Глава 4. Знакомьтесь: ваши новые помощники из фронт-офиса
* * *
Искусственный интеллект в сфере обслуживания клиентов, продажах и маркетинге
Coca-Cola, компания-гигант по производству безалкогольных напитков, устанавливает в розничных магазинах по всему миру огромное количество холодильных шкафов (около 16 миллионов) для хранения своей продукции. Тысячи сотрудников объезжают все торговые точки и вручную ведут учет продукции Coca-Cola. Недавно компания запустила пилотный проект по использованию искусственного интеллекта для удаленного управления холодильниками. Он предполагает внедрение нового ИИ-решения под названием Einstein от компании Salesforce, работающей на рынке CRM-платформ. Einstein использует технологии компьютерного зрения, глубокого обучения и обработки естественного языка.
Прибыв на место и запустив пилотное приложение на основе Einstein, сотрудник фотографирует холодильник на смартфон — и встроенные в Einstein функции распознавания образов анализируют изображение, идентифицируют разные бутылки Coca-Cola и подсчитывают их. Затем Einstein делает прогноз и формирует заказ на пополнение запасов, воспользовавшись информацией из CRM, а также другими данными — в частности, прогнозом погоды, данными о промоакциях, информацией об объеме запасов и сведениями за прошедшие периоды, — чтобы учесть сезонные колебания и иные факторы. Автоматизация подсчета и снабжения существенно экономит время сотрудников и избавляет их от бумажной работы, а дополнительная интеллектуальность системы может увеличить продажи и повысить качество работы с клиентами.
Искусственный интеллект во фронт-офисе помогает таким компаниям, как Coca-Cola, сделать работу с клиентами более удобной и эффективной; это касается трех основных сфер взаимодействия с потребителями: продаж, маркетинга и обслуживания клиентов. В этих областях искусственный интеллект автоматизирует задачи, которые раньше выполняли сотрудники, и одновременно расширяет их возможности. Например, мы узнали, как интеллектуальные агенты (вроде Alexa от Amazon и других подобных систем), автоматизирующие взаимодействие с клиентом, теперь помогают сотрудникам справляться с более сложными задачами, а компаниям — перераспределять персонал туда, где решающее значение имеют навыки людей.
Подобные изменения существенно влияют на то, как клиент воспринимает корпорации и бренды. Зачастую удается сэкономить время и ресурсы клиента, а также предоставить ему персонализированные решения и продукты, отказавшись от ненужной рекламы; эта тенденция постепенно выходит на первый план в розничной торговле. В других случаях, например при кредитовании в режиме реального времени (где искусственный интеллект используется для анализа обширных и разнообразных данных), можно очень быстро и существенно упростить доступ к кредитам и займам для тех клиентов, которые, возможно, никогда бы не получили кредит при традиционной банковской проверке.
Наконец, эти изменения неизбежно влияют на отношения, связывающие клиентов, компании и продукты. По мере того как генерируется все больше информации о характеристиках товаров и сами изделия отправляют данные изготовителю, компании могут переосмыслить постпродажное обслуживание и сам продукт. Например, в умных светильниках компании Philips искусственный интеллект прогнозирует, когда лампочка начнет тускнеть, и эти данные встраиваются в циклы ремонта и утилизации. Иными словами, датчики и искусственный интеллект позволяют компании продавать не просто лампочки, а «освещение как услугу».
Невероятно, честно говоря. С внедрением искусственного интеллекта во фронт-офис вновь встает вопрос о лучших практиках. Как искусственный интеллект и новые формы взаимодействия человека и машины меняют корпоративные стандарты доставки товаров и предоставления услуг и как эти взаимодействия в будущем изменят саму суть работы? Как новые пользовательские интерфейсы (например, Alexa) меняют отношение потребителей к брендам? Какие дизайнерские решения может подсказать или забраковать бот, предназначенный для работы с естественным языком? Что произойдет, когда логотипы и символы-талисманы — традиционные амбассадоры брендов — станут «умными»? Именно на эти вопросы отвечает данная глава.
Магазин, который знает своих клиентов
Чтобы ответить на эти вопросы, вернемся в торговый зал. Пока Coca-Cola запускает пилотные проекты с ИИ-технологиями для автоматизации снабжения, другие компании уделяют больше внимания совершенствованию работы с клиентами, расширяя профессиональные возможности сотрудников отдела продаж. Международный бренд Ralph Lauren начал сотрудничать со стартапом из Сан-Франциско Oak Labs, заказав разработку интегрированного коммерческого интерфейса для покупателей. Ключевой элемент этого решения — подключенная к интернету примерочная, оснащенная умным зеркалом, которое при помощи радиочастотной идентификации (RFID) автоматически распознает товары, которые покупатель берет с собой в кабинку.
Зеркало умеет переводить на шесть языков и выводить подробную информацию о товаре. Оно также может менять освещение в примерочной (яркий солнечный свет, закат, клубное освещение и т. д.), показывая клиенту, как он будет выглядеть в разных условиях. Зеркало подскажет, какие товары доступны в других вариантах (иной цвет, иной размер), и продавец принесет нужные модели в примерочную. Подобная возможность — это персонализированное обслуживание клиентов, которое обычно не в силах обеспечить сотрудник-человек, ведь к нему одновременно обращается множество покупателей.
Разумеется, умное зеркало собирает информацию о покупателе: сколько времени он провел в примерочной, какая конверсия (отношение выбранных товаров к купленным) и другие данные. Магазин может обобщить, проанализировать эту информацию и получить неочевидные выводы. Например, покупатели часто примеряют ту или иную одежду, но почти никогда ее не покупают — на основе этой информации магазин может в будущем скорректировать закупки. Более того, подобная информация о клиенте, а также другие данные, например его перемещения по залу, могут применяться при проектировании магазинов. Представьте: вы можете управлять множеством моделей потребительского поведения и оптимизировать планировку магазина так, чтобы ваши покупатели остались довольны, возвращались к вам снова или покупали определенные товары.
Ритейлер также может использовать искусственный интеллект для решения операционных задач, например управления персоналом. Так, глобальная японская сеть магазинов одежды занимается оптимизацией труда продавцов, работающих в зале. В отделах одежды и обуви именно эти сотрудники играют ключевую роль: около 70% опрошенных покупателей признались, что нуждаются в их рекомендациях, поэтому для эффективного управления персоналом было решено воспользоваться ИИ-решением от компании Percolata.
Программа выработала оптимальное расписание, состоящее из пятнадцатиминутных блоков, и предложила наиболее эффективные связки продавцов, заступающих на смену. Автоматизация позволила устранить непреднамеренные ошибки менеджеров, чаще вызывавших на смену «любимчиков», даже если те не способствовали общему успеху команды продавцов-консультантов. Внедрив ИИ-решение в 20 магазинах в США, компания обнаружила, что в течение 53% рабочего времени в ее магазинах находятся лишние сотрудники, а в течение 33%, напротив, ощущается их нехватка. Рекомендации Percolata по планированию рабочего времени персонала обеспечили японскому ритейлеру рост продаж на 10–30%, а менеджерам позволили высвободить примерно три часа в день, которые ранее тратились на планирование смен.
Еще одна пришедшая из Европы инновация предлагает другие способы расширения возможностей торговой сети. Итальянская компания Almax разработала манекен, оснащенный компьютерным зрением и технологией распознавания лиц. Система с искусственным интеллектом может определить ваш пол, примерный возраст и расу. Бутики и модные бренды вроде Benetton задействуют такие высокотехнологичные манекены, чтобы подробнее изучить своих клиентов. Так, в одном магазине было замечено, что мужчины, совершавшие покупки в течение первых нескольких дней распродаж, обычно тратили больше денег, чем женщины. Именно поэтому компания соответствующим образом оформила витрины. В другом магазине выяснили, что из всех посетителей, заходящих в магазин после 16:00 через определенный вход, треть составляют китайцы, поэтому именно в эти часы там работал сотрудник, владеющий китайским языком.
В будущем ритейлеры начнут применять ИИ-технологии для персонализированной работы с клиентами. Так, манекен или зеркало, узнавшие вас, могут загрузить историю ваших покупок и подсказать сотруднику, какие модели одежды стоит вам предложить (поскольку они могут вам понравиться). Такой формат станет типичным примером взаимодействия человека и машины, о чем шла речь во введении. ИИ-технологии отвечают за то, в чем сильны машины (обработка большого объема данных с последующей рекомендацией определенных действий), а человек — за то, в чем сильны люди (суждение и гибкие навыки, помощь клиентам в приобретении тех товаров, которые более всего отвечают их потребностям). По мере совершенствования ИИ-систем машины смогут анализировать человеческую мимику и интонацию, определяя эмоциональное состояние человека и подстраиваясь под него. В главе 5 мы рассмотрим, как некоторые продвинутые ИИ-приложения обучаются эмпатии.
С одной стороны, такие технологические новшества расширяют возможности розничной торговли, с другой стороны, они могут порождать проблемы, связанные с этикой и конфиденциальностью. Например, Almax занимается доработкой слуховых способностей своих манекенов, что вызывает опасения, будут ли манекены подслушивать клиентов, фиксируя, как те относятся к выставленной в зале одежде. В главе 5 мы обсудим, насколько компании, внедряющие передовые технологии, нуждаются в сотрудниках-людях, способных оценивать и решать разные этические вопросы.
Искусственный интеллект в ритейле
Последние исследования опровергают известный тезис о гибели традиционных магазинов под натиском интернет-торговли. Теперь с помощью искусственного интеллекта оба канала продаж могут сделать ваш шопинг персонализированным.
• Робот LoweBot компании Lowe работает в 11 магазинах розничной сети в Сан-Франциско. Он отвечает на вопросы покупателей и проверяет количество товара на полках.
• H&M в сотрудничестве с популярным мессенджером Kik разработала бота, который на основе короткой анкеты предлагает одежду и изучает предпочтения клиентов по стилю.
• Приложение iFood Assistant от компании The Kraft предлагает «рецепты дня» с перечнем ингредиентов, а также указывает, где их купить. Постепенно оно изучает предпочтения пользователей: любимые магазины, количество членов семьи, чтобы уточнить свои рекомендации.
Искусственный интеллект для суперпродавцов
Искусственный интеллект помогает продавцам не только в торговом зале, он расширяет их возможности при взаимодействии с клиентом, значительно снижая нагрузку сотрудника и беря на себя многие задачи — от автоматической рассылки идеально составленных электронных писем (это делает интеллектуальный агент) до быстрого и грамотного упорядочивания данных о продажах. По мере цифровизации продажи и маркетинг постепенно обезличиваются — а ведь многие люди ранее шли в эти сферы именно ради общения. Искусственный интеллект фокусируется на обработке больших объемов цифровых коммуникаций, высвобождая специалистам по продажам и маркетингу время на работу с людьми.
Так, стартап 6sense предлагает программное обеспечение, обрабатывающее огромные объемы данных и помогающее продавцу сделать потенциальному клиенту выгодное предложение в самый подходящий момент. Анализируя посетителей, заходящих на сайт клиента, а также сторонние данные из множества общедоступных источников, даже из соцсетей, 6sense позволяет составить более полную картину интересов, оценить, когда клиент будет готов к покупке (и будет ли вообще), и даже провести работу с возражениями. Ранее продавец мог увидеть благоприятную возможность, ориентируясь по физиологическим или поведенческим особенностям, улавливая эти сигналы при телефонном разговоре или в личном общении. 6sence возвращает продавцу навыки, утраченные с распространением обезличенных взаимодействий — например, при общении по электронной почте.
Твой приятель бренд
Некоторые важнейшие изменения во фронт-офисе происходят с помощью онлайн-инструментов и интерфейсов с функциями искусственного интеллекта. Задумайтесь, с какой легкостью клиенты Amazon приобретают разнообразные товары благодаря основанной на искусственном интеллекте системе подсказок и рекомендаций, а также персональному боту-помощнику Alexa, подключенному к Echo (умному динамику с функцией распознавания голоса).
ИИ-системы, аналогичные тем традиционным системам, которые предназначены для обслуживания клиентов, начинают играть все более заметную роль в генерировании прибыли (традиционной задаче фронт-офиса). Простота покупки становится ключевым фактором для клиента. В рамках одного исследования 98% клиентов, совершавших покупки онлайн, признались, что, скорее всего (или с большой долей вероятности), купили бы что-нибудь еще, если бы с сайтом было удобно работать.
Когда искусственный интеллект берет на себя взаимодействие с клиентом, то ключевым преимуществом компании, выделяющим ее на фоне конкурентов, становится программное обеспечение. В таких сценариях искусственный интеллект перестает быть чисто технологическим инструментом, он становится лицом бренда (как Alexa сейчас начинает олицетворять Amazon).
Почему бренды так важны? В течение XX века, по мере того как корпорации приобретали известность, а реклама превращалась в самостоятельную отрасль, сформировалось такое направление маркетинга, как корпоративный брендинг. Появились запоминающиеся талисманы, символы бренда — например, тигр, который хвалит хлопья на завтрак, или дружелюбный человечек из покрышек. Тигр Тони и человек Мишлен (известный как Bibendum) — это примеры «персонификации бренда». Дополняя бренд таким персонажем, запоминающимся слоганом или другой отличительной особенностью, компании проще привлечь клиентов и удержать их. Сегодня персонификация брендов выражается в создании ИИ-ботов. Мы знаем, что это не люди, но они достаточно очеловечены, чтобы привлекать наше внимание и даже вызывать эмоции.
Персонификация бренда с помощью искусственного интеллекта способна привести к довольно неожиданным результатам. Со временем Alexa может стать более узнаваемой, чем разработавшая ее компания Amazon. Благодаря простоте разговорного интерфейса, возможно, вскоре клиенты станут больше общаться с искусственным интеллектом, а не с сотрудниками компании. Такая перемена в коммуникациях (в некоторых отношениях она даже кое-что упрощает) не обойдется без проблем, с которыми компаниям предстоит справиться. Каждое подобное взаимодействие даст клиенту возможность составить свое впечатление об ИИ-боте и, соответственно, о бренде и успешности компании. Каждого из нас может удовлетворять или, наоборот, раздражать общение с клиент-менеджером — точно так же у нас может сформироваться субъективное впечатление о боте. Более того, область действия бота гораздо шире любого разового разговора с продавцом или менеджером по работе с клиентами. Теоретически один бот может одновременно общаться с миллиардами людей, поэтому хорошие или плохие впечатления о нем могут получить глобальный охват в долгосрочной перспективе.
Следовательно, решения относительно имени, личности и голоса амбассадора бренда становятся критически важными для любой организации. Будет ли этот голос мужским, женским или унисекс? Должен ли персонаж быть дерзким или милым, «ботаником» или продвинутым?
Характер и имидж узнаваемого «лица» бренда связаны с ценностями организации — или как минимум с ценностями, которые, по мнению компании, разделяют ее клиенты. Даже при создании статичного персонажа-талисмана возникает немало проблем, а при использовании искусственного интеллекта подобные решения становятся еще сложнее и многограннее. Так, в Amazon посчитали, что Alexa не будет употреблять ненормативную лексику и совсем редко станет прибегать к сленгу. Коммуникационные боты изначально динамичны — они способны обучаться и исправлять самих себя, — поэтому компании придется определить «потолок», до которого сможет развиваться ее бот.
Любопытное новшество — бренды без посредников
Интересный эффект проявляется по мере того, как все больше компаний применяют решения с использованием таких ИИ-платформ, как Siri, Watson, Cortana и Alexa. Происходит так называемая дезинтермедиация бренда.
С 1994 года общение Amazon с клиентами оставалось визуальным. На сайте компании (а также в появившихся позднее мобильных приложениях) легко ориентироваться, поэтому вы с легкостью находите то, что вам нужно (или понимаете, что вам не нужно), и совершаете покупку. Затем в 2014 году Amazon добавила новый режим общения: по домашнему устройству Echo. Умный динамик оснащен искусственным интеллектом, активируется голосом, подключается к Wi-Fi.
Так у Amazon появились уши. Внезапно клиенты стали общаться с компанией напрямую, без посредников: заказывая бумажные полотенца, они просили ИИ-бота Alexa поставить какую-нибудь композицию или прочитать отрывок из электронной книги. По мере развития Alexa все лучше справлялась с обслуживанием клиентов других компаний, позволяя заказать пиццу у Domino, проверить счет через Capital One и получить актуальную информацию о рейсах авиакомпании Delta. Ранее такие компании, как Domino’s Pizza, Capital One и Delta, общались со своими клиентами самостоятельно, но теперь, c появлением Alexa, Amazon получил доступ к этой информации, а также стал основным каналом связи между компаниями и ее клиентами. Amazon может пользоваться этими данными для улучшения собственных услуг. Бренду больше не нужны посредники.
Этот процесс может приобретать и другие формы. Например, Facebook не создает никакого контента, однако опосредует контент миллиардов людей и тысяч медиарынков. У Uber почти нет собственного парка автомобилей, однако это крупнейший игрок на глобальном рынке такси. В гиперсетевом мире, где мобильные телефоны, микрофоны, термостаты и даже спортивная одежда могут подключаться к интернету, а потенциально и друг к другу, брендам приходится эффективнее взаимодействовать между собой и отчасти уступать контроль над своим продуктом тем, у кого самые популярные интерфейсы. Хорошо это или плохо, сейчас платформа — это сила.
Тем временем искусственный интеллект инициировал существенные изменения в Amazon. К концу 2016 года онлайн-ритейлер продал более 5 миллионов устройств Echo, и электронная коммерция стала переходить от кликов к общению. Эта тенденция получила название «продажи без клика».
Когда бренды персонифицируются
Когда клиент сможет настраивать искусственный интеллект по своему усмотрению, персонификация бренда выйдет далеко за рамки, заданные в XX веке анимированными символами-талисманами. И тогда мы окажемся в неизведанной области этики, и там придется учитывать последствия того, как мы проектируем коммуникационных ботов. Чем коммуникабельнее становится такая программа, тем проще принять ее за верного друга, у которого всегда найдется мудрый совет или слова утешения. Но обдумывали ли разработчики ботов, как те будут отвечать на глубоко личные вопросы? Может ли бот распознать, что человек ищет в интернете информацию о симптомах, которые могут указывать на аппендицит или даже рак? Что если человек признается в стремлении лишить себя жизни? Либо в том, что недавно стал жертвой насилия? Как в таком случае реагировать боту?
В ходе исследования 2016 года выяснилось, как Siri от Apple, Cortana от Microsoft, Google Now и S Voice от Samsung реагируют на разные сигналы, свидетельствующие об умственном или физическом нездоровье. Все четыре бота оказались неспособны распознать кризисную ситуацию, отреагировать вежливо и определить, что человеку нужно подсказать телефон доверия или центр медицинского обслуживания. Siri лучше других угадывала физическое недомогание, часто отвечая на описания расстройств списком расположенных поблизости медицинских учреждений. Однако ей не удавалось уверенно различать степень опасности тех или иных состояний — например, при сравнении сердечного приступа с головной болью.
«Исследование указывает на упущенные возможности и недостаточно эффективное использование технологии при подборе медицинских услуг, — заключили авторы. — По мере того как искусственный интеллект все активнее проникает в повседневную жизнь, программисты, врачи и профессиональные ассоциации должны разрабатывать и тестировать методы, которые позволили бы повысить качество работы коммуникационных агентов».
Создавать внимательных ботов можно с помощью «модуля эмпатии», подключаемого к любому искусственному интеллекту. Стартап Koko из Массачусетского технологического института в настоящее время разрабатывает подобное программное обеспечение. Такой сервис, встроенный в мессенджер Kik, переадресует деликатные вопросы человеческому коллективу, а на основе их ответов совершенствуется система машинного обучения. Вы можете, например, сообщить ей, что нервничаете перед собеседованием. Через несколько минут Koko ответит что-нибудь вроде: «Будет здорово, если ты просто будешь вести себя естественно».
Уже сейчас искусственный интеллект достаточно умен, чтобы давать ответы на некоторые вопросы быстрее, чем их смысл поймет консультант-человек, но автоматическая система все еще не преодолела стадию «подслушивания». Сооснователь Koko Фрейзер Келтон говорит: «Мы работаем над предоставлением эмпатии как услуги на любой голосовой платформе или в мессенджере… мы считаем, что это важнейший аспект взаимодействия с пользователем в нашем мире, где так много приходится иметь дело с компьютерами».
Итак, повторю: мы начинали с тигра Тони, напоминавшего вам, как хороши хлопья Frosted Flakes, а заканчиваем коммуникационным ИИ-ботом, достаточно продвинутым, чтобы посочувствовать вам, когда вы волнуетесь перед собеседованием. Мы также обсудили динамик, который активируется голосом и выполняет ваши команды — например, может заказать блендер Magic Bullet для приготовления смузи к завтраку. Это подлинный прорыв, причем территория, на которой «живут» коммуникационные боты, еще во многом не исследована. (Во второй части мы обсудим, каким образом принимать долгосрочные и выгодные решения об использовании сильных сторон искусственного интеллекта.)
Стратегии цифровых гигантов
Традиционные компании все чаще используют аналитику в маркетинге и продажах. Раньше подобные практики ассоциировались больше с Amazon, eBay и Google. Теперь и Coca-Cola может стать признанным лидером в области искусственного интеллекта.
Выше мы рассказывали, как компания-гигант по производству безалкогольных напитков разработала «умные» холодильники и установила их в миллионах розничных точек по всему миру. Она также применяет искусственный интеллект для маркетинга в социальных сетях. ИИ-приложение от Coca-Cola отличается от аналогичных на рынке: оно способно замерять эмоциональный фон, сопутствующий громким событиям и новостям — таким как смерть Дэвида Боуи или финал Суперкубка. Благодаря креативному маркетингу Coca-Cola вызывает у клиентов живой отклик.
В ходе тестирований во время летних Олимпийских игр 2016 года креативный контент, учитывающий настроение пользователей (эту информацию собирали с помощью искусственного интеллекта), на 26% увеличивал готовность людей просмотреть такой контент или поделиться им. Такие показатели могут существенно повлиять на финансовые результаты компании.
Искусственный интеллект в продажах и маркетинге
Широкая доступность данных, миграция продаж и продвижения товара в интернет означают, что искусственный интеллект становится чрезвычайно важным инструментом для разработки новых стратегий продаж.
• State Farm комбинирует оценку мастерства водителя с его биометрическими данными (характеризующими эмоциональное состояние), получаемыми при помощи датчиков и камер. Это помогает компании точнее выставлять оценки в соответствии с реальным риском и фактическим уровнем безопасности.
• GlaxoSmithKline использует платформу Watson Ads от IBM для создания интерактивной онлайн-рекламы. Пользователь, который увидел рекламу, может задавать ей вопросы голосом или через систему распознавания текста.
• Google использует искусственный интеллект для анализа миллионов сигналов с целью определить оптимальную стоимость рекламы на AdWords и DoubleClick Search, максимально используя свои маркетинговые инструменты.
Другие варианты применения искусственного интеллекта в продажах и маркетинге могут показаться не столь впечатляющими, однако их эффект не менее значим. Например, компания-производитель супов Campbell совместно с Ditto Labs задействовала искусственный интеллект для извлечения данных из общения пользователей в социальных сетях. Приложение перебирает и анализирует колоссальные объемы визуальных данных. Пока компания успела испытать эту технологию на своем бренде V8 и, по словам Умана Шаха, глобального директора Campbell по цифровому маркетингу и инновациям, анализ спонтанных и достоверных данных позволил сделать ряд ценных выводов о клиентах. Искусственный интеллект показывает отличные результаты на любом этапе реализации — продажа конечному покупателю, бизнес, реклама, ценообразование, маркетинг. Подробнее об этом см. врезку .
Рабочие места будущего
В этой главе мы говорили о компаниях, которые первыми переосмыслили принципы работы фронт-офиса и взаимодействия с клиентом. Coca-Cola запустила пилотный проект, который может трансформировать весь процесс поставок безалкогольных напитков — установив по всему миру 16 миллионов «умных» холодильников, оснащенных искусственным интеллектом. Это относится к элементу мышление модели MELDS. Компания Ralph Lauren разработала «умное» зеркало, помогающее покупателю с выбором одежды. Зеркало не просто советует другой цвет или размер, оно собирает информацию о клиентах. Здесь мы видим на практике работу с данными (согласно структуре MELDS), поскольку Ralph Lauren может анализировать собранную информацию и извлекать ценные сведения — например, выявлять такие изделия, которые часто примеряют, но редко покупают. Однако использование умных зеркал, а также «подслушивающих» манекенов и других подобных устройств создает моральную дилемму и нарушает конфиденциальность — с этими проблемами бизнесу еще предстоит разобраться. Вот почему нельзя пренебрегать элементом L — лидерством. По мере развития таких ИИ-систем, как умные зеркала, им потребуется более высокий уровень обучения. И Siri, и Alexa уже достаточно долго учатся у людей, чтобы проявлять сочувствие к клиенту, когда он расстроен, разозлен или нервничает. Вот почему руководители должны уделять внимание элементу S, то есть навыкам, и гарантировать, что в компании найдутся специалисты, способные организовать подобное обучение. Организациям также следует выделять достаточно ресурсов на экспериментирование (еще один элемент MELDS), чтобы, например, находить оптимальный баланс эмоций для таких ботов, как Siri и Alexa.
В этой главе мы предположили, какие новые специальности могли бы возникнуть во фронт-офисе. По мере того как боты становятся ключевыми звеньями в инфраструктуре обслуживания клиентов, им требуется виртуальная личность, обновляемая и контролируемая. Руководство этими переменами ляжет на плечи необычных специалистов — экспертов по человеческим коммуникациям, диалогу, юмору, поэзии и эмпатии. В новом мире дополненного и автоматизированного труда разработчики пользовательских интерфейсов станут архиважными сотрудниками, потому что именно от цифрового взаимодействия между людьми (будь то сотрудники или клиенты компании) будет зависеть, сможет ли продукт или услуга на основе искусственного интеллекта занять свое место на рынке и обрести популярность либо его ждет крах. Во второй части этой книги (и особенно в главе 5) мы обсудим инновационный функционал и значение таких специалистов для компаний будущего.