмысления бизнес-процессов требует времени: следует определить условия ведения бизнеса, сделать выводы из наблюдений и посчитать экономический эффект от трансформации процесса. Один специалист, работавший над созданием системы рекомендаций по повышению урожайности культур, дал такой совет: «Необходимо быть чрезвычайно любознательными и терпеливыми, пока вы не убедитесь в том, что усвоили достаточно знаний в соответствующей предметной области, а также сделали правильные выводы на основе имеющихся данных».
Искусственный интеллект может принести большую пользу, дополняя наблюдательность человека при обнаружении скрытых ранее закономерностей в имеющихся данных. Например, можно использовать современные алгоритмы машинного обучения для проверки сотен источников данных, таких как электронные письма клиентов, посты в социальных сетях или цифровой след, чтобы определить, где переосмысление процесса может быть наиболее эффективным с точки зрения устранения болевых точек клиента. (В мы говорили об искусственном интеллекте как о факторе, способствующем таким наблюдениям.)
Совместное создание ценности
Обнаружить возможности для переосмысления бизнес-процессов — еще не всё; чтобы их реализовать, потребуется кое-что еще: способность представить рабочий процесс в области «недостающей середины». Чтобы по-новому взглянуть на него, следует поощрять совместные усилия всех участников процесса.
Поставьте себя на место технического специалиста в дилерском центре Audi и представьте, что возникла проблема с двигателем, которую вы не можете решить. Ваш следующий шаг — позвонить в службу технической поддержки Audi. Ее сотрудники получают около 8000 звонков в месяц от более чем 290 дилеров со всей страны. Как правило, специалисты помогают устранить неполадки удаленно по телефону. Однако, как говорит директор Audi по контролю качества Джейми Деннис, в 6% случаев техническому специалисту необходимо присутствовать на месте. Такая мера действенна, но экономически невыгодна. Время в пути занимает от двух часов до двух дней — а клиенту приходится ждать.
Проблема в том, что в ближайшем будущем потребность в квалифицированных технических специалистах не исчезнет. Надежность автомобилей повышается, они становятся более сложными технически и технологически, а это значит, что автомеханики должны также разбираться в информационных технологиях. Сочетание высокой надежности и высокой сложности означает, что автомеханикам уже сейчас не хватает компетенций для устранения более сложных технических неисправностей, возникающих в последних моделях автомобилей. Это объясняет, почему клиентам порой приходится ждать завершения ремонта много часов (или дней), однако вряд ли избавит их от разочарования. Так как лучше всего обучать автомехаников и есть ли более эффективный способ применять навыки удаленных специалистов в автосалонах, чтобы свести к минимуму время ожидания клиентов?
В компании Audi нашли решение — совместная работа в области «недостающей середины». Компания разместила целый парк роботов телеприсутствия Audi Robotic Telepresence (ART), которые не только помогают обучать автомехаников методам диагностики и ремонта, но и сокращают время ремонта. Это пример того, как расширение возможностей сотрудников наряду с их обучением посредством системы искусственного интеллекта инициирует совершенно новый процесс. При использовании системы ART квалифицированному техническому специалисту нет необходимости ездить в дилерские центры; вместо этого его голос и изображение передаются на большое расстояние, поступая на динамики и дисплей робота ART. Квалифицированный техник, сидя в своем кабинете, удаленно управляет роботом, который перемещается, поворачивается, смотрит, слушает и вовремя отодвигается в сторону, находясь рядом с работающим на месте автомехаником в тот момент, когда он заглядывает под капот автомобиля. Такой мобильный робот оборудован видеосенсорами для обеспечения безопасности, что вызывает у людей, работающих с ним бок о бок, доверие к этому «инструменту». Кроме того, сеть видео- и голосовой коммуникации между экспертом и автомехаником поддерживается системой искусственного интеллекта, что укрепляет взаимодействие механика и удаленного технического специалиста, физические возможности которого возрастают благодаря роботу. Представьте, будто кто-то заглядывает вам через плечо, когда вы погружаете бороскоп в цилиндр двигателя, чтобы определить степень его износа. Квалифицированный технический специалист может в режиме реального времени давать советы, как улучшить диагностику и ремонт. Автомеханики в дилерском центре учатся на ходу; экспертные знания можно применить мгновенно в любом регионе страны, и клиенты быстрее получают отремонтированные автомобили. Такое инновационное решение стало возможным благодаря процессу совместного создания ценности, в который вовлечены квалифицированные технические специалисты, автомеханики и специалисты по технологиям искусственного интеллекта. Например, при реализации пилотного проекта возникла необходимость внести изменения в стандартный протокол, и автомеханики помогли в этом, обеспечивая непрерывную обратную связь и сообщая, что работает, а что нет.
Масштабирование и обеспечение устойчивости
Последний этап переосмысления бизнес-процессов подразумевает, что руководители компании должны масштабировать свое решение и поддерживать его с помощью постоянных улучшений. Например, в июне 2014 года компания Audi запустила экспериментальную пилотную программу по внедрению системы ART в 68 дилерских центрах. Ее успех определил планы по внедрению роботов у всех дилеров США к концу 2016 года. Еще один подход — испытать систему на сотрудниках и устранить все неполадки до ее установки или подключения клиентов. Такую стратегию использовал шведский банк SEB при разработке виртуального помощника Aida, который, как говорилось в , был сначала внедрен в качестве виртуального агента IT-поддержки, оказывая помощь 15 тысячам сотрудников SEB, прежде чем система начала обслуживать миллион клиентов этого банка. Аналогичная стратегия используется в магазине нового типа Amazon Go, о котором мы поговорим в следующей главе.

2. Экспериментируйте!

В Сиэтле есть магазин, в который можно зайти, взять сок и выйти. Не нужно оплачивать покупку на кассе. Вам не придется даже проходить через кассу самообслуживания. Вместо этого камеры отслеживают ваши действия и действия других покупателей, а также фиксируют товары, которые вы берете с полок. На бутылке сока есть встроенный датчик, который обменивается данными с вашим телефоном, выставляя вам счет. Точно так же автоматизирован процесс покупки других товаров. Этот магазин называется Amazon Go; весной 2017 года он обслуживал ограниченное количество посетителей (в основном сотрудников Amazon), демонстрируя, что покупать в офлайн-магазине так же просто, как нажимать кнопку «Купить» на веб-сайте Amazon.
Безусловно, Amazon Go — пример смелого эксперимента в сфере розничной торговли, но здесь важен и другой аспект: в Amazon поощряют культуру экспериментирования. Эта компания создает условия для реализации самых смелых идей. Amazon разрабатывает, финансирует и проводит необходимые «опыты». Многие из них терпят фиаско, но дело не в этом. «Мои неудачи в Amazon.com исчисляются миллиардами долларов. В буквальном смысле слова, — говорит Джефф Безос. — Важно то, что компании, которые сворачивают экспериментирование или готовы примириться с неудачами, оказываются на пороге краха и им остается только идти на крайние меры. Я не верю в игру ва-банк». Безос твердо верит в силу экспериментирования.
Контролируемый хаос
Store № 8 компании Walmart — это «инкубатор», в котором инженеры и инноваторы испытывают новые технологии, такие как робототехника, виртуальная и дополненная реальность, машинное обучение и разные системы искусственного интеллекта. Store № 8, об открытии которого было объявлено в марте 2017 года, во многих отношениях функционирует подобно любому другому стартап-инкубатору, экспериментируя с идеями и помогая компаниям «сменить курс» после неудачных испытаний тех или иных концептов. Как утверждает Марк Лор (основатель компании , которую в 2016 году Walmart приобрела за $3 миллиарда, бизнес-тренды и инновации, созданные в инкубаторе Store № 8, «будут ограждены от остальной части организации и получат поддержку крупнейшего ритейлера в мире». Другими словами, стартап получает финансовые ресурсы гигантской корпорации и полную свободу действий благодаря изоляции от ее бюрократии. В планы Store № 8 входит сотрудничество с внешними стартапами, венчурными инвесторами и исследователями для создания линейки запатентованных роботов, виртуальной и дополненной реальности, машинного обучения и технологий искусственного интеллекта.
Названный по имени центра в Арканзасе, в котором Сэм Уолтон опробовал новые идеи, инкубатор Store № 8 напоминает о том, что Уолтон уделял большое внимание сбору данных о своих магазинах и экспериментированию. Однако по мере роста такие компании (особенно основанные до того, как цифровые технологии трансформировали розничную торговлю) становятся слишком громоздкими, чтобы быстро действовать и брать на вооружение такие технологии, как искусственный интеллект. Создание собственного инкубатора говорит о том, что в компании Walmart осознают всю сложность и важность внедрения культуры экспериментирования в свою организационную структуру. На самом деле покупка онлайн-ритейлера прежде всего была попыткой вплести цифровую культуру в существующую корпоративную ткань. При этом инкубатор Store № 8 создает среду, поощряющую апробацию новых идей, ставки высоки, но никто не играет ва-банк.
Создать — оценить — извлечь уроки
Технологии, обеспечивающие функционирование Amazon Go (компьютерное зрение, сбор и обобщение сенсорных данных и глубокое обучение), — это системы, которые находятся в стадии разработки. К числу ограничивающих факторов относятся камеры, которым трудно отслеживать нефасованные фрукты и овощи в руках покупателей, а также распознавать покупателя с низко надвинутым головным убором или шарфом, закрывающим лицо. Такое поведение, будь то непреднамеренное или умышленное, позволяло обмануть систему во время испытаний Amazon Go в Сиэтле. Тем не менее единственный способ внедрить новые технологии — исследовать их пределы. Поэтому в качестве временной меры Amazon нанимает сотрудников, чтобы те просматривали видео- и оцифрованные изображения и проверяли правильность отслеживания товаров и их оплаты (напоминает специалистов по обучению и экспертов по устойчивости, не так ли?). Магазин Amazon Go — это пример внедрения автоматизированных процессов с участием человека; делается это с целью усовершенствовать систему, чтобы обеспечить ее более корректное и автономное функционирование, прежде чем начать повсеместное внедрение.
В Amazon приняли решение не только испытать этот концепт внутри компании, но и открыть магазин, рассчитанный на большой поток покупателей. Важно, что компания выбрала собственных сотрудников для пробных продаж. Сотрудники Amazon, уже знакомые с такими способами выявления потребностей клиентов, как использование минимально жизнеспособных продуктов и A/B-тестирование, предоставляют полезную обратную связь и, в отличие от обычных покупателей, не перестают пользоваться технологией, если она время от времени дает сбой. Компании, внедрившие в свою практику интеллектуального помощника IPsoft Amelia, придерживались аналогичного подхода: сотрудники пользовались технологией внутри компании, пока не были устранены все ее недостатки, и только после достижения требуемого качества система была представлена клиентам.
Компания Amazon демонстрирует понимание того, как руководители применяют самые современные технологии искусственного интеллекта, так же как специалисты по обучению и эксперты по устойчивости помогают внедрять и испытывать их. Поощряя культуру экспериментирования, Безос получил в свое распоряжение «секретное оружие» в сфере инноваций: огромное количество сотрудников, готовых работать в области «недостающей середины», а также руководителей, которые знают, как справляться с неопределенностью.
Компания Amazon поэтапно внедряла новую технологию, чтобы очертить границы ожиданий клиентов в рамках компромисса между ощущением дискомфорта, обеспечением конфиденциальности и удобством использования. После открытия магазина Amazon Go во многих публикациях отмечалось, что, когда вы заходите в магазин, где автоматически устанавливают вашу личность и отслеживают каждое ваше движение, это вызывает дискомфорт. Но, как показывают другие продукты Amazon (такие как Echo), вскоре клиенты привыкают к такому наблюдению, особенно когда считают, что в какой-то степени контролируют ситуацию. Например, в случае системы Echo люди знают, что их разговоры не записываются до тех пор, пока они не используют одно из кодовых слов для активации системы — Alexa, Amazon, Echo или «компьютер». Кроме того, приложение Alexa предоставляет клиентам доступ к записанным разговорам, которые они могут удалить.
Быстрое принятие системы Echo показывает, насколько легко люди соглашаются на новые нормы, которые требует технология, особенно если считают, что получают нечто весьма ценное и в какой-то степени контролируют происходящее. В конечном счете аналогичные инструменты пользовательского контроля и прозрачные интерфейсы могут сыграть положительную роль и в случае Amazon Go.
В магазинах Amazon Go, площадь которых предположительно будет от тысячи до почти четырех тысяч квадратных метров, у покупателей будет выбор: совершать покупки в интернете и забирать их в магазине или делать это непосредственно в магазине. Продуктовые магазины — это непростой бизнес, в котором автоматизация определенных элементов покупательского опыта требует глубокого понимания того, какие задачи лучше выполнять людям, какие — машинам и в каких случаях необходимы их совместные усилия. В настоящее время в Amazon пытаются определить правильное соотношение между возможностями человека и машины. Компания объявила о том, что количество сотрудников в магазинах Amazon Go будет оставаться таким же, как в обычных магазинах, хотя кассиров здесь не будет. Время покажет, какие новые функции будут выполнять люди в Amazon Go.
Времена стандартных бизнес-процессов остались в прошлом; компании больше не могут ставить своей целью простое воспроизведение лучших в своем роде процессов лидера отрасли. Именно поэтому так важно экспериментирование. Конкуренция требует, чтобы руководители компаний приводили бизнес-процессы в соответствие со спецификой своего бизнеса. Однако загвоздка в том, что внедрение нестандартных процессов требует от руководителей и лидеров глубокого знания своих сотрудников и корпоративной культуры в целом, чтобы понимать, как и когда начинать эксперименты. Например, чтобы заручиться поддержкой сотрудников, руководители должны ставить четкие цели и не мешать совершать ошибки и промахи. Не стоит забывать, что в науке эксперимент, не подтвердивший правильность гипотезы, не называют неудачным. Полученный в ходе такого эксперимента результат называют данными.

3. Лидерство: представьте гибридную культуру людей и машин

Перед многими компаниями стоит сложная лидерская задача: сформировать корпоративную культуру, способствующую внедрению ответственного искусственного интеллекта. Достичь этой цели непросто, поскольку многие люди не доверяют технологиям, а обеспокоенность сотрудников возможным упразднением рабочих мест часто усиливает такие опасения. Чтобы помочь сотрудникам привыкнуть к своим коллегам в лице систем искусственного интеллекта, необходимо задействовать функционал и аспекты взаимодействия обеих частей «недостающей середины». Как мы увидим немного позже, навыки специалистов по обучению, разъяснению и экспертов по устойчивости играют решающую роль, однако не менее важен положительный опыт использования искусственного интеллекта. Сообщите сотрудникам, что внедряете искусственный интеллект для замены определенных задач и переосмысления текущих бизнес-процессов. Продемонстрируйте, что инструменты искусственного интеллекта могут расширить возможности сотрудников и сделать их повседневную работу менее утомительной и более увлекательной.
В настоящее время в бизнес-среде дело обстоит следующим образом. В 2017 году, выступая в конгрессе США по вопросу безопасности автономных транспортных средств, руководитель Toyota Research Institute Джилл Пратт сказал законодателям, что люди склонны прощать ошибки человеку в большей степени, чем машине. Результаты исследований подтверждают противоречивость и неоднозначность нашего доверия машинам. Согласно статье, опубликованной в 2009 году, когда люди считают, что биржевые отчеты составлены человеком, их оценки стоимости ценных бумаг будут колебаться сильнее, чем когда отчет формировался с помощью статистических методов прогнозирования. В статье, вышедшей в 2012 году, отмечено, что люди считают решения врачей более точными и этичными, чем решения, принимаемые компьютером. Даже доказательства обратного не влияют на мнение людей. В рамках проведенного в 2014 году исследования ученые выяснили, что «при совершении одной и той же ошибки в прогнозах люди скорее перестают доверять алгоритму, чем человеку». В том же году три исследователя из Пенсильванского университета ввели термин, описывающий склонность людей доверять себе подобным больше, чем машинам, — «неприятие алгоритмов».
В сфере финансового трейдинга сформировалась, пожалуй, одна из самых прогрессивных бизнес-культур работы с алгоритмами. Тем не менее даже среди трейдеров неприятие алгоритмов остается самым сильным сдерживающим фактором. В 2015 году Леда Брага создала компанию по управлению инвестициями Systematica, которая занимается исключительно алгоритмическим трейдингом. Брага признает, что люди по-прежнему выполняют определенные функции в трейдинге (например, работа активных трейдеров и трейдеров, продающих ценные бумаги без покрытия, основана на тщательном изучении основных показателей эффективности компаний и их руководства), однако эти функции постепенно сходят на нет. Брага убеждена в том, что будущее финансового трейдинга за автоматизацией. Между тем подход, которого придерживается Systematica, встречает сопротивление: люди склонны отдавать предпочтение тем решениям, которые принимают люди. «Неприятие алгоритмов — серьезное препятствие», — говорит Брага. Она признает: во многих областях «все мы предпочитаем, чтобы ту или иную работу выполнял для нас человек, даже если он делает эту работу хуже… Мы должны мыслить более рационально».
Безусловно, дозированное неприятие приносит пользу. Наши собственные исследования, так же как и исследования Pew Center, говорят о том, что руководители должны поддерживать разумное равновесие между скептицизмом и принятием глубоких перемен, обусловленных внедрением искусственного интеллекта. Однако следует обратить внимание на такие положительные моменты, как возможность более полного сбора данных, что позволит банкам принимать более объективные решения по кредитам, тогда как в прошлом предвзятость банкиров лишала многих людей возможности получить кредит из-за расовой принадлежности, пола или места жительства. В медицинских учреждениях также видят, что искусственный интеллект помогает оптимизировать расходы, сокращая или увеличивая число определенных задач (действий), которые врачи просто не могут выполнить для такого количества пациентов, как бы они этого ни хотели.
Разумеется, мы до сих пор пытаемся определить, что искусственный интеллект может и чего не может делать, а также как лучше всего внедрить его в бизнес-процессы. Именно поэтому нецелесообразно слепо доверять всем системам искусственного интеллекта в равной мере. Взвешенные суждения людей остаются важнейшей составляющей процесса внедрения искусственного интеллекта.
Однако самые разные системы искусственного интеллекта, от программных ботов до многошарнирных роботов-манипуляторов, получили в компаниях такое широкое применение, что это меняет рабочие обязанности и преображает организационную структуру. Так как же сформировать культуру доверия, распространяющуюся даже на роботов-коллег? Один из способов — протестировать систему искусственного интеллекта внутри компании и обучить сотрудников работе с ней, как показано в разделе «Экспериментируйте». На следующем этапе, когда решение готово к полномасштабному внедрению, можно использовать также некоторые из представленных ниже базовых инструментов и методов, чтобы укрепить доверие людей к новой технологии и помочь им мыслить более рационально.
Установление границ
Один из подходов сводится к тому, чтобы установить ограничения внутри процесса, основанного на искусственном интеллекте. Это позволит контролировать наступление нежелательных последствий. В качестве примера можно привести чат-бот «Tay» компании Microsoft. В 2016 году система «Tay» была внедрена в Twitter в качестве бота, который должен был обучаться, взаимодействуя с другими пользователями. За несколько часов бот научился использовать нецензурные, расистские и сексистские выражения, поэтому создатели сразу же удалили его. Какие способы защиты могла использовать компания Microsoft в данном случае: фильтры по ключевым словам, фильтры по контенту или программу, отслеживающую настроения пользователей? В сфере промышленного производства также полезно установить границы: что системе искусственного интеллекта разрешено делать, а что нет. При этом необходимо, чтобы об этих ограничениях знали все участники процесса. Как правило, эксперт по устойчивости определяет границы, ограничения и нежелательные последствия работы системы искусственного интеллекта, а затем разрабатывает границы, чтобы она не «сбивалась» с правильного пути.
Использование контрольных точек, роль которых играют люди
Девяносто два процента специалистов по автоматизации не доверяют роботам полностью. Одна из проблем — неуверенность людей в том, что робот «думает» или планирует делать, — они считают машину непостижимым черным ящиком. По мнению этих же специалистов (76%), лучшее решение данной проблемы сводится к тому, чтобы использовать визуальный вывод аналитических данных, а также панель, отображающую другие показатели. Это простое решение может снизить непрозрачность системы и обеспечить информирование людей на должном уровне. В этом случае ключевую роль играет специалист по разъяснению. Даже если невозможно в полной мере понять, как работает система искусственного интеллекта, некоторое представление о ее внутреннем устройстве может принести большую пользу. Специалисты по разъяснению должны понимать, что следует знать людям, а также чем должна поделиться система.
Максимальное сокращение «зоны моральной деформации»
У таких сервисов, как Uber, Lyft и Mechanical Turk компании Amazon, программное обеспечение с элементами искусственного интеллекта дополняет некоторые управленческие функции: распределяет задачи, обеспечивает обратную связь и формирует рейтинги, а также помогает людям отслеживать успехи в достижении поставленных целей. Повышение эффективности управления с помощью систем искусственного интеллекта — необходимое нововведение в тех компаниях, бизнес-модель которых подразумевает масштабирование и наём сотен тысяч сотрудников во всем мире. Однако если можно разгрузить определенные виды деятельности, переложив выполнение задач на искусственный интеллект, то ответственность за управление ими переложить нельзя.
Это сложный вопрос, требующий осмотрительного и вдумчивого подхода к выбору структуры бизнес-процессов. Когда топ-менеджеры с возможностями, расширенными за счет искусственного интеллекта, меняют конфигурацию взаимодействия между руководством, сотрудниками и обществом, компании должны знать о более масштабных, оказывающих сильное воздействие и потенциально нежелательных последствиях, сопутствующих этим переменам. Необходимы новые механизмы, гарантирующие, что люди не попадут под удар, если использование искусственного интеллекта будет признано неудачным. Однако чтобы разработать такие механизмы, сначала нужно понять концепцию зоны моральной деформации.
Зона деформации — это часть автомобиля, которая должна принять на себя удар, чтобы защитить водителя и пассажиров. Иногда именно люди (сотрудники и клиенты) оказываются уязвимы из-за сбоя системы искусственного интеллекта, что подрывает доверие к ней.
Этнографы Мадлен Клэр Элиш и Тим Хванге ввели термин «зона моральной деформации». Проводя исследования, они обнаружили, что в нашем цифровом мире контроль над определенными сервисами, такими как райдшеринг (поиск попутчиков для путешествия на автомобиле), распределяется среди множества участников процесса в лице людей и машин, хотя ответственность за социальные и юридические последствия лежит, прежде всего, на человеке.
В опубликованном в 2016 году отчете Элиш приводит реальный пример зоны моральной деформации. Она воспользовалась сервисом райдшеринга, чтобы добраться до аэропорта в Майами. Водитель выбрал первый предложенный маршрут, и они отправились в путь. Элиш уснула, а после пробуждения обнаружила, что водитель, у которого еще не было опыта использования данной платформы, отвез ее в место, находившееся в 20 минутах ходьбы от пассажирского терминала. Чтобы Элиш не опоздала на рейс, водителю пришлось отменить следующий заказ, предложенный приложением, и по сути бесплатно отвезти Элиш, хотя он не был обязан делать это. Тем не менее водитель поступил именно так, и Элиш успела на свой рейс.
В этой ситуации сервис подвел как водителя, так и клиента, однако простого способа зафиксировать это неприятное событие не было. Основные варианты обратной связи оказались рассчитаны на то, чтобы водитель и пассажир оценили друг друга. Но чья вина была в том, что приложение выдало неправильный адрес, водитель не знал, куда едет, а Элиш уснула и не скорректировала маршрут?
Элиш так объясняет суть зоны моральной деформации:
В рамках крайне сложной автоматизированной системы человек может случайно или умышленно стать тем элементом, который несет самое тяжкое бремя моральной и юридической ответственности при ее сбое. Суть метафоры с зоной моральной деформации сводится не просто к поиску «козла отпущения». Этот термин призван привлечь внимание к тому, как автоматизированные и автономные системы регулярно уклоняются от ответственности. Тогда как зона деформации в автомобиле предназначена для защиты водителя, зона моральной деформации защищает репутацию технологической системы.
В случае управляемых алгоритмами краудсорсинговых платформ люди-операторы также могут стать тем элементом системы, который несет ответственность за ее действия, — например, получая обратную связь от клиента, когда на самом деле ошибку допустила система. Кроме того, водители берут на себя основное бремя расходов по обслуживанию автомобилей (страхование, бензин и ТО), а также несут юридическую ответственность как представители приложения по поиску попутчиков, если что-то случится с их автомобилем.
Вот некоторые способы устранения существующих недостатков. Во-первых, сделайте так, чтобы алгоритмы отвечали за свои действия и определяли глубинные причины возникающих проблем, ведь так их можно исправить. Подотчетность существует не только для сотрудников. Во-вторых, предоставьте людям возможность ставить под сомнение действия системы искусственного интеллекта. Исходите из того, что сотрудники имеют свое мнение, предоставляют ценный контекст и могут обеспечить качество сервиса. В-третьих, создайте условия для выставления рейтингов при оценке действий алгоритмов или машин, а не только людей. В-четвертых, постоянно ищите несоответствия между контролем и ответственностью. Чтобы полностью нивелировать эффект от разработки систем, которые приводят к появлению зон моральной деформации, необходимо привести в соответствие ценности и нормы.
Анализ юридических, психологических и других вопросов
Начните с организации постоянного диалога с отделом нормативно-правового обеспечения. Система искусственного интеллекта поможет обеспечить соблюдение нормативно-правовых актов (посредством получения отчетов и систематизации данных), однако эта же система может создавать определенные трудности. В некоторых случаях адаптивные системы искусственного интеллекта вызывают нежелательную ответную реакцию. Выясните, как система искусственного интеллекта согласуется с действующими протоколами управления рисками и где следует улучшить эти протоколы, чтобы привести их в соответствие с динамичной системой искусственного интеллекта, принимающей решения. Важную роль в этом процессе играют сотрудники, функции которых относятся к левой части «недостающей середины», — специалисты по обучению, разъяснению и эксперты по устойчивости систем искусственного интеллекта.
В целом, если вы предоставляете сотрудникам возможность вносить коррективы в результаты работы системы искусственного интеллекта (что позволяет им чувствовать себя активными участниками процесса, а не просто его безмолвными исполнителями), их доверие к ИИ возрастает. Рассмотрим в качестве примера инженера, который добивается такой скромной цели, как увеличение производительности нефтяной скважины на 2%. Для этого инженер может воспользоваться программой искусственного интеллекта, корректируя ее параметры и внимательно отслеживая результаты. В частности, он может сыграть роль эксперта по устойчивости, делая все необходимое, чтобы программа работала. Таким образом, когда инженер добивается поставленной цели с помощью системы искусственного интеллекта, он учится доверять системе. Как показывают исследования, предоставление пользователям определенного контроля над алгоритмом повышает вероятность того, что они сочтут его превосходным и продолжат использовать искусственный интеллект в будущем.
Однако не всегда есть возможность контролировать реальные алгоритмы. Обратимся к такой сложной задаче, как распределение больничных коек. Одна компания разработала цифровую модель больницы и схему размещения пациентов. В эффективно работающей больнице коэффициент использования больничных коек колеблется от 70 до 80%, однако с помощью этой программы больница может повысить этот показатель до 90% и более. Эту программу установили в одной из больниц, рассчитывая на рост в 10–15%, однако никакого повышения не произошло. Выяснилось, что свою роль сыграл человеческий фактор. В частности, медсестра, которая долгое время работала с одними и теми же врачами, полагалась на собственный опыт в принятии решений. Когда поступали рекомендации по размещению пациентов, она просто игнорировала их, не веря, что алгоритм справится лучше.
Как менеджеры помогли медсестрам научиться доверять искусственному интеллекту? Они просто объяснили, почему размещение определенного пациента на определенной больничной койке является оптимальным. (Специалист по разъяснению может принять участие в разработке программного интерфейса и включить в него краткое описание системы или обоснование соответствующего метода распределения больничных коек.) Менеджеры обнаружили, что без предоставления таких разъяснений люди больше доверяют суждениям человека, чем рекомендациям алгоритма. С другой стороны, менеджеры пришли к выводу, что им необходимо предоставить определенную свободу действий сотрудникам, отвечающим за распределение больничных коек, наделив их полномочиями принимать решения.
Таким образом, для формирования доверия к системам искусственного интеллекта необходимо сделать так, чтобы люди, работающие с этими системами, были заинтересованы в результате и чтобы у них было ощущение контроля над внутренним устройством системы, как в примере с инженером-нефтяником. В идеале системы искусственного интеллекта необходимо проектировать таким образом, чтобы они объясняли свои решения и помогали людям сохранять определенную автономию в принятии решений. Разработка процессов, полностью основанных на доверии, требует времени и экспериментирования, однако примеры из текущей практики показывают, что если все стороны (люди, машины, а также люди и машины, работающие вместе) пользуются доверием друг друга, это позволяет улучшить результаты для всех.

4. Данные: представьте цепочку снабжения данными

Прежде всего следует отметить, что качество данных играет важнейшую роль в системах искусственного интеллекта. По существу, данные — это топливо для искусственного интеллекта. Чтобы обеспечить его поставку, представьте данные в качестве сквозной цепочки снабжения. Мы имеем в виду принципиально новое представление о данных не как о статическом процессе с обособленным управлением в рамках одного из функциональных подразделений компании, а как об охватывающей всю компанию динамичной направленной деятельности по сбору, очистке, интеграции и хранению информации. Поскольку данные используются алгоритмами машинного обучения, глубокого обучения и другими приложениями на основе искусственного интеллекта, они должны быть богатыми (по разнообразию, качеству и полезности) и большими (по объему). Здесь важно помнить, что системы искусственного интеллекта обучаются на основе циклов обратной связи, а значит, алгоритмы совершенствуются одновременно с повышением качества и увеличением количества данных. Другими словами, качество систем искусственного интеллекта напрямую зависит от качества данных, на основе которых они обучаются. В силу этого компании должны сфокусироваться на тех специалистах из области «недостающей середины», которые помогают собирать данные и готовить их к анализу. Их работа чрезвычайно важна, поскольку предвзятость данных может привести к серьезным последствиям, таким как искажение результатов и принятие ошибочных решений. В настоящее время около 90% времени, которое люди тратят на обучение систем искусственного интеллекта, приходится на подготовку данных и конструирование признаков, а не на составление самих алгоритмов.
Знание данных — это четвертый метод управления, однако в конечном счете именно данные позволяют предпринимать действия, и «действия» здесь ключевое слово. Ниже перечислены действия, о которых идет речь.
Динамичное мышление
Цепочка снабжения данными должна быть динамичной, постоянно развивающейся и непрерывно подпитываемой новыми данными, поступающими в режиме реального времени. Разные технологии, в том числе сбора (сенсоры), хранения, подготовки, анализа и визуализации данных, позволяют компаниям по-новому собирать и использовать информацию.
Итальянская компания Ducati, которая занимается разработкой и производством мотоциклов премиум-класса, поставила перед собой задачу найти более быстрый, дешевый и эффективный способ испытания гоночных мотоциклов. И специалисты гоночного подразделения компании Ducati Corse обратились к искусственному интеллекту. Интеллектуальный испытательный комплекс состоит из аналитической системы, в которой используются инструменты машинного обучения и визуализации данных, обеспечивающие интуитивно понятный пользовательский интерфейс. Почти сто IoT-датчиков (датчиков интернета вещей), установленных на мотоциклах, позволяют получать в режиме реального времени комплекс данных, таких как скорость вращения двигателя, температура при торможении и т. д.
Эта новейшая технология дает возможность инженерам-испытателям поддерживать взаимодействие с системой, чтобы проверить те или иные гипотезы, а также определять, как мотоцикл будет вести себя на разных гоночных трассах при разных погодных условиях. Теперь инженеры могут получить больше результатов при меньшем количестве испытаний на трассе, что позволяет им экономить время, усилия и деньги. Благодаря таким данным и моделям система составляет все более точные прогнозы ходовых качеств мотоциклов.
Безусловно, создание такой динамичной цепочки снабжения данными, как у Ducati Corse, требует значительных усилий и ресурсов, однако вы можете начать процесс переосмысления с гораздо меньших масштабов. И без того большой объем данных может постоянно увеличиваться, однако компании должны фокусироваться на небольших проектах по работе с данными. Чтобы успешно стартовать, определите простой конечный результат, при котором система искусственного интеллекта позволит вам достичь практических целей.
Создатели приложения-календаря Tempo пошли именно по такому пути. Это приложение для iPhone использует информацию, полученную с самого телефона: данные из социальных сетей, содержимое электронной почты, геолокацию и другую информацию, позволяющую «узнать» о тех или иных событиях. Затем приложение предоставляет пользователю iPhone актуальные данные о соответствующем событии в надлежащее время. Приложение Tempo управляет огромным объемом сложных данных, однако компания задалась простой целью, ограничившись только информацией о событиях. Пусть вас не пугает масштаб данных, с которыми вы имеете дело. Сфокусируйтесь на простых задачах, которые система искусственного интеллекта поможет вам решить, и затем двигайтесь дальше.
Расширение доступа и увеличение разнообразия
Когда ваши эксперименты с искусственным интеллектом станут более масштабными, позаботьтесь о том, чтобы цепочка снабжения данными состояла из независимых друг от друга, легкодоступных источников информации.
В настоящее время руководители могут получить доступ даже к тем данным, которые они не контролируют или которыми не владеют. Например, если региональная сеть продовольственных магазинов планирует проанализировать ежедневные операции за прошедший месяц, она не должна ограничиваться цифрами из своей базы данных. Многие компании отслеживают настроения клиентов в социальных сетях; кроме того, они анализируют данные в контексте погоды, особенностей покупателей, новостных событий или любого другого параметра данных — если только обнаруживают информацию, имеющую отношение к их бизнесу. В некоторых случаях можно обратиться к поставщикам данных или прибегнуть к помощи открытых источников данных (которые может бесплатно использовать любой желающий по своему усмотрению).
Например, глобальный производитель средств по уходу за кожей Beiersdorf использует свои внутренние данные наряду с синдицированными данными таких исследовательских компаний, как Nielsen, чтобы помочь членам совета директоров составить представление о развитии разных продуктов и брендов (функция расширения возможностей). Компания планирует автоматизировать этот процесс, что обеспечит быстрое получение более точной информации.
Работая над увеличением разнообразия источников данных, компании должны знать о любых препятствиях, которые могут возникнуть на пути потока информации. Одни препятствия носят технический характер (например, инфраструктура может не справляться с обработкой больших объемов данных), тогда как другие могут быть социальными (при росте общественного недоверия из-за того, что компании накапливают все больше персональных данных и делятся ими).
Повышение быстродействия
Некоторые данные поступают очень быстро — например, новости о стихийном бедствии. Перемещение таких важных данных, требующих немедленной обработки, необходимо ускорить по всей цепочке снабжения данными. С другой стороны, медленные данные менее актуальны и могут быть менее полезными. В прошлом IT-специалисты решали проблему данных со смешанной скоростью, присваивая более высокий приоритет «горячим» данным, которые часто используются и хранятся на высокопроизводительных системах, обеспечивающих быстрое извлечение данных. Напротив, «холодные» данные (такие как налоговые отчеты) можно хранить на менее быстродействующих серверах.
Компания Facebook знает, как установить приоритетность данных и реорганизовать в соответствии с этим свои процессы. Например, там обнаружили, что на 8% всех фотографий, публикуемых в этой социальной сети, приходится 82% сетевого трафика. Очевидно, по мере устаревания фотографий их популярность падает, поэтому в Facebook разработали трехуровневую систему хранения данных. Система искусственного интеллекта маркирует фотографии и сохраняет их на соответствующем уровне. Самые популярные фотографии сохраняются на высокопроизводительных серверах и могут быть извлечены мгновенно, тогда как менее популярные сохраняются на немного более медленных, энергосберегающих серверах. Благодаря такому подходу удовлетворенность пользователей остается на должном уровне, а компания получает экономию за счет сбережения энергоресурсов.
Создание условий для обнаружения данных
Какие способы взаимодействия с данными вы используете? Приносят ли аналитические инструменты пользу только экспертам и специалистам по обработке данных? Ваша задача — обеспечить такой способ получения ценной информации, чтобы все желающие, особенно далекие от технологий пользователи, могли с выгодой для себя применять ту историю, которую данные пытаются до них донести.
Компания Ayasdi обеспечивает демократизацию процесса обнаружения данных, разрабатывая программное обеспечение, которым могут пользоваться как специалисты по обработке и анализу данных, так и бизнес-лидеры, не обладающие глубокими знаниями в IT. Один из клиентов компании, Техасский медицинский центр (Texas Medical Center, TMC), специализируется на анализе больших многомерных наборов данных, таких как данные о пациентах с раком груди. Программа компании Ayasdi способна за несколько минут выделить подгруппу пациентов, которые перенесли рак и которым свойственны определенные общие характеристики, что может оказаться очень важным. Техасский медицинский центр планирует использовать инструменты компании Ayasdi для разных целей, от анализа клинических и геномных данных до повторных исследований существующих лекарственных препаратов. Успех Техасского медицинского центра подтверждает целесообразность поиска таких аналитических инструментов, которые демократизируют данные, с тем чтобы привлечь группу квалифицированных сотрудников к экспериментированию с данными и переосмыслению бизнес-процессов.
Заполнение «недостающей середины»
Для создания цепочки снабжения данными требуется нечто большее, чем новейшие технологии и поток качественной информации. Руководители должны ввести специальные должности в области «недостающей середины» для развития и управления системой.
Обратите внимание: обратная связь на основе искусственного интеллекта создает добродетельный цикл обучения и совершенствования. Вот почему специалистам по обучению предстоит разработать план действий, чтобы помочь «умным» машинам совершенствоваться посредством циклов обратной связи между данными и алгоритмами. Например, в компании Google специалисты по обучению работают над улучшением способности систем обработки естественного языка распознавать диалекты. В рамках этой работы собрано 65 тысяч значений данных по 30 словам (иначе говоря, разных вариантов произношения этих слов).
Помимо специалистов по обучению, разъяснению и экспертов по устойчивости также потребуются специалисты по непредвзятости в цепочке снабжения данными. Во многих процессах искусственного интеллекта уже встроены механизмы, обеспечивающие совершенствование системы. Например, если вы выбираете не тот маршрут, который предлагает приложение Waze, эта информация помогает усовершенствовать алгоритм, чтобы в будущем он давал более подходящие рекомендации. Но и в этом случае предвзятость может проникнуть в систему. Так, программы для прогнозирования криминального поведения обвиняемого демонстрируют предвзятость по отношению к чернокожим. По этой причине компаниям, внедряющим современные системы искусственного интеллекта, всегда будут нужны эксперты по устойчивости, которые создадут условия для надлежащего функционирования этих систем. Для решения проблемы отклонения данных и иных ошибок подобного рода компания Google приступила к реализации инициативы по изучению взаимосвязи человека и искусственного интеллекта PAIR (People + AI Research). Компания опубликовала набор инструментов с открытым исходным кодом, которые помогут организациям получить более полное представление о данных, используемых их системами искусственного интеллекта.
Кроме того, компаниям следует подумать над назначением руководителя, ответственного за цепочку снабжения данными. Этот человек должен заниматься обеспечением устойчивости, контролируя работу других специалистов. В его обязанности входит создание интегрированной, сквозной цепочки снабжения данных, а также решение проблем, связанных с данными. Где имеет место разрозненность данных? Как можно упростить доступ к данным? Какие данные используются недостаточно эффективно и как можно использовать ценные «темные данные»?

Новая игра

Безусловно, переосмысление бизнес-процессов — задача непростая. Как и следовало ожидать, многие компании столкнулись с серьезными трудностями на этом пути. С другой стороны, многие добились успеха и это привело к заметному улучшению их бизнеса. Мы обнаружили, в чем отличие компаний из второй группы: они твердо придерживаются четырех базовых методов работы, каждый из которых полностью согласуется с принципами нашей модели MELDS. Эта модель подразумевает комплексный подход к внедрению новейших систем искусственного интеллекта с учетом важных факторов (таких как корпоративная культура, обучение работников и доверие сотрудников), которые часто упускают из виду или которые оказываются неожиданностью.
В частности, для успешного переосмысления бизнес-процессов прежде всего нужно обладать надлежащим мышлением, чтобы представить новые способы выполнения работы в области «недостающей середины» с использованием искусственного интеллекта и данных, поступающих в режиме реального времени, для обнаружения и устранения основных болевых точек. Кроме того, следует сфокусироваться на экспериментировании, чтобы проверить и улучшить свое видение, одновременно создавая что-то новое, оценивая его и извлекая уроки. На протяжении всего процесса нужно думать о том, как обеспечить доверие к используемым алгоритмам. Для этого необходимы лидеры — руководители, создающие условия для развития ответственного искусственного интеллекта посредством формирования культуры доверия к нему с помощью установления границ, максимального сокращения зоны моральной деформации и других действий, позволяющих решить юридические, этические и нравственные проблемы, возникающие при внедрении подобных систем. И последний, но, безусловно, важный момент: переосмысление процессов требует качественных данных, поэтому компаниям необходимо выстраивать цепочки снабжения данными, которые обеспечат непрерывный поток информации из самых разных источников. Все это охватывает фрагмент MELD нашей модели MELDS.
В следующей главе мы рассмотрим набор интегрированных навыков, которыми должны обладать люди в эпоху искусственного интеллекта. Под термином «интегрированные навыки» мы подразумеваем сочетание способностей человека и машины в области «недостающей середины», позволяющее компаниям трансформировать свои бизнес-процессы. Навыки (skills) — это и есть элемент S, самый важный в нашей модели MELDS. В следующей главе мы узнаем, как изменение навыков, необходимых для достижения успеха, скажется на будущем самой работы.
Назад: Глава 6. Сверхрезультаты обычных людей
Дальше: Глава 8. Расширение взаимодействия человека и машины